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Abstract

We propose a novel Riemannian framework for compar-

ing signals and images in a manner that is invariant to their

levels of blur. This framework uses a log-Fourier repre-

sentation of signals/images in which the set of all possible

Gaussian blurs of a signal, i.e. its orbits under semigroup

action of Gaussian blur functions, is a straight line. Using

a set of Riemannian metrics under which the group actions

are by isometries, the orbits are compared via distances be-

tween orbits. We demonstrate this framework using a num-

ber of experimental results involving 1D signals and 2D im-

ages.

1. Introduction

Blurring is omnipresent in image data. The point spread

function of the imaging device introduces some level of

blurring in the captured images which can be further exag-

gerated due to techniques for storage and processing. Stan-

dard metrics for image comparisons provide results that

are affected by the amount of blurring present in images.

Shown in Fig. 1 are two examples of natural images (top)

and their blurred versions (bottom). It has been one of long-

standing problems in image analysis to analyze, compare,

and evaluate images without the effect of blurring on them.

A common solution has been to deblur the images us-

ing one of the many techniques available for deblurring

[1, 3, 6, 7, 4, 8] and then compare the deblurred images.

The problem with this approach is that deblurring is a dif-

ficult operation, at least relative to blurring. Secondly, one

has to estimate the amount of blurring in images and then try

to deblur them using that level. The amount of blur present

in an image has been difficult to quantify and estimate in a

principled way [5]. For example, the two images in Fig. 1

bottom row have different levels of blurring but it is difficult

to quantify that without knowing the original blur parame-

ters. Therefore, in a deblurring approach, one is left with an

unresolved issue of amount of deblurring required. Another

approach is to define a set of features that are invariant to
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Figure 1. Example of Original (top) and blurred (bottom) images.

blurring and then to compare those features [2]. Usually,

these features contain only a limited information about the

image and, at best, is a partial representation.

In this conceptual paper, we propose a different ap-

proach. Instead of seeking to deblur the images, we pro-

pose a metric where a comparison between images is in-

variant to their level of blurring. If successful, this frame-

work has a large potential of avoiding many computational

and theoretical issues associated with deblurring-based so-

lutions. We view the proposed framework as an initial step

in that direction, rather than a complete solution to the blur-

ring/deblurring image analysis. The precise goal of this

paper is to develop novel mathematical representations of

signal/image data and associated Riemannian metrics such

that the resulting image comparisons become invariant to

blurring. To simplify the presentation, we start the discus-

sion with 1D signals, and extend the ideas to 2D or nD sig-

nals later.

An important question in developing this framework is:

What mathematical form should the signals take? The

choice of representations and the metrics should be such

that the blurring of any two functions does not change the



distance between them. That is, the action of the blurring

group should be by isometries. A natural mathematical rep-

resentation of a gray-scale image or a signal is simply as

a real-valued function on an appropriate domain. We will

consider them as real-value functions on R. (The domain

is chosen to be R since we can easily extend any signal on

an interval, say [0, 1], as a periodic signal on the full real

line.) Traditionaly analysis of signals is performed in the

original time (spatial) domain or the frequency domain us-

ing Fourier transforms. However, under the commonly used

metrics, the action of the (Gaussian) blurring group is not

by isometries. In contrast, in the log-Fourier space, the or-

bits of the blurring group are given by straight lines and the

action is by isometries. So, we formulate a framework for

blurring-invariant comparisons of signals and images under

their log-Fourier representations. We suggest a set of Rie-

mannian metrics in that representation and derive a frame-

work for computing geodesics and geodesic distances be-

tween orbits of given signals.

The rest of the paper is as Section 2 introduces the log-

Euclidean representation of signals, Section 3 presents the

overall algorithm for comparing and matching signals, and

Section 4 presents some experimental results to demonstrate

the algorithm.

2. Mathematical Representations of Signals

There are at least three different domains one can use to

analyze signals – the original space, the Fourier transform

space, and the log-Fourier transform space. These three

domains and their properties are described next.

1. Time Domain: Let F be the set of smooth functions f :
R → R. (While we shall start with real valued functions, it

will become convenient to enlarge our set to the set of com-

plex valued functions.) Let Kδ be a Gaussian blurring func-

tion given by Kδ(x) =
1√
δ
e−πx2/δ. The Kδ’s are normal-

ized so that
∫
R
Kδ(x)dx = 1 for all δ. Let ∗ denote the con-

volution operation, i.e. (f∗g)(x) =
∫∞
−∞ f(y)g(x−y)dy. It

is easy to verify that: (Kδ1 ∗Kδ2)(x) = Kδ1+δ2(x). Hence,

under convolution, these Gaussians form a semigroup iso-

morphic to the positive real numbers under addition, which

we henceforth denote by R+. Further, the group R+ acts on

F by the action:

(δ, f) = (Kδ ∗ f)(x) =
∫ ∞

−∞
f(y)Kδ(x− y)dy .

This action is nothing but a blurring of the function f by the

Gaussian blurring function Kδ . The orbit of a point f ∈ F
under R+ is given by: [f ] = {(δ, f)|δ ∈ R+}. In these

terms, the problem of interest in this paper is the following.

We would like to understand the nature of the quotient space

I ≡ F/R+, put a Riemannian metric on it, and calculate

geodesics with respect to that metric.

The challenge comes from the fact that the simple L2

metric is not invariant to the action of the blurring group.

Since F is a vector space, its tangent space at any point f
is also F . The action of R+ on the tangent vectors is same

as that on element of F . Let ‖ · ‖ denote the L2 metric on

F : for v1, v2, 〈v1, v2〉 =
∫∞
−∞ v1(x)v2(x) dx. The prob-

lem in using this metric for comparing functions is that the

action of R+ on F is not by isometry. That is, in general,

〈v1, v2〉 6= 〈Kδ ∗ v1,Kδ ∗ v2〉.
2. Fourier Domain: It is often convenient to perform anal-

ysis in the Fourier domain since the convolution and decon-

volution operations are replaced by more convenient prod-

uct and division operations. For a f ∈ F , denote f̂ to be the

Fourier transform of f : f̂(ξ) =
∫∞
−∞ f(x)e−2πixξdx. The

Fourier transform of a blurring function Kδ is given by:

K̂δ(ξ) =
1√
δ

∫ ∞

−∞
e−πx2/δe−ixξdx =

1√
δ
Kδ−1(ξ) .

In terms of the Fourier transforms, the convolution becomes

a product: f̂ ∗ g = f̂ · ĝ. Let F̂ denote the space of func-

tions (of ξ) obtained as Fourier transforms of functions in

F . Note that these functions can have complex values. The

action of R+ on F̂ corresponding to the above action on F
is given by (δ, f̂) 7→ K̂δ · f̂ . The orbit of a point f̂ ∈ F̂
under R+ is given by: [f ] = {(δ, f̂)|δ ∈ R+}, and the cor-

responding quotient space is now given by: Î ≡ F̂/R+.

If we assume the standard L2 metric on F̂ , once again the

action of R+ on F̂ is not by isometries.

3. Log-Fourier Domain: We now define a new set of func-

tions from R to C, called F̃ , that will provide a conve-

nient domain for our blurring-invariant signal analysis. For

a f̂ ∈ F̂ , define f̃ such that f̂ = ef̃ . Let F̃ = {f̃ |ef̃ ∈ F̂}.

Using this transformation, the action of R+ acts on F̃ is

given by:

(δ, f̃)(ξ) = f̃(ξ)− πδξ2 .

Fig. 2 shows two examples of 1D signals and their log-

Fourier transforms (real components) before and after some

blurring. These results are based on computer implemen-

tations rather than the theoretical expressions and demon-

strate an important limitation of the log-Fourier based anal-

ysis. Theoretically, the log-Fourier function for the blurred

signal is shifted by −πδξ2 and the amount of shift should

increase as |ξ|2. However, in practice, it follows a parabola

until |ξ| ∼ 10 (for δ = 1) and levels out beyond that.

This is because of the limited machine precision in comput-

ing the log-Fourier transform of a blurred function beyond

|ξ| > 10.

The orbit of a point f̃ ∈ F̃ under R+ is given by: [f ] =
{(δ, f̃)|δ ∈ R+}, and the corresponding quotient space is

now given by: Ĩ ≡ F̃/R+. In this representation, the orbits

are simply straight lines! This is depicted in Fig. 3.
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Figure 2. Gaussian blurring of 1D signals and the corresponding

effects on their log-Fourier transforms with δ = 0.01 (left) and

δ = 0.005 (right).

Figure 3. Orbits in the log-Fourier domains and the section per-

pendicular to the orbits.

Theorem 1 For functions f, g ∈ F , let f can be written as

f = Kδ0 ∗ g = (δ0, g), for some δ0 > 0. Let f̂ denote its

Fourier transform and f̃ denote the natural log of f̂ . Then,

1. The tangent space Tf ([f ]), is a one-dimensional space

spanned by the function f̈ .

2. The tangent space Tf̂ ([f̂ ]), is a one-dimensional space

spanned by the function ξ2f̂(ξ).

3. In the log-Fourier domain, we already know that the

orbits are straight lines. Hence, the tangent space

Tf̃ ([f̃ ]), is also a straight line {δξ2|δ ∈ R}.

Proof: It is easy to calculate the tangent vector of an R+

orbit in F̂ passing through f̂ as follows. Express f̂ as an el-

ement of an orbit by f̂(ξ) = e−πδ0ξ
2

ĝ(ξ). Then, the tangent

vector to this orbit at f̂ is given by:

d

dδ
e−πδξ2 ĝ(ξ)|δ=δ0 = −πξ2e−πδξ2 ĝ(ξ)|δ=δ0 = −πξ2f̂(ξ) .

Thus, the tangent vector to the R+-orbit through f̂ is sim-

ply spanned by the function ξ2f̂(ξ). Because multiplying

the Fourier transform by ξ corresponds to operating on f
by 1

2πi
d
dx , it follows that the tangent to the orbit [f ] at f is

Z( d2

dx2 )f(x), where Z is a constant. �

This result says that the flattening of f , achieved by con-

volving it with Gaussians is, to first order, the same flatten-

ing that is achieved by changing f by a small multiple of

its own second derivative, i.e., pulling it down where it is

concave down, and pulling it up where it is concave up.

There are some practical issues in defining natural log,

e.g. log(0) and the non-uniqueness of the log of a complex

number, we take care of using numerical procedures.

3. Blurring-Invariant Metrics

One of our main objectives is to define a metric on the

image space that is invariant to the action of R+ on F . We

will accomplish this using the transformations to the Fourier

and the log-Fourier domains. More specifically, we will im-

pose a Riemannian metric on the log-Fourier domain F̃ and

induce this metric on the spaces F̂ and F using appropriate

mappings.

Let us start by defining a Riemannian metric on F̃ . For

any f̃ ∈ F̃ , let ṽ1, ṽ2 be any two tangent vectors. There are

at least two possibilities for choosing a metric.

1. Exponential Riemannian Metric: Define the metric:

〈〈ṽ1, ṽ2〉〉f̃ = ℜ(
∫

R

ṽ1(ξ)ṽ2(ξ)
†e−πξ2dξ) . (1)

Here † denotes the complex conjugate and ℜ denotes

the real part of the argument.

2. Polynomial Riemannian Metric: For β ≥ 4 define

the metric:

〈〈ṽ1, ṽ2〉〉f̃ = ℜ(
∫

R

ṽ1(ξ)ṽ2(ξ)
† 1

(1 + |ξ|)β dξ) . (2)

Theorem 2 The action of R+ on F̃ is by isometries with

respect to either of these metrics.

Proof: Since the action of R+ on F̃ is just by translation,

the action on the tangent space is just by the identity map.

So, the inner-products before and after the action remains

same. �

The invariance of the Riemannian metric implies preserva-

tion of distances. Take two functions, f1 and f2 with log-

Fourier transforms f̃1 and f̃2, respectively. The distance

between them is:

||f̃1 − f̃2|| =
√〈〈

f̃1 − f̃2, f̃1 − f̃2

〉〉
.



For a given δ0 in R+, let f ′
1 = f1 ∗Kδ0 and f ′

2 = f2 ∗Kδ0 ,

and their log-Fourier representations f̃ ′
1 = f̃1 − δ0πξ

2 and

f̃ ′
2 = f̃2 − δ0πξ

2. The distance between these two new

functions remains same:

||f̃ ′
1− f̃ ′

2|| = ||(f̃1−δ0πξ
2)− (f̃2−δ0πξ

2)|| = ||f̃1− f̃2|| .

It can be shown that with this metric F̃ is a Hilbert space

and the geodesics in this space are simply the straight lines.

Since the group action is by isometries, the metric descends

to the quotient space F̃/R+ and one can define the distance

between the blur orbits as:

Definition 1 The blur-invariant distance between any two

signals f1 and f2 is given by:

d([f1], [f2]) = min
δ∈R+

‖f̃1 − f̃2 − πδξ2‖ ,

where the norm is computed using one of the two possible

metrics.

3.1. Quantification of Blurring

In order to characterize the quotient space F̃/R+, we

seek a set that is orthogonal to every orbit it meets under

the specified metric (also known as an orthogonal section.

This is easy to do in the log-Fourier space since the orbits

are straight lines. Thus, we can easily derive a functional,

say Q, on F̃ whose level sets are orthogonal sections. Such

a Q will have the property that its gradient at any point will

be tangent to the orbit of R+ passing through that point. Let

h be the unit vector in the direction of πξ2.

1. For the exponential metric, it is given by:

h =
−πξ2√

〈〈πξ2, πξ2〉〉
=

−ξ2√∫
ξ4e−πξ2dξ

= − 2π√
3
ξ2 .

Here we have used
∫
ξ4e−ξ2/2σ2

dξ = 3
4π2 .

2. For the polynomial metric, it is given by:

h =
−πξ2√

〈〈πξ2, πξ2〉〉
=

−ξ2√∫
ξ4( 1

1+|ξ| )
βdξ

=
−ξ2

C ,

where C =
√
−2( 1

5−β − 4
4−β + 6

3−β − 4
2−β + 1

1−β ).

Theorem 3 The functional Q : F̃ → R+ such that the

gradient of Q at a point f̃ is tangent to the orbit of R+

passing through f̃ is given by: Q[f̃ ] =
〈〈

f̃ ,h
〉〉

.

Note that for the exponential metric: Q[−πξ2] =
2π2
√
3

∫
R
ξ4e−πξ2dξ =

√
3
2 and for the polynomial metric:

Q[−πξ2] = π
C
∫
R

ξ4

(1+|ξ|β)dξ = πC.

The Q functional can be viewed as a quantification of

the level of “blurriness” of a signal f . As we blurr a signal

using a Gaussian kernel, the corresponding Q value of its

representative in the log-Fourier space increases. Since we

are going to compute geodesics between any two signals

in the quotient space Ĩ, we need to bring these images to

the same level set of Q using the action of R+, according

to Definition 1. As we traverse the orbit of f̃ by adding

positive multiples of −πξ2, we need to find a δ̂ such that:

Q[f̃ − δ̂πξ2] = c, where c > Q[f̃ ] is the blur level that we

want to reach. This implies that Q[f̃ ] + δ̂Q[−πξ2] = c.

1. For the exponential metric: Q[f̃ ] + δ̂
√
3
2 = c. There-

fore, to bring f̃ to the c level curve of Q, we need δ̂ to

be: δ̂ = 2√
3
(c−Q[f̃ ]) .

2. For the polynomial metric, Q[f̃ ] + δ̂πC = c. So δ̂

should be: δ̂ = c−Q[f̃ ]
πC

3.2. Algorithm

Given any two signals f1 and f2, the following steps de-

fine an algorithm to compute a geodesic path between them

in F , with respect to the induced metric. One can choose

either the polynomial or the exponential metric for this al-

gorithm.

1. Normalize f1 and f2 and compute the Fourier trans-

forms resulting in f̂1 and f̂2, respectively.

2. Take the natural logarithms resulting in f̃1 = log(f̂1)

and f̃2 = log(f̂2).

3. Compute the c1 = Q[f1] and c2 = Q[f2] and let c2 >
c1 WLOG.

4. Distance: Find a δ̂ such that Q[f̃1 − πδ̂ξ2] equals

c2. This is same as blurring the signal f1 so that

the blurriness of the two signals are now same. The

distance between the two signal orbits is given by

‖f̃1 − πδ̂ξ2 − f̃2‖, under the chosen metric.

5. Geodesics: Compute a straight line between f̃1−πδ̂ξ2

and f̃2 and sample it at τ values between 0 and 1:

Ψ(τ) = τ(f̃1 − πδ̂ξ2) + (1− τ)f̃2 .

Map each of these points back into the time domain by

first taking their exponential and then computing their

inverse Fourier transforms.

4. Experimental Results

In this section we describe some experimental results of

the proposed framework.
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Figure 5. Effect of parameters in the metric. (a) The estimation

of δ versus true blurred δ with different β. (b) The estimation of δ

versus the frequency domain ξ.

1D Signal Comparisons: The signals used in these experi-

ments are taken from randomly selected rows of some nat-

ural images. In order to convert a signal on an interval, say

[0, 1] into a smooth periodic signal by repetition, we first

decay the signal to a zero value in a smooth fashion in a

small neighborhood on 0 and 1,say(0, r) and (1 − r, 1). In

the experiment we multiply a factor e(−1/x)

e(−1/x)+e(1/(r−x)) to the

signal in the small neighborhood. This is shown in Fig. 4

where we show a signal before and after this zeroing of its

tail. As can be seen in the right panel, the corresponding

effect on its log-Fourier function is quite significant.

In the first set of results, we take a signal f1 and generate

f2 by blurring f1 by Kδ0 for a certain δ0 > 0. Since both the

functions belong to the same orbit, we expect the blurring-

invariant distance between them to be zero. As described

in the Steps 3-4 of the Algorithm, we estimate the blur level

by comparing the Q-values of the two signals and estimate δ̂
so that the two signals are at the same Q-level. Ideally, one

expects δ̂ = δ0 but in practice, due to computational issues,

the results can be off, depending on the metric. The results

are shown in Fig. 5, where the left panel plots δ̂ versus δ0
for a fixed signal, under the polynomial metric for different

values of β. Depending upon β, this plot is close to the

45◦ line for small δ0 but can deviate away for large δ0. In

the right panel we fix δ0 = 0.1 and estimate it using δ̂for

a fixed β using different integration domains (−ξ0, ξ0); the

estimate δ̂ is plotted versus ξ0. Based on these experiments,

we choose β = 8 for the later experiments.
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Fourier representations of the two functions on the same section.
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Figure 7. (a) f1 (b)f2 before and after smoothing and (c) f̃1 and f̃2
with Q[f̃1] = 0.565686 and Q[f̃2] = 0.563036. The estimated

parameter is δ̂ = 0.0062 and the resulting distance is 0.0692.

A single run of this experiment is shown in Fig. 6 where

we take a signal f1 (a), blur it using δ0 = 0.0025 to result in

(b) and then apply the algorithm for estimating the blur level

of f1 to match f2. The algorithm estimates δ̂ to be 0.0025
and the resulting geodesic path between the f1 ∗Kδ̂ and f2
is shown in the bottom row. The resulting distance between

the two signals is found to be insignificant ∼ 5× 10−7.

In the next experiment we compare two randomly

selected signals f1 and f2 using the algorithm and the

results are presented in Fig. 7. Here we compute the blur

levels of the two functions Q[f̃1] and Q[f̃2] and use these

values to estimate δ̂ needed to blur the function that has the

smaller Q-value. After blurring using the estimated blur

parameter, the two signals are now deemed to be at the

same blur level and can be compared using the polynomial

metric. The resulting distance between the two signals is

the blur-invariant distance between them.

2D Image Comparisons: Without any significant modifi-

cation, the theory presented here extends to 2D images, and

we present some experimental results here without provid-

ing mathematical details. In the first experiment, we take
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Figure 8. Example of blurring images (a) Original Image I1 (b)

I2 = I1 ∗ Kδ0 with δ0 = 0.81; since Q[Ĩ1] = −2.1417 and

Q[Ĩ2] = 0.0730, we get δ̂ = 0.81. (c) I1 ∗Kδ̂
.

Figure 9. Each row shows two images (first,second) at different

levels of blur. The one with lower Q-level is brought to the same

level as the other and shown in (third). Then, the corresponding

distances are computed. The resulting distances from top to bot-

tom are: (1) 0.3238, (2) 0.2797, (3) 0.2734, (4) 0.27943.

an image shown in Fig. 8(a) and generate another image by

blurring with a 2D Gaussian kernel with δ = 0.81 Fig. 8(b).

We then use their log-Fourier representations to compute Q
levels and estimate the blur level δ̂ of I1, which is found to

be exactly 0.81. Hence, the distance between them is 0.

In another experiment, we use several pairs of images

and compute distances between them, as shown in Fig. 9.

Since these images are taken from the same camera, and

are at the same blur level, we intentionally blur one of the

image by a certain amount. However, our method correctly

estimates the δ, brings the two images at the same level,

then compare the two images.

Fig. 10 shows a comparison of two distances: ‖I1∗Kδ−
I2 ∗ Kδ‖ and the proposed distance d(I1 ∗ Kδ, I2 ∗ Kδ),
versus δ for two left images shown in the bottom row of Fig.
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Figure 10. Variation of (a) ‖I1 ∗Kδ − I2 ∗Kδ‖ and the proposed

distance (b) d(I1 ∗Kδ, I2 ∗Kδ), versus δ, for I1, I2 shown in the

bottom row of Fig. 9.

9. This is an experimental validation of the earlier theorem

about the blurring action being by isometries.

5. Summary

We have introduced a log-Euclidean representation of

images and signals, that together with a polynomial or an

exponential metric, provides a blurring-invariant compari-

son of images. In this framework, one computes the blur

levels of two images to be compared, and blurs the least

blurred image to match the other. Once they are at the same

level, we can compute a simple distance between them.

This theoretical framework is demonstrated with several il-

lustrative examples involving signals and images.
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