Collective and Semantic Exploration of Human Mobility Data

-Modeling, Representation, and Applications

Yanjie Fu

- Background and Motivation
\square Modeling Spatiotemporal Dynamics
\square Collective Representation Learning
\square Applications
\square Conclusion and Future Work

MISSOURI

Pervasive Sensing for Human MovementsS\&T

IoT, GPS, wireless sensors, mobile

flickr toon Yatiol

Human Mobility Data

\square Human mobility data are people's movement trajectories which can be the traces of
\square devices: phones, WIFIs, network stations, RFID
\square vehicles: bikes, taxicabs, buses, subways, light-rails
\square location based services: geo-tweets (Facebook, Twitter), geotagged photos (Flickr), check-ins (Foursquare, Yelp)

Taxicab GPS Traces

Bus Traces

Phone Traces

Mobile Check-ins

Represent the spatial, temporal, social, and semantic contexts of dynamic human behaviors within and across regions

Important Applications of Human Mobility

Unprecedented and Unique Complexity

\square Spatio-temporal-textual
\square Networked
\square Collectively-related
\square Heterogeneous
\square Multi-source
\square Multi-domain
\square Multi-format
\square Semantically-rich

\square Trip purposes
\square User profiles
\square Outlier events/incidents
\square Spatial configuration and urban functions of regions

The Overview of The Talk

Collective and Semantic Exploration

Collective representation learning of urban regions with multi-source data
\square Background and Motivation

- Modeling Spatiotemporal Dynamics
\square Collective Representation Learning
\square Applications
- Conclusion and Future Work

Spatiotempral Dynamics Modeling

Learn the patterns of spatiotemporal arrival matrix, and forecast 3W (where, when, what) of future arrivals

Human Mobility Synchronization

Taxi arrival distributions of JFK Airport and Newark Airport

If two regions are similar in urban functions, they show similar arrival patterns

Linking Arrivals, Regions and Purposes

2 Trip purposes

1 Urban functions of regions

Linking Arrivals, Regions and Purposes

(2) Trip purpose
$1 \rightarrow 2$: The urban functions of origin and destination regions show trip purposes

1 Urban functions of regions

Linking Arrivals, Regions and Purposes

1 Urban functions of regions

Linking Arrivals, Regions and Purposes

2 Trip purpose

Framework

Modeling the arrivals of a single region for single trip purpose

Modeling the arrivals of a single region for multiple trip purposes

Modeling the arrivals of multiple regions for multiple trip purposes

Incorporating human mobility synchronization effects

Convert Trajectories To Arrival Events

$$
T=<\left(\boldsymbol{P}_{1}, t_{1}\right),\left(\boldsymbol{P}_{2}, t_{2}\right), \ldots,\left(\boldsymbol{P}_{n}, t_{n}\right)>
$$

Arrivals of a region

Arrivals of a map

R1	0	0	0	0	0	0	4	0	0
R2	0	0	0	10	0	0	0	0	0
R3	0	0	0	0	0	30	0	0	0
R4	0	0	0	8	0	0	0	0	5
R5	0	6	0	0	0	0	0	0	0
R6	0	0	0	0	0	0	15	0	0
R7	0	0	12	0	0	0	0	0	0
R8	0	0	0	0	20	0	0	0	0
	t_{1}	t_{2}							t_{k}

Each trajectory is a five-element arrival event is : $E_{n}=$ $\left\{g_{n}, z_{n}, t_{n}, w_{n}^{d}, w_{n}^{o}\right\}$

- $\quad g_{n}$: the trip purpose of the n-th arrival
- t_{n} : the timestamp of the n-th arrival
- w_{n}^{d} : POIs of destination region
- w_{n}^{o} : POIs of origin region
- ${ }^{\wedge}$ For each region, we organize trajectories as a sequence of arrivals: $E=\left\{E_{1}, E_{2}, \ldots, E_{N}\right\}$
- Benefits: support multi-source mobility data, e.g., trajectories, check-ins

Modeling Arrivals of Single Region for A Single Trip Purpose

\square Modeling mobility arrivals as a stochastic point

process
\square Hawkes Process: $\lambda(t) \stackrel{\text { ' }}{=} \mu+\int_{-\infty}^{t} g(t-s) d N(s)$
Current-past temporal dependency
\square Self-exciting for multi-peak gradually-excited human activities

- The to-work arrivals at 9am are self-excited by the increasingly intensive to-work arrivals at 8am

Mobility arrivals in the i-th region :

$$
\lambda_{i}=\lambda_{i, e a t}(t)+\lambda_{i, \text { work }}(t)+\lambda_{i, \text { relax }}(t)+\cdots
$$

Modeling Arrivals of Single Region for Multiple Trip Purposes (2)

\square Mixture Hawkes processes with respect to different trip purposes
$\square \lambda_{i, m}(t)=\mu_{i, m}+\int_{-\infty}^{t} g(t-s) d N(s)=\mu_{i_{\lambda}} * \gamma_{m}+$
$\int_{-\infty}^{t} g(t-s) d N(s)$

- i: the i-th region

Decouplé the base rates of location and trip purpose to reduce the number of parameters

- m: the m-th trip purpose
- $\mu_{i, m}$: the base rate that region i get visited with trip purpose m
- μ_{i} : the base visit rate of region i
- γ_{m} : the base visit rate of trip purpose m
- $g(t-s)$: memory decay function

Synchronization Effect Across Regions

\square Region synchronization graph

\square Road networks as graph
\square Regions as nodes in the graph
\square Synchronization rate between two regions as the edge weight between two nodes

Region i

Synchronization rate (i, j)

Region j

If Region(i) and Region(j) are both office areas, and many to-work arrivals are observed in Region(j), then it is likely to observe many to-work arrivals in Region(i)

Modeling Synchronization Effect Across Regions in Mixture Hawkes Processes

\square Integrating the synchronization effects across regions into mixture Hawkes processes
$\square \lambda_{i, m}(t)=\mu_{i} * \gamma_{m}+\sum_{j=1}^{I} \alpha_{j i}^{m} \int_{-\infty}^{t} g(t-s) d N(s)$
Base arrival rate

> Sync effect when $j!=i \quad$ Self-exciting effect when $j==i$ (region-region peer dependency) $\quad \begin{array}{r}\text { (past-current temporal } \\ \text { dependency) }\end{array}$
\square Synchronization (Mutual-exciting)

- The arrivals are not just self-excited by previous arrivals within a region, but also excited by the arrivals of peer regions
■ Example: The to-work arrivals of the i-th region at 9am are excited by the to-work arrivals of the j-th similar region at 9am

Enhance Trip Purpose Labeling via Modeling Origin and Destination Regions

Origin (residential)

The urban functions of origin and destination regions can jointly show trip purposes

Incorporating the Joint Modeling of Origin and Destination Regions

Analogies between region modeling and textual mining

Region-Building

Region
Building category
Urban function

Document-Word

Document
Word
Topic

Topic Modeling of Origin and Destination

\square Probabilistic generative model of buildings in origin and destination regions
\square Draw a trip purpose for each trip
\square Draw buildings of origin region from the trip purpose
\square Draw buildings of destination region from the trip purpose

- Generate a purpose $m \sim \operatorname{Multi}(\pi)$
- Generate the POI Topic for the origin $z_{o} \sim \operatorname{Multi}\left(\Phi_{m z}\right)$
- For each POI w^{0} in the origin neighborhood
- Generate the POI $w^{o} \sim \operatorname{Multi}\left(\beta_{z w}\right)$
- Generate the POI Topic for the origin $z_{d} \sim \operatorname{Multi}\left(\Phi_{m z}\right)$
- For each POI w^{d} in the origin neighborhood
- Generate the POI $w^{d} \sim \operatorname{Multi}\left(\beta_{z w}\right)$

Solving the Co-optimization (1)

Solving the Co-optimization (2)

Trip Urban function Time

Origin and
purposes topics , stamp_ _ destination regions

$$
(G, z, t, W)=\left\{\left(G_{n}, z_{n}, t_{n}, W_{n}^{*}\right)\right\} \text { with } t_{0}=0 \text { and } t_{N}=T
$$

Data

1. Training
2. Likelihood Function
3. A Lower Bound
4. Parameter

I Update Rules

Study of Forecasting Next Arrivals

Predicted time intervals of every two arrival events

Study of Trip Purpose Clustering

\square Experiments on synthetic data: validate the identified trip purposes
\square Synthetic data generation: Ogata's modified thinning algorithm for sampling arrival sequences

- Task: Clustering the trajectories based on the inferred trip purposes
\square Baseline methods: MHP, LDA, K-means
- Metrics: purity, F1-Measure, Rand Statistics

Study of Trip Purpose Interpretation

- Data

- Taxi trips of NYC: 7-day taxi trips, millions of GPS trajectories, 152 valid regions
- Point of Interests data of NYC

Identified trip purposes

nightlife		dining			work			shopping	
TOPIC 1	prob.	TOPIC 2	prob.	TOPIC 3	prob.	TOPIC 4	prob.	TOPIC 5	prob.
Bar	0.1884	Chinese Rest.	0.1286	Bar	0.0933	Office	0.3331	Clothing Store	0.0995
Home	0.0953	Italian Rest.	0.0913	Italian Rest.	0.0565	General Entertain	0.1035	Cafe	0.0693
Nightclub	0.0571	Asian Rest.	0.0541	American Rest.	0.0442	Hotel	0.1023	Office	0.0574
Event Space	0.0495	Tea Room	0.0481	Wine Bar	0.0373	Building	0.0869	Coffee Shop	0.0535
Cocktail Bar	0.0495	Bar	0.0472	Sushi Rest.	0.0319	Event Space	0.0593	Cosmetics Shop	0.0419
Lounge	0.0495	Spa or Massage Parlor	0.0416	Mexican Rest.	0.0306	Sandwich Place	0.0376	General Entertain	0.0408
Speakeasy	0.0471	Salon or Barbershop	0.0403	Lounge	0.0297	Hotel Bar	0.0342	French Rest.	0.0406
Breakfast Spot	0.0382	Vietnamese Rest.	0.039	Pizza Place	0.0278	Lounge	0.0342	High Tech Outlet	0.0388
French Rest.	0.0334	Art Gallery	0.0342	Coffee Shop	0.0256	Other Outdoors	0.0298	Salon or Barbershop	0.0368
Boat or Ferry	0.0316	Cocktail Bar	0.0316	Salon or Barbershop	0.0256	Performing Arts Venue	0.0289	Miscellaneous Shop	0.0331
TOPIC 6	prob.	TOPIC 7	prob.	TOPIC 8	prob.	TOPIC 9	prob.	TOPIC 10	prob.
College Acad.	0.0808	Park	0.1343	Art Gallery	0.2773	American Rest.	0.1023	Home	0.2005
Food Truck	0.0756	Other Outdoors	0.1	Park	0.1021	Deli or Bodega	0.0619	Building	0.0591
University	0.0653	Scenic Lookout	0.0767	Other Outdoors	0.0892	Office	0.0569	Deli or Bodega	0.0471
College Library	0.0639	General Travel	0.0753	Cafe	0.0555	Pizza Place	0.0464	Pizza Place	0.0442
General College/University	0.0573	Building	0.074	Playground	0.049	Bar	0.0448	Laundromat or Dry Cleaner	0.0342
College Dorm	0.0565	Airport	0.074	Automotive Shop	0.0386	Food Truck	0.0434	Coffee Shop	0.0317
Cafe	0.0499	Harbor or Marina	0.0616	Event Space	0.033	Sandwich Place	0.0392	Drugstore or Pharmacy	0.0291
Plaza	0.0485	Taxi	0.0534	Strip Club	0.0265	Coffee Shop	0.0346	Chinese Rest.	0.0256
Park	0.0382	Government Building	0.048	Sculpture Garden	0.0241	Burger Joint	0.0326	Mexican Rest.	0.0236
College Classroom	0.0374	Seafood Rest.	0.0343	Plaza	0.0233	Cafe	0.0307	Apartment Building	0.0206

Study of Synchronization Effect

Study of Synchronization Effect

POIs distributions of region B

${ }_{2} \times 10^{5} \quad$ Arrival distribution of region B

POls distributions of region C

Arrival distribution of region C

The POI and arrival distributions of A, B, C are consistent with the pairwise sync rates of A, B, C

Summary

\square Task
\square Modeling spatial diffusion and temporal dynamics of human mobility data
\square Property (provide in-depth understanding)
\square Identify the synchronization property of human mobility
\square Modeling (make it predictable and traceable)
\square Model human mobility as stochastic point processes
\square Develop a synchronization-aware mixture Hawkes model to jointly capture synchronization effects, mobility arrivals, urban regions, and trip purposes
\square Unify mobility arrival forecasting and trajectory semantic annotation
\square Background and Motivation
\square Modeling Spatiotemporal Dynamics

- Collective Representation Learning
\square Applications
\square Conclusion and Future Work

Spatial Representation Learning

Spatial Objects
(e.g., Regions)

Single-source Human Mobility

Vector

Representations

- Given: urban regions, single-source human mobility data
- Objective: learn the vector representations of regions in a latent feature space
- Constraints: similar regions share similar representations

Collective Representation Learning with Multi-source Mobility Data

Multi-Source Human
Mobility Data

- Given: urban regions, multi-source human mobility data
- Objective: learn the vector representations of regions in a
- Given: urban regions,
- Objective: learn the
latent feature space
- Constraints
- Similar regions share similar representations
- Integrate the mutual validation of multi-source human mobility patterns

Vector

Representations

Why Collective Representation Learning?

\square Automated representation learning from widely-available data without domain experts
\square Non-automated: Find domain experts, design variables, and extract vector representations
\square Automated fusion of multi-source unbalanced data
\square Non-automated: Design features, select features, weigh features, weighted combination of features
\square Enable the availability of existing algorithms
\square Enable classification, ranking, clustering, outlier detection for spatial contexts

The Patterns of Three Mobility Events

- Checkin mobility pattern
- <day, hour, location category> of a checkin event
- Taxi mobility pattern
- <day, hour, leaving or arriving> of a taxi pickup or delivery event
- Bus mobility pattern
- <day, hour, leaving or arriving> of a bus pickup or delivery event

Learning Representation with Robustness Guarantee (1)

If the representations of two regions are similar,

Learning Representation with Robustness Guarantee (2)

If the representations of two regions are similar, the mobility patterns in different time slots are similar

Learning Representation with Robustness Guarantee（3）

Urban Regions

Region Representation

Representation robustness check over different time slots and multi－ source data

A Probabilistic Hierarchical Model for Collective Representation Learning

A Probabilistic Hierarchical Model for Collective Representation Learning

Generative Structure

A Probabilistic Hierarchical Model for Collective Representation Learning

A Probabilistic Hierarchical Model for Collective Representation Learning

Region Representation

A Probabilistic Hierarchical Model for Collective Representation Learning

(M regions for N time periods on K hidden status with $\mathrm{C} / \mathrm{T} / \mathrm{B}$ mobility)

Solving the Optimization Problem

Collapsed Gibbs Sampling to Solve Probabilistic Hierarchical Model

For the i-th taxi pattern $t_{m, n, i} \in \boldsymbol{t}_{m, n}$, the conditional - For the i-th vus pattlern $b_{m, n, i} \in \boldsymbol{b}_{m, n}$, the conditional posterior for its latent taxi topic is computed by

For the i-th checkin pattern $c_{m, n, i} \in \boldsymbol{c}_{m, n}$, the conditional posterior for its latent checkin topic is computed by

$$
\begin{aligned}
& P\left(z_{m, n, t}=q \mid D, \Upsilon-z_{m, n, t}\right) \\
& =\frac{\mathbb{C}_{q, c_{m, n, t}^{-}+\kappa_{c}}^{-(m, n, t}+\kappa_{m}}{\sum_{c=1}^{\left|P_{c}\right|} \mathbb{C}_{q, c}^{-(m, n, t)}} \text { After all the latent assignments }
\end{aligned}
$$

For the n-th mobility segment in estate m, the conditional u posterior probability for its latent function assignment f is computed by

$$
\text { hidden status, check }{ }^{\epsilon_{f, z}}=\frac{Z_{f, z}+\mu_{z}}{\sum_{q=1}^{Q} Z_{f, q}+\mu_{q}}, \chi_{f, u}=\frac{U_{f, u}+\nu_{u}}{\sum_{r=1}^{R} U_{f, r}+\nu_{r}}, \tau_{f, v}=\frac{v_{f, v}}{\sum_{w=1}^{w} v_{f, w}+\zeta_{w}}, \quad \text { chierarchical model }
$$

$$
\begin{align*}
& P\left(u_{m, n, i}=r \mid D, \Upsilon-u_{m, n, i}\right) \tag{5}
\end{align*}
$$

Study of Restaurant Popularity Prediction

Accuracy comparison of human-defined explicit features and machinelearned latent representations over different predictive models

Annotating Regions of Urban Functions

MISSOURI

Apply K-Means to cluster regions into 4 categories using the learned representations

Office mixed with

 scenic spots
Transportation

Annotating Regions of Urban Functions

MISSOURI

Apply K-Means to cluster regions into 5 categories using the learned representations

Office mixed scenic spots

Transportation

Annotating Regions of Urban Functions

MISSOURI

Apply K-Means to cluster regions into 8 categories using the learned representations

Office mixed with

 scenic spots
Transportation

\square Background and Motivation
\square Modeling Spatiotemporal Dynamics
\square Collective Representation Learning

- Applications
\square Conclusion and Future Work

SmartTransfer: Modeling the Spatiotemporal Dynamics of Passenger Transfers for Crowdedness-aware Route Recommendations

Route and Transfer Recommendations in Public Transportation Systems

Spatial distribution of transfer passenger flow

Cumulative distribution of transfer passenger flow for top 256 subway stations

Root Cause: Spatial-temporal unbalance of traffic demand and transportation capacity supply

Crowdedness-aware Route Recommendations

Feature extraction of subway stations Predict the transfer demands of subway stations with spatialtemporal multi-task learning Given origin and destination, generate candidate routes from subway networks and bus networks

- Recommend routes based on potential time cost and crowdedness

You Are How You Drive: Peer and TemporalAware Representation Learning for Driving Behavior Analysis

Beyond Accidents: Vehicles as Weapons

Charlottesville, Virginia

Number of casualties: A 32-year-old woman was kil
French citizens in mourning over Nice attack 02:19
Date of attack: July 14, 2016
Number of casualties: Eighty-four people were killed and more than 200 wounded.

Toward Machine-Learning Based Driving Behavior Analysis

Turn Right Accelerate

Driving Performance Scoring and Risky Area Detection

PTARL

1. Learn driving behavior profiles from driving state transition graphs with spatiotemporal representation learning
2. Exploit driving behavior profiles to automatically score driving performances and detect risky areas

More Applications

Gas Refilling Event Detection and Gas Station Site Selection (DASFAA16)

Residential Community Analysis for Affordable Housing (KDD14, KDD15, TKDD)

Mitigate Traffic

Congestion

Bike Station Site Selection and Rebalancing (ICDM15)

Point-Of-Interests
Recommender Systems (KDD13, SDM14, ICDM16)
\square Background and Motivation
\square Modeling Spatiotemporal Dynamics
\square Collective Representation Learning
\square Applications

- Conclusion and Future Work

Conclusion Remarks

\square Data Environments
\square Human mobility data
\square Data Science Foundations
\square Modeling spatial diffusion and temporal dynamics as mixture stochastic point processes integrated with human knowledge

- Generalized for ecommerce click rate data, online hospital comment data, network intrusion data, malware/disease infection data, paypal epayment data
- Spatiotemporal forecasting of 3W(when, where, what)
\square Collective representation learning with multi-source data
- Generalized for automated heterogeneous data fusion and automated representation learning
- Spatiotemporal embedding + semantic labeling
\square Data Science Applications
\square Smart transfer systems
\square Driving behavior analysis

