Collective and Semantic Exploration of Human Mobility Data

-Modeling, Representation, and Applications

Yanjie Fu

Outline

Background and Motivation

- Modeling Spatiotemporal Dynamics
- Collective Representation Learning
- Applications
- Conclusion and Future Work

Pervasive Sensing for Human Movements

G

IoT, GPS, wireless sensors, mobile Apps

flickr from YAHOO!

Human mobility data are people's movement trajectories which can be the traces of

- □ devices: phones, WIFIs, network stations, RFID
- vehicles: bikes, taxicabs, buses, subways, light-rails
- Iocation based services: geo-tweets (Facebook, Twitter), geotagged photos (Flickr), check-ins (Foursquare, Yelp)

Represent the spatial, temporal, social, and semantic contexts of dynamic human behaviors within and across regions

Important Applications of Human Mobility

Unprecedented and Unique Complexity

Spatio-temporal-textual

Networked

9

Collectively-related

Heterogeneous

- Multi-source
- Multi-domain
- Multi-format

Semantically-rich

- Trip purposes
- User profiles
- Outlier events/incidents
- Spatial configuration and urban functions of regions

The Overview of The Talk

11

- Background and Motivation
- Modeling Spatiotemporal Dynamics
- Collective Representation Learning
- Applications
- Conclusion and Future Work

Spatiotempral Dynamics Modeling

Learn the patterns of spatiotemporal arrival matrix, and forecast 3W (where, when, what) of future arrivals

Human Mobility Synchronization

13

Taxi arrival distributions of JFK Airport and Newark Airport

If two regions are similar in urban functions, they show similar arrival patterns

MISSOURI

Urban functions of regions

6

MISSOURI

Urban functions of regions

MISSOURI

Urban functions of regions

MISSOURI

Framework

Modeling the arrivals of a single region for single trip purpose

Modeling the arrivals of a single region for multiple trip purposes

Modeling the arrivals of multiple regions for multiple trip purposes

Incorporating human mobility synchronization effects

Integrating human knowledge Incorporating the modeling of origin and destination regions

Convert Trajectories To Arrival Events

Modeling Arrivals of Single Region for A Single Trip Purpose

20

□ Modeling mobility arrivals as a stochastic point process
Base arrival rate
Base arrival rate
Hawkes Process: $\lambda(t) = \mu + \int_{-\infty}^{t} g(t-s)dN(s)$

Current-past temporal dependency

- Self-exciting for multi-peak gradually-excited human activities
 - The to-work arrivals at 9am are self-excited by the increasingly intensive to-work arrivals at 8am

Modeling Arrivals of Single Region for Multiple Trip Purposes (1)

Mobility arrivals in the i-th region :

$$\lambda_{i} = \lambda_{i,eat}(t) + \lambda_{i,work}(t) + \lambda_{i,relax}(t) + \cdots$$

Modeling Arrivals of Single Region for Multiple Trip Purposes (2)

Mixture Hawkes processes with respect to different trip purposes

$$\Box \lambda_{i,m}(t) = \mu_{i,m} + \int_{-\infty}^{t} g(t-s)dN(s) = \mu_{i,*} \gamma_{m} + \int_{-\infty}^{t} g(t-s)dN(s)$$

Decouple the base rates

i: the i-th region

22

m: the m-th trip purpose

• $\mu_{i,m}$: the base rate that region i get visited with trip purpose m

- μ_i : the base visit rate of region i
- γ_m : the base visit rate of trip purpose m
- g(t s): memory decay function

Decouple the base rates of location and trip purpose to reduce the number of parameters

Region synchronization graph

Road networks as graph

23

- Regions as nodes in the graph
- Synchronization rate between two regions as the edge weight between two nodes

If Region(i) and Region(j) are both office areas, and many to-work arrivals are observed in Region(j), then it is likely to observe many to-work arrivals in Region(i)

Modeling Synchronization Effect Across Regions in Mixture Hawkes Processes

24

□ Integrating the synchronization effects across regions into mixture Hawkes processes □ $\lambda_{i,m}(t) = \mu_i * \gamma_m + \sum_{j=1}^{l} \alpha_{ji}^m \int_{-\infty}^{t} g(t-s) dN(s)$ Base arrival rate Sync effect when j!=i Self-exciting effect when j==i (region-region peer dependency) (past-current temporal dependency)

Synchronization (Mutual-exciting)

- The arrivals are not just self-excited by previous arrivals within a region, but also excited by the arrivals of peer regions
- Example: The to-work arrivals of the i-th region at 9am are excited by the to-work arrivals of the j-th similar region at 9am

Enhance Trip Purpose Labeling via Modeling Origin and Destination Regions

Origin (residential)

Destination (office)

The urban functions of origin and destination regions can jointly show trip purposes

25

Incorporating the Joint Modeling of Origin and Destination Regions

Analogies between region modeling and textual mining

Region-Building	Document-Word
Region	Document
Building category	Word
Urban function	Торіс

 Probabilistic generative model of buildings in origin and destination regions

Draw a trip purpose for each trip

27

- Draw buildings of origin region from the trip purpose
- Draw buildings of destination region from the trip purpose
 - Generate a purpose $m \sim \text{Multi}(\pi)$
 - Generate the POI Topic for the origin $z_o \sim Multi(\Phi_{mz})$
 - For each POI w^o in the origin neighborhood
 - Generate the POI $w^o \sim Multi(\beta_{zw})$
 - Generate the POI Topic for the origin $z_d \sim Multi(\Phi_{mz})$
 - For each POI w^d in the origin neighborhood
 - Generate the POI $w^d \sim Multi(\beta_{zw})$

Solving the Co-optimization (1)

Buildings

28

Solving the Co-optimization (2)

Trip Urban function Time Origin and
purposes topics stamp, destination regions
(G, z, t, W) = {(G_n, z_n, t_n, W_n)} with t₀ = 0 and t_N = T
Modeling trip purposes Modeling origin and Modeling arrival
(G, z, t, W) =
$$\prod_{n=1}^{N} p(G_n)p(W_n^o, W_n^d|G_n)p(t_n|G_n)$$

(G, z, t, W) = $\prod_{n=1}^{N} p(G_n)p(W_n^o, W_n^d|G_n)p(t_n|G_n)$
(G, z, t, W) = $\log \left(\int_{\{(G,z)\}} L(G, z, t, W)d\{(G, z)\} \right)$
Surrogate
Bound
 $\geq \int_{\{(G,z)\}} \log \left(L(G, z, t, W) \frac{d\{(G,z)\}}{dq(\{(G,z)\})} \right) dq(\{\{(G,z)\}\})$
 $\geq \int_{\{(G,z)\}} \log \left(L(G, z, t, W) \frac{d\{(G,z)\}}{dq(\{(G,z)\})} \right) dq(\{\{(G,z)\}\})$
 $\leq \prod_{i=1}^{n} (\beta_{rc})^{eW_n^o}$
 $\beta_{rc} \ll \sum_{n} \sum_{m} \phi_{nm}(\zeta_{m,c}^m, W_{m,c}^m, + \zeta_{m,c}^d, W_{m,c}^m)}$
 $M_{i=1}^{n} (\beta_{rc})^{eW_n^o}$
 $\leq \prod_{i=1}^{n} (\beta_{rc})^{eW_n^o}$
 $\leq \prod_{i=1}^{n} (\beta_{rc})^{eW_m^o}$
 $\leq \prod_{i=1}^{n} (\beta_{rc})^{$

Study of Forecasting Next Arrivals

MISSOURI

Study of Trip Purpose Clustering

- Experiments on synthetic data: validate the identified trip purposes
- Synthetic data generation: Ogata's modified thinning algorithm for sampling arrival sequences
- Task: Clustering the trajectories based on the inferred trip purposes
- Baseline methods: MHP, LDA, K-means
- Metrics: purity, F1-Measure, Rand Statistics

Study of Trip Purpose Interpretation

32

- Data
 - Taxi trips of NYC: 7-day taxi trips, millions of GPS trajectories, 152 valid regions
 - Point of Interests data of NYC

Identified trip purposes

nightlife		dining				work		shopping	
TOPIC 1	prob.	TOPIC 2	prob.	TOPIC 3	prob.	TOPIC 4	prob.	TOPIC 5	prob.
Bar	0.1884	Chinese Rest.	0.1286	Bar	0.0933	Office	0.3331	Clothing Store	0.0995
Home	0.0953	Italian Rest.	0.0913	Italian Rest.	0.0565	General Entertain	0.1035	Cafe	0.0693
Nightclub	0.0571	Asian Rest.	0.0541	American Rest.	0.0442	Hotel	0.1023	Office	0.0574
Event Space	0.0495	Tea Room	0.0481	Wine Bar	0.0373	Building	0.0869	Coffee Shop	0.0535
Cocktail Bar	0.0495	Bar	0.0472	Sushi Rest.	0.0319	Event Space	0.0593	Cosmetics Shop	0.0419
Lounge	0.0495	Spa or Massage Parlor	0.0416	Mexican Rest.	0.0306	Sandwich Place	0.0376	General Entertain	0.0408
Speakeasy	0.0471	Salon or Barbershop	0.0403	Lounge	0.0297	Hotel Bar	0.0342	French Rest.	0.0406
Breakfast Spot	0.0382	Vietnamese Rest.	0.039	Pizza Place	0.0278	Lounge	0.0342	High Tech Outlet	0.0388
French Rest.	0.0334	Art Gallery	0.0342	Coffee Shop	0.0256	Other Outdoors	0.0298	Salon or Barbershop	0.0368
Boat or Ferry	0.0316	Cocktail Bar	0.0316	Salon or Barbershop	0.0256	Performing Arts Venue	0.0289	Miscellaneous Shop	0.0331
TOPIC 6	prob.	TOPIC 7	prob.	TOPIC 8	prob.	TOPIC 9	prob.	TOPIC 10	prob.
College Acad.	0.0808	Park	0.1343	Art Gallery	0.2773	American Rest.	0.1023	Home	0.2005
Food Truck	0.0756	Other Outdoors	0.1	Park	0.1021	Deli or Bodega	0.0619	Building	0.0591
University	0.0653	Scenic Lookout	0.0767	Other Outdoors	0.0892	Office	0.0569	Deli or Bodega	0.0471
College Library	0.0639	General Travel	0.0753	Cafe	0.0555	Pizza Place	0.0464	Pizza Place	0.0442
General College/University	0.0573	Building	0.074	Playground	0.049	Bar	0.0448	Laundromat or Dry Cleaner	0.0342
College Dorm	0.0565	Airport	0.074	Automotive Shop	0.0386	Food Truck	0.0434	Coffee Shop	0.0317
Cafe	0.0499	Harbor or Marina	0.0616	Event Space	0.033	Sandwich Place	0.0392	Drugstore or Pharmacy	0.0291
Plaza	0.0485	Taxi	0.0534	Strip Club	0.0265	Coffee Shop	0.0346	Chinese Rest.	0.0256
Park	0.0382	Government Building	0.048	Sculpture Garden	0.0241	Burger Joint	0.0326	Mexican Rest.	0.0236
College Classroom	0.0374	Seafood Rest.	0.0343	Plaza	0.0233	Cafe	0.0307	Apartment Building	0.0206

schooling

sightseeing

home

Study of Synchronization Effect

WEST SIDE Cooper Hewitt Smithsonian Design. MANHATTAN sland Pa 92nd Street American Museum Robert F. Kennedy Bridge of Natural History The Metropolitan Astoria Park Museum of Art The Dakota ne Loeb Boathouse EAST SIDE 0 Lincoln Cente the Performing Arts Rumsey Playfield Manhattan Sculpture Park Hunter Colle 0 **Cruise Terminal** Intrepid Sea, Air Carnegie Hall 📀 C The Plaza ASTORIA R & Space Museum f Modern Art Barrymore Theatre New York City Housing 0 Authority Times Square 🖸 0 Ed Koch Museum of the Moving Image **Oueensboro Bridge** MIDTOWN S The Roosevelt AMC Loews 34th Street 14 C Macy's Herald Square Hotel Pennsylvania The High Line C Empire State Building Freedoms Park HUNTERS POINT 0 LONG State Park ner Galler Queens Blvd ISLAND CITY SUNNYSIDE Ballroom C news Kins Bay 15

 $\alpha_{AB} = 8.27066832$ A and B have a higher synchronization rate A and C have a lower synchronization rate

Study of Synchronization Effect

Summary

Task

- Modeling spatial diffusion and temporal dynamics of human mobility data
- Property (provide in-depth understanding)
 - Identify the synchronization property of human mobility

Modeling (make it predictable and traceable)

- Model human mobility as stochastic point processes
- Develop a synchronization-aware mixture Hawkes model to jointly capture synchronization effects, mobility arrivals, urban regions, and trip purposes
- Unify mobility arrival forecasting and trajectory semantic annotation

36

- Background and Motivation
- Modeling Spatiotemporal Dynamics
- Collective Representation Learning
- Applications
- Conclusion and Future Work

Spatial Representation Learning

- Given: urban regions, single-source human mobility data
- Objective: learn the vector representations of regions in a latent feature space
- Constraints: similar regions share similar representations

Collective Representation Learning with Multi-source Mobility Data

Spatial Objects
(e.g., Regions)Multi-Source Human
Mobility DataVector
Representationsf(Image: Comparison of the sector of the

- Given: urban regions, multi-source human mobility data
- Objective: learn the vector representations of regions in a latent feature space
- Constraints
 - Similar regions share similar representations
 - Integrate the mutual validation of multi-source human mobility patterns

Why Collective Representation Learning?

39

Automated representation learning from widely-available data without domain experts

Non-automated: Find domain experts, design variables, and extract vector representations

Automated fusion of multi-source unbalanced data

Non-automated: Design features, select features, weigh features, weighted combination of features

Enable the availability of existing algorithms

Enable classification, ranking, clustering, outlier detection for spatial contexts

The Patterns of Three Mobility Events

MISSOURI

Learning Representation with Robustness Guarantee (1)

If the representations of two regions are similar, the mobility patterns are similar

Learning Representation with Robustness Guarantee (2)

Learning Representation with Robustness Guarantee (3)

Generative Structure $_{\varphi}$ Μ Κ ηт Xĸ Κ Κ Ek Tk **b**m,n **t**m,n **C**m,n Ζ u V Κ W Q δw $\boldsymbol{\alpha}_q$ b R त्व

Region Representation

(M regions for N time periods on K hidden status with C/T/B mobility)

- The region m is represented by a latent probabilistic vector η_m
- The hidden status *f* of the region *m* changes over time
 - In a period, a region shows checkin (*C*), taxi (*T*), and bus (*B*) clusters of mobility patterns that reflect the hidden status *f*
- A cluster of mobility patterns = a document
- A mobility event= a word
- Model doc-word with topic modeling

Solving the Optimization Problem

49

Collapsed Gibbs Sampling to Solve Probabilistic Hierarchical Model

Study of Restaurant Popularity Prediction

Accuracy comparison of human-defined explicit features and machinelearned latent representations over different predictive models

Annotating Regions of Urban Functions

MISSOURI

Annotating Regions of Urban Functions

52

Apply K-Means to cluster regions into 5 categories using the learned representations

Annotating Regions of Urban Functions

Apply K-Means to cluster regions into 8 categories using the learned representations

MISSOURI

Outline

- Background and Motivation
- Modeling Spatiotemporal Dynamics
- Collective Representation Learning
- Applications
- Conclusion and Future Work

SmartTransfer: Modeling the Spatiotemporal Dynamics of Passenger Transfers for Crowdedness-aware Route Recommendations

Route and Transfer Recommendations in Public Transportation Systems

Spatial distribution of transfer passenger flow

Cumulative distribution of transfer passenger flow for top 256 subway stations

Root Cause: Spatial-temporal unbalance of traffic demand and transportation capacity supply

Crowdedness-aware Route Recommendations

MISSOURI

- Feature extraction of subway stations
- Predict the transfer demands of subway stations with spatialtemporal multi-task learning
- Given origin and destination, generate candidate routes from subway networks and bus networks
- Recommend routes based on potential time cost and crowdedness

You Are How You Drive: Peer and Temporal-Aware Representation Learning for Driving Behavior Analysis

Beyond Accidents: Vehicles as Weapons

Charlottesville, Virginia

59

What can we do to protect human-transportation systems from vehicle-ramming attacks?

A car plows into counterprotesters marching against white

Date of attack: August 12, 2017

Number of casualties: A 32-year-old woman was kil

French citizens in mourning over Nice attack 02:19

Date of attack: July 14, 2016

Number of casualties: Eighty-four people were killed and more than 200 wounded.

Toward Machine-Learning Based Driving Behavior Analysis

Driving Performance Scoring and Risky Area Detection

- 1. Learn driving behavior profiles from driving state transition graphs with spatiotemporal representation learning
- 2. Exploit driving behavior profiles to automatically score driving performances and detect risky areas

More Applications

62

Gas Refilling Event Detection and Gas Station Site Selection (DASFAA16)

Residential Community Analysis for Affordable Housing (KDD14, KDD15, TKDD)

Mitigate Traffic Congestion

Bike Station Site Selection and Rebalancing (ICDM15)

User Modeling

Point-Of-Interests Recommender Systems (KDD13, SDM14, ICDM16)

Outline

- Background and Motivation
- Modeling Spatiotemporal Dynamics
- Collective Representation Learning
- Applications
- Conclusion and Future Work

Conclusion Remarks

Data Environments

64

Human mobility data

Data Science Foundations

- Modeling spatial diffusion and temporal dynamics as mixture stochastic point processes integrated with human knowledge
 - Generalized for ecommerce click rate data, online hospital comment data, network intrusion data, malware/disease infection data, paypal epayment data
 - Spatiotemporal forecasting of 3W(when, where, what)
- Collective representation learning with multi-source data
 - Generalized for automated heterogeneous data fusion and automated representation learning
 - Spatiotemporal embedding + semantic labeling

Data Science Applications

- □ Smart transfer systems
- Driving behavior analysis