Human Mobility Synchronization and Trip Purpose Detection with Mixture of Hawkes Processes
 (ACM SIGKDD 17)

Yanjie Fu

- Background and Motivation
\square Problem Statement and Research Insights
\square Methodology
\square Evaluation
\square Conclusions

MISSOURI

Pervasive Sensing for Human MovementsS\&T

IoT, GPS, wireless sensors, mobile

flickr toon Yatiol

Human Mobility Data

\square Human mobility data are people's movement

 trajectories which can be\square Phone, WIFI, or network station traces
\square Trajectories of driving routes (citibike, taxicabs, buses, subways, lightrails)
\square Sequences of posts (geo-tweets, geo-tagged photos, or checkins)

Taxicab GPS Traces

Phone Traces

Mobile Checkins
\square Multi-source, multi-dimensional, multidomain, multi-format, semantically-rich, collectively-related data environments
\square Devices, e.g., smart phones, smart watches
\square Vehicles, e.g., taxicabs, buses, subways, city bikes
\square Sensors, e.g., GPS, satellite remote sensing
\square Buildings, e.g., banks, shopping malls, restaurants
\square Human in location based services, e.g., Foursquare, Flickr, Tweeter, Facebook, Google+, Yelp

Making Sense of Human Mobility Data

A Closed-Loop Data Science System

- Control
- Action recommendation
- Feedback systems
- Incentive systems
- Sensing systems
- Sensing strategies
- Data collection

Sensing

Collective and semantic exploration

Modeling

- Predictive analysis
- Causal analysis

Represen

 tation- Data cleaning, transformation, reduction
- Explicit feature extraction
- Latent representation learning

Collective and Semantic Exploration of
MISSOURI Human Mobility Data (1)

The ultimate goal
\square Understand the nature of human mobility by making it trackable and predictable

Collective and Semantic Exploration of Human Mobility Data (2)

\square Primary focus areas
\square Collective Modeling

- Geographic co-location: documents and words
- Graph structure: dynamic graphs over time
- Spatial diffusion: stochastic processes
- Collaborative correlation: tensors and factorization
\square Semantic Augmentation
- Trajectories: what (trip purposes), where (destinations), when (trip time), who (out-of-town travelers or local residents)
- Users: user demographics, profiles, daily activities, preferences, social groups
- Events: spatiotemporal event detections (e.g., protests, incidents)
- Regions: important locations, spatial configurations, urban functions
\square Human-Community Interactions
- Human-Transportation-Systems interactions
- Human-Food-Services interactions

Preliminary Studies

Inferring Trip Purposes and Destinations (KDD17, SDM18, TIST)

Residential Community Analysis for Affordable Housing (KDD14, KDD15, TKDD)

Gas Refilling Event Detection and Gas Station Site Selection (DASFAA16)

Crowdedness-aware Route Optimization (TIST)

Bike Station Site Selection and Rebalancing (ICDM15)

Point-Of-Interests
Recommender Systems (KDD13, SDM14, ICDM16)

Self-Optimized Networks for Huawei

Top of cellular base station

Coverage:
1, Horizontal Azimuth
2, Vertical Tilt

Capacity:
1, Pilot Power

Quality

1, network resources such as bandwidth, SINR

Self-Optimized Networks for Huawei

* Automatically and jointly optimize the coverage, capacity and quality of networks using the data from network monitoring (devices), human mobility (physical), and social networks data streams (cyber)
* Decision rule based methods (white box) and reinforcement learning (black box)

More Applications

MISSOURI CR $12 \square$

Economical Development and Policies

Emergency and Disaster Response

Mobility Research in Nature (1)

Letter

Nature 453, 779-782 (5 June 2008) | doi:10.1038/nature06958; Received 19 December 2007; Accepted 27 March 2008
There is an Addendum (12 March 2009) associated with this document.
Understanding individual human mobility patterns

1. Center for Complex Network Research and Department of Physics, Biology and Computer Science, Northeastern University, Boston, Massachusetts 02115, USA
2. Center for Complex Network Research and Department of Physics and Computer Science, University of Notre Dame, Notre Dame, Indiana 46556, USA
3. Center for Cancer Systems Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
\square Understanding individual human mobility patterns, by Barabasi 2009
\square Most individuals travel only over short distances, but a few regularly move over hundreds of kilometers
\square Travel distances vary over times
\square Usually return to a few highly frequented locations

Mobility Research in Nature (2)

```
nature
COMMUNICATIONS
```

-■■ Altmetric: 152 Views: 14,838 Citations: $20 \quad$ More detail 》
Article lopen
Returners and explorers dichotomy in human mobility
 László Barabási
\square Returners and explorers dichotomy in human mobility, by Barabasi 2015
\square Returners and explorers play a distinct quantifiable role in spreading phenomena
\square A correlation exists between the mobility patterns and social interactions of returners and explorers

Mobility Research in Nature (3)

SCIENTIFIC DATA熏

```
# Altmetric: 14 Citations: 7 More detail >>
```

Comment|OPEN
WorldPop, open data for spatial demography

Andrew J. Tatem

\square Using WorldPop to

\square Map poverty
\square Understand maternal health
\square Understand the correlations of population dynamics, property, and health
\square Background and Motivation

- Problem Statement and Research Insights
\square Methodology
\square Evaluation
\square Conclusions

Population Distribution Changes in France between Holidays and Workdays

Correlations of locations, times, and trip purposes

IT Worker Movements of Morning Rush Hours in Chinese Silicon Valley

Title: Commute traffic heat maps of Chinese Silicon Valley * Time: 8:52AM

Research Questions

\square Understanding
\square What is the nature of the spatial diffusion of human mobility across regions of different urban functions in different time periods?
\square Modeling
\square How to infer and classify the trip purposes of human mobility trajectories?

Synchronization in Human Behaviors

Applauds of audiences

Opinion agreement of meeting attendees

Human Mobility Synchronization

Newark international airport arrival distribution on workdays

Taxi arrival distributions of JFK Airport and Newark Airport over 24 hours

What Drives Mobility Synchronization

Factor 1: Trip purpose

Why go to JFK/NWK?

Factor 2: Arrival patterns

When go to JFK/NWK?

Factor 3: Urban functions of regions
What are JFK/NWK used for?

Two regions show similar arrival patterns in particular time periods if they share similar urban functions

Linking Arrivals, Regions and Purposes

Trip purpose

Urban functions of regions
\square Background and Motivation
\square Problem Statement and Research Insights

- Methodology
- Evaluation
\square Conclusions

Framework Overview

Modeling the arrivals of a single region for single trip purpose

Modeling the arrivals of a single region for multiple trip purposes

Modeling the arrivals of multiple regions for multiple trip purposes

Incorporating human mobility synchronization effects

Adding explanations via modeling urban functions of origin and destination regions

Human Mobility Data as Arrival Events

JFK international airport arrival distribution on workdays

For each region, we organize taxi trajectories as a sequence of arrivals: $E=\left\{E_{1}, E_{2}, \ldots, E_{N}\right\}$

- Each event is a three-element tuple: $E_{n}=\left\{g_{n}, t_{n}, w_{n}^{d}, w_{n}^{o}\right\}$
- $\quad g_{n}$: trip purpose
- $\quad t_{n}$: timestamp of the n-th arrival
- w_{n}^{d} : POIs of destination region
- w_{n}^{o} : POIs of origin region

Modeling Arrivals of Single Region for A Particular Trip Purpose

\square Modeling mobility arrivals as a stochastic point process
\square Hawkes Process: $\lambda(t)=\mu(t)+\int_{-\infty}^{t} g(t-s) d N(s)$

Modeling Arrivals of Single Region for Multiple Trip Purposes (1)

Trip Purposes
\square Mixture of multiple arrival sequences with respect to different trip purposes
\square Mixture Hawkes Processes
$\square \lambda_{i, m}(t)=\mu_{i, m}+\int_{-\infty}^{t} g(t-s) d N(s)=\mu_{i} * \gamma_{m}+$ $\int_{-\infty}^{t} g(t-s) d N(s)$

- i: the i-th region
- m: the m-th trip purpose
- $\mu_{i, m}$: the rate that region i get visited with trip purpose m
- μ_{i} : the base visit rate of region i
- γ_{m} : the base visit rate of trip purpose m
- $g(t-s)$: memory decading function

Modeling Arrivals of Single Region for Multiple Trip Purposes (3)

Trip Purposes

Mobility arrivals in the i-th region :

$$
\lambda_{i}=\lambda_{i, e a t}(t)+\lambda_{i, \text { work }}(t)+\lambda_{i, \text { relax }}(t)+\cdots
$$

Synchronization Effect Across Regions (1)

\square Road networks: graph
\square Region: nodes in the graph
\square Synchronization rate between two regions: similarity (edge connectivity) between two nodes

Region i

Synchronization rate (i, j)

Region j

Synchronization Effect Across Regions (2)

\square Enhancing the modeling of mobility arrivals by combining the synchronization effects across regions into mixture Hawkes processes
$\square \lambda_{i, m}(t)=\mu_{i} * \gamma_{m}+\sum_{j=1}^{I} \alpha_{j i}^{m} \int_{-\infty}^{t} g(t-s) d N(s)$
\square A joint arrival process of self-exciting within a region and mutual-exciting across multiple regions
\square Self-exciting: individual dependency in terms of urban functionalities and spatial configurations
\square Mutual-exciting: peer dependency in terms of the similarity among similar regions

Incorporating Urban Functions of Origin and Destination Regions

\square Weakness: improve explanations and interpretations
\square Trip Purposes are semantically embedded in the neighborhood buildings of the origin and destinations
\square A region as a document, a building (POI) as a word, urban functions as latent topics

Region-Building	Doc-Word
Region	Document
Building	Word
Urban function	Topic

Working purpose

Collective Topic Modeling of Origin and Destination

\square The generative process of POls in origin and destination regions
\square Draw a trip purpose for each trip
\square Draw POIs of origin region from a trip purpose
\square Draw POIs of destination region from a trip purpose

- Generate a purpose $m \sim \operatorname{Multi}(\pi)$
- Generate the POI Topic for the origin $z_{o} \sim \operatorname{Multi}\left(\Phi_{m z}\right)$
- For each POI w^{o} in the origin neighborhood
- Generate the POI $w^{o} \sim \operatorname{Multi}\left(\beta_{z w}\right)$
- Generate the POI Topic for the origin $z_{d} \sim \operatorname{Multi}\left(\Phi_{m z}\right)$
- For each POI w^{d} in the origin neighborhood
- Generate the POI $w^{d} \sim \operatorname{Multi}\left(\beta_{z w}\right)$

Solving the Optimization Problem

$$
L(G, t, \mathbf{W})=\prod_{n=1}^{N} p\left(G_{n}\right) p\left(\mathbf{W}_{n}^{o}, \mathbf{W}_{n}^{d} \mid G_{n}\right) p\left(t_{n} \mid G_{n}\right) .
$$

\square Variational inference

$$
\begin{aligned}
& \mathfrak{Q}=\sum_{n=1}^{N} \sum_{m=1}^{M} \phi_{n m}\left(\log \pi_{m}+\mathbf{E}_{q}\left[\log \lambda_{i_{n}, m}\left(t_{n}\right)\right]+\mathbf{E}_{q} \log p_{m}\left(W_{n}\right)\right) \\
& -\sum_{i=1}^{I} \sum_{m=1}^{M} \int_{0}^{T} \mathbf{E}_{q}\left[\lambda_{i, m}(s)\right] d s+\mathcal{E}[q] . \\
& \phi_{n m} \propto \pi_{m}: \text { prior } \\
& \times \prod_{r_{o}=1}^{R}\left(\zeta_{m r^{o}}^{o}\right)^{\zeta_{m r^{o}}^{o}}{ }_{r^{d}=1}^{R}\left(\zeta_{m r^{d}}^{d}\right)^{\zeta_{m r^{d}}^{d}}: \text { POI topics } \\
& \times \prod_{r^{o}=1}^{R} \prod_{c^{o}=1}^{C}\left(\beta_{r^{o} c^{o}}^{o}\right)^{\zeta_{m r^{o}}^{o} W_{n c^{o}}^{o}} \prod_{r^{d}=1}^{R} \prod_{c^{d}=1}^{C}\left(\beta_{r^{d} c^{d}}^{d}\right)^{\zeta_{m r^{d}}^{d}} W_{n c^{d}}^{d}: \text { POIs } \\
& \times\left(\gamma_{m} \mu_{i_{n}}\right)_{n n}^{m} \text { : self triggering } \\
& \times \prod_{l=1}^{n-1}\left(\alpha_{i_{l} i_{n}}^{m} g\left(t_{n}-t_{l}\right)\right)^{\phi_{l m} \eta_{l n}^{m}} \text { : influences from the past } \\
& \times \prod_{l=n+1}^{N}\left(\alpha_{i_{n} i_{l}}^{m} g\left(t_{l}-t_{n}\right)\right)^{\phi_{l m} \eta_{n l}^{m}} \text { : influences to the future } \\
& \times \exp \left(-\mathcal{G}\left(T-t_{n}, t_{n}\right) \sum_{i=1}^{I} \alpha_{i_{n} i}^{m}\right): \text { influences by trip purpose. }
\end{aligned}
$$

$$
\begin{gathered}
\zeta_{m, r}^{o} \propto \prod_{c=1}^{C}\left(\beta_{r c}\right)^{\epsilon W_{n c}^{o}} \\
\zeta_{m, r}^{o} \propto \prod_{c=1}^{C}\left(\beta_{r c}\right)^{\epsilon W_{n c}^{d}} \\
\pi_{m} \propto \sum_{n=1}^{N} \phi_{n m} \\
\mu_{i} \propto \frac{\sum_{m=1}^{M} \phi_{n m} \sum_{n=1}^{N} \delta_{i_{n}, i} \eta_{n n}^{m}}{\sum_{m=1}^{M} \gamma_{m} T} \\
\gamma_{m} \propto \frac{\sum_{n=1}^{N} \phi_{n m} \eta_{n n}^{m}}{\sum_{i=1}^{I} \mu_{i} T}, \\
\alpha_{i j}^{m}=\frac{\sum_{n=1}^{N} \sum_{l=1}^{n-1} \phi_{n m} \phi_{l m} \eta_{l n}^{m} \delta_{i_{l}} \delta_{i_{n} j}}{\sum_{n=1}^{N} \mathcal{G}^{\prime}\left(T-t_{n}\right) \phi_{n m} \delta_{i_{n} i}} \\
\beta_{r c} \propto \sum_{n} \sum_{m} \phi_{n m}\left(\zeta_{m, c}^{o} W_{m, c}^{o}+\zeta_{m, c}^{d} W_{m, c}^{d}\right)
\end{gathered}
$$

\square Background and Motivation
\square Problem Statement
\square Methodology

- Evaluation
\square Conclusion and Future Work

Experiment on Synthetic Data

\square Experiments on synthetic data: validate the identified trip purposes
\square Synthetic data generation: Ogata's modified thinning algorithm for sampling arrival sequences
\square Task: Clustering the trajectories based on the inferred trip purposes
\square Baseline methods: MHP, LDA, K-means
\square Metrics: purity, F1-Measure, Rand Statistics

Experiments on Real World Data

- NYC Taxi trips: 7-day taxi trips, millions of GPS trajectories, 152 valid regions

- POIs of NYC

Identified trip purposes

nightlife dining

TOPIC 1	prob.	TOPIC 2	prob.	TOPIC 3	prob.	TOPIC 4	prob.	TOPIC 5	prob.
Bar	0.1884	Chinese Rest.	0.1286	Bar	0.0933	Office	0.3331	Clothing Store	0.0995
Home	0.0953	Italian Rest.	0.0913	Italian Rest.	0.0565	General Entertain	0.1035	Cafe	0.0693
Nightclub	0.0571	Asian Rest.	0.0541	American Rest.	0.0442	Hotel	0.1023	Office	0.0574
Event Space	0.0495	Tea Room	0.0481	Wine Bar	0.0373	Building	0.0869	Coffee Shop	0.0535
Cocktail Bar	0.0495	Bar	0.0472	Sushi Rest.	0.0319	Event Space	0.0593	Cosmetics Shop	0.0419
Lounge	0.0495	Spa or Massage Parlor	0.0416	Mexican Rest.	0.0306	Sandwich Place	0.0376	General Entertain	0.0408
Speakeasy	0.0471	Salon or Barbershop	0.0403	Lounge	0.0297	Hotel Bar	0.0342	French Rest.	0.0406
Breakfast Spot	0.0382	Vietnamese Rest.	0.039	Pizza Place	0.0278	Lounge	0.0342	High Tech Outlet	0.0388
French Rest.	0.0334	Art Gallery	0.0342	Coffee Shop	0.0256	Other Outdoors	0.0298	Salon or Barbershop	0.0368
Boat or Ferry	0.0316	Cocktail Bar	0.0316	Salon or Barbershop	0.0256	Performing Arts Venue	0.0289	Miscellaneous Shop	0.0331
TOPIC 6	prob.	TOPIC 7	prob.	TOPIC 8	prob.	TOPIC 9	prob.	TOPIC 10	prob.
College Acad.	0.0808	Park	0.1343	Art Gallery	0.2773	American Rest.	0.1023	Home	0.2005
Food Truck	0.0756	Other Outdoors	0.1	Park	0.1021	Deli or Bodega	0.0619	Building	0.0591
University	0.0653	Scenic Lookout	0.0767	Other Outdoors	0.0892	Office	0.0569	Deli or Bodega	0.0471
College Library	0.0639	General Travel	0.0753	Cafe	0.0555	Pizza Place	0.0464	Pizza Place	0.0442
General College/University	0.0573	Building	0.074	Playground	0.049	Bar	0.0448	Laundromat or Dry Cleaner	0.0342
College Dorm	0.0565	Airport	0.074	Automotive Shop	0.0386	Food Truck	0.0434	Coffee Shop	0.0317
Cafe	0.0499	Harbor or Marina	0.0616	Event Space	0.033	Sandwich Place	0.0392	Drugstore or Pharmacy	0.0291
Plaza	0.0485	Taxi	0.0534	Strip Club	0.0265	Coffee Shop	0.0346	Chinese Rest.	0.0256
Park	0.0382	Government Building	0.048	Sculpture Garden	0.0241	Burger Joint	0.0326	Mexican Rest.	0.0236
College Classroom	0.0374	Seafood Rest.	0.0343	Plaza	0.0233	Cafe	0.0307	Apartment Building	0.0206

sightseeing

Experiments on Real World Data

\square POI topic distribution over latent trip purposes for origin and destination

Synchronization Effect

$\alpha_{A B}=8.27066832$
$\alpha_{A C}=0.00711464$
A and B have a higher synchronization rate
A and C have a lower synchronization rate

Synchronization Effect

Conclusion Remarks

\square Problem
\square Human mobility modeling
\square Two research questions
\square What is the nature of the spatial diffusion of human mobility across functional regions?
\square How to spot and trace the trip purposes of trajectories?
\square Property (provide in-depth understanding)
\square Identify the synchronization property of human mobility
\square Modeling (make it predictable and traceable)
\square Provide a unique perspective of modeling human mobility as stochastic point processes
\square Use human mobility synchronization property to link mobility arrivals, functional regions, and trip purposes

Questions?

Looking Forward to Future Collaboration

THANK YOU

Homepage: www. yanjiefu.com

