Human Mobility Synchronization and Trip Purpose Detection with Mixture of Hawkes Processes

(ACM SIGKDD 17)

Yanjie Fu

Background and Motivation

- Problem Statement and Research Insights
- Methodology
- Evaluation
- Conclusions

Pervasive Sensing for Human Movements

IoT, GPS, wireless sensors, mobile Apps

Explore

Nearby

flickr from YALOO! Welcome

Human mobility data are people's movement trajectories which can be

- □ Phone, WIFI, or network station traces
- Trajectories of driving routes (citibike, taxicabs, buses, subways, lightrails)
- Sequences of posts (geo-tweets, geo-tagged photos, or checkins)

Taxicab GPS Traces

Mobile Checkins

Unique Characteristics of Human Mobility Data

□ Multi-source, multi-dimensional, multidomain, multi-format, semantically-rich, collectively-related data environments Devices, e.g., smart phones, smart watches □ Vehicles, e.g., taxicabs, buses, subways, city bikes □ Sensors, e.g., GPS, satellite remote sensing □ Buildings, e.g., banks, shopping malls, restaurants □ Human in location based services, e.g., Foursquare, Flickr, Tweeter, Facebook, Google+, Yelp

Making Sense of Human Mobility Data

<u>Causal analysis</u>

<u>Explicit feature extraction</u>

Latent representation learning

Collective and Semantic Exploration of Human Mobility Data (1)

The ultimate goal

Understand the nature of human mobility by making it trackable and predictable

Collective and Semantic Exploration of Human Mobility Data (2)

Primary focus areas

Collective Modeling

- Geographic co-location: documents and words
- Graph structure: dynamic graphs over time
- Spatial diffusion: stochastic processes
- Collaborative correlation: tensors and factorization

Semantic Augmentation

- <u>Trajectories</u>: what (trip purposes), where (destinations), when (trip time), who (out-of-town travelers or local residents)
- <u>Users</u>: user demographics, profiles, daily activities, preferences, social groups
- <u>Events</u>: spatiotemporal event detections (e.g., protests, incidents)
- <u>Regions</u>: important locations, spatial configurations, urban functions

Human-Community Interactions

- Human-Transportation-Systems interactions
- Human-Food-Services interactions

Preliminary Studies

9

Inferring Trip Purposes and Destinations (KDD17, SDM18, TIST)

Residential Community Analysis for Affordable Housing (KDD14, KDD15, TKDD)

Gas Refilling Event Detection and Gas Station Site Selection (DASFAA16)

Crowdedness-aware Route Optimization (TIST)

Bike Station Site Selection and Rebalancing (ICDM15)

Point-Of-Interests Recommender Systems (KDD13, SDM14, ICDM16)

Self-Optimized Networks for Huawei

Top of cellular base station tower with 3 sector antennas

Coverage: 1, Horizontal Azimuth 2, Vertical Tilt

Capacity: 1, Pilot Power

Quality 1, network resources such as bandwidth, SINR

Self-Optimized Networks for Huawei

MISSOURI

- Automatically and jointly optimize the coverage, capacity and quality of networks using the data from network monitoring (devices), human mobility (physical), and social networks data streams (cyber)
- Decision rule based methods (white box) and reinforcement learning (black box)

More Applications

Mobility Research in Nature (1)

Letter

Nature **453**, 779-782 (5 June 2008) | doi:10.1038/nature06958; Received 19 December 2007; Accepted 27 March 2008

There is an Addendum (12 March 2009) associated with this document.

Understanding individual human mobility patterns

Marta C. González¹, César A. Hidalgo^{1,2} & Albert-László Barabási^{1,2,3}

- 1. Center for Complex Network Research and Department of Physics, Biology and Computer Science, Northeastern University, Boston, Massachusetts 02115, USA
- Center for Complex Network Research and Department of Physics and Computer Science, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Center for Cancer Systems Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA

Understanding individual human mobility patterns, by Barabasi 2009

- Most individuals travel only over short distances, but a few regularly move over hundreds of kilometers
- □ Travel distances vary over times
- Usually return to a few highly frequented locations

Mobility Research in Nature (2)

Theoretical physics

Returners and explorers dichotomy in human mobility, by Barabasi 2015

- Returners and explorers play a distinct quantifiable role in spreading phenomena
- A correlation exists between the mobility patterns and social interactions of returners and explorers

Mobility Research in Nature (3)

nature.com > scientific data > comment > article	
] SCIENTIFIC DATA	
Altmetric: 14 Citations: 7	More detail »
Comment OPEN WorldPop, open data for spatial demography Andrew J. Tatem ™	

Using WorldPop to

Map poverty

15

- Understand maternal health
- Understand the correlations of population dynamics, property, and health

16

Background and Motivation

Problem Statement and Research Insights

- Methodology
- Evaluation
- Conclusions

Population Distribution Changes in
France between Holidays and WorkdaysMISSOURI
SCI

Correlations of locations, times, and trip purposes

Population increase (people/km²)

Holidays Working periods

IT Worker Movements of Morning Rush Hours in Chinese Silicon Valley

Research Questions

Understanding

19

What is the nature of the <u>spatial diffusion</u> of human mobility across <u>regions of different urban functions</u> in different <u>time periods</u>?

Modeling

How to infer and classify the <u>trip purposes</u> of human mobility trajectories?

Synchronization in Human Behaviors

Applauds of audiences

Opinion agreement of meeting attendees

Human Mobility Synchronization

Taxi arrival distributions of JFK Airport and Newark Airport over 24 hours

What Drives Mobility Synchronization

MISSOURI

Linking Arrivals, Regions and Purposes

23

Trip purpose

of regions

Background and Motivation

Problem Statement and Research Insights

Methodology

- Evaluation
- Conclusions

Framework Overview

Human Mobility Data as Arrival Events

26

- For each region, we organize taxi trajectories as a sequence of arrivals: $E = \{E_1, E_2, \dots, E_N\}$
- Each event is a three-element tuple: $E_n = \{g_n, t_n, w_n^d, w_n^o\}$
 - g_n : trip purpose
 - t_n : timestamp of the n-th arrival
 - w_n^d : POIs of destination region
 - w_n^o : POIs of origin region

Modeling Arrivals of Single Region for A Particular Trip Purpose

Modeling mobility arrivals as a stochastic point process

□ Hawkes Process: $\lambda(t) = \mu(t) + \int_{-\infty}^{t} g(t-s) dN(s)$

Modeling Arrivals of Single Region for Multiple Trip Purposes (1)

28

Modeling Arrivals of Single Region for Multiple Trip Purposes (2)

 Mixture of multiple arrival sequences with respect to different trip purposes

Mixture Hawkes Processes

$$\Box \lambda_{i,m}(t) = \mu_{i,m} + \int_{-\infty}^{t} g(t-s)dN(s) = \mu_i * \gamma_m + \int_{-\infty}^{t} g(t-s)dN(s)$$

- i: the i-th region
- m: the m-th trip purpose
- $\mu_{i,m}$: the rate that region i get visited with trip purpose m
- μ_i : the base visit rate of region i
- γ_m : the base visit rate of trip purpose m
- g(t s): memory decading function

Modeling Arrivals of Single Region for Multiple Trip Purposes (3)

Mobility arrivals in the i-th region :

$$\lambda_{i} = \lambda_{i,eat}(t) + \lambda_{i,work}(t) + \lambda_{i,relax}(t) + \cdots$$

Synchronization Effect Across Regions (1)

Road networks: graph

31

- Region: nodes in the graph
- Synchronization rate between two regions: similarity (edge connectivity) between two nodes

32

 Enhancing the modeling of mobility arrivals by combining the synchronization effects across regions into mixture Hawkes processes

$$\Box \lambda_{i,m}(t) = \mu_i * \gamma_m + \sum_{j=1}^I \alpha_{ji}^m \int_{-\infty}^t g(t-s) dN(s)$$

- A joint arrival process of <u>self-exciting</u> within a region and <u>mutual-exciting</u> across multiple regions
- Self-exciting: individual dependency in terms of urban functionalities and spatial configurations
- Mutual-exciting: peer dependency in terms of the similarity among similar regions

Incorporating Urban Functions of Origin and Destination Regions

- Weakness: improve explanations and interpretations
- Trip Purposes are semantically embedded in the neighborhood buildings of the origin and destinations
- A region as a document, a building (POI) as a word, urban functions as latent topics

Region-Building	Doc-Word
Region	Document
Building	Word
Urban function	Торіс

Origin

Working purpose

Collective Topic Modeling of Origin and Destination

The generative process of POIs in origin and destination regions

- Draw a trip purpose for each trip
- Draw POIs of origin region from a trip purpose
- Draw POIs of destination region from a trip purpose
 - Generate a purpose $m \sim \text{Multi}(\pi)$
 - Generate the POI Topic for the origin $z_o \sim Multi(\Phi_{mz})$
 - For each POI w^o in the origin neighborhood
 - Generate the POI $w^o \sim Multi(\beta_{zw})$
 - Generate the POI Topic for the origin $z_d \sim Multi(\Phi_{mz})$
 - For each POI w^d in the origin neighborhood
 - Generate the POI $w^d \sim Multi(\beta_{zw})$

Solving the Optimization Problem

Modeling Modeling Modeling Modeling trip origin and arrival $L(G, t, \mathbf{W}) = \prod_{n=1}^{N} p(G_n) p(\mathbf{W}_n^o, \mathbf{W}_n^d | G_n) p(t_n | G_n).$

Variational inference

$$\mathfrak{L} = \sum_{n=1}^{N} \sum_{m=1}^{M} \phi_{nm}(\log \pi_m + \mathbf{E}_q[\log \lambda_{i_n,m}(t_n)] + \mathbf{E}_q \log p_m(W_n)) \\ - \sum_{i=1}^{I} \sum_{m=1}^{M} \int_0^T \mathbf{E}_q[\lambda_{i,m}(s)] ds + \mathcal{E}[q] .$$

$$\begin{split} & \phi_{nm} \propto \pi_{m} : \text{prior} \\ & \times \prod_{r_{o}=1}^{R} (\zeta_{mr^{o}}^{o})^{\zeta_{mr^{o}}^{o}} \prod_{r^{d}=1}^{R} (\zeta_{mr^{d}}^{d})^{\zeta_{mr^{d}}^{d}} : \text{POI topics} \\ & \times \prod_{r^{o}=1}^{R} \prod_{c^{o}=1}^{C} (\beta_{r^{o}c^{o}}^{o})^{\zeta_{mr^{o}}^{o}W_{nc^{o}}^{o}} \prod_{r^{d}=1}^{R} \prod_{c^{d}=1}^{C} (\beta_{r^{d}c^{d}}^{d})^{\zeta_{mr^{d}}^{d}W_{nc^{d}}^{d}} : \text{POIs} \\ & \times (\gamma_{m}\mu_{i_{n}})^{\eta_{mn}^{m}} : \text{ self triggering} \\ & \times \prod_{l=1}^{n-1} (\alpha_{i_{l}i_{n}}^{m}g(t_{n}-t_{l}))^{\phi_{lm}\eta_{ln}^{m}} : \text{ influences from the past} \\ & \times \prod_{l=n+1}^{N} (\alpha_{i_{n}i_{l}}^{m}g(t_{l}-t_{n}))^{\phi_{lm}\eta_{nl}^{m}} : \text{ influences to the future} \\ & \times \exp\left(-\mathcal{G}(T-t_{n},t_{n})\sum_{i=1}^{L} \alpha_{i_{n}i_{i}}^{m}\right) : \text{ influences by trip purpose.} \end{split}$$

Outline

36

- Background and Motivation
- Problem Statement
- Methodology
- Evaluation
- Conclusion and Future Work

Experiment on Synthetic Data

- Experiments on synthetic data: validate the identified trip purposes
- Synthetic data generation: Ogata's modified thinning algorithm for sampling arrival sequences
- Task: Clustering the trajectories based on the inferred trip purposes
- Baseline methods: MHP, LDA, K-means
- Metrics: purity, F1-Measure, Rand Statistics

37

Experiments on Real World Data

- NYC Taxi trips: 7-day taxi trips, millions of GPS trajectories, 152 valid regions
- POIs of NYC

38

Identified trip purposes

nightlife		dining				work		shoping	
TOPIC 1	prob.	TOPIC 2	prob.	TOPIC 3	prob.	TOPIC 4	prob.	TOPIC 5	prob.
Bar	0.1884	Chinese Rest.	0.1286	Bar	0.0933	Office	0.3331	Clothing Store	0.0995
Home	0.0953	Italian Rest.	0.0913	Italian Rest.	0.0565	General Entertain	0.1035	Cafe	0.0693
Nightclub	0.0571	Asian Rest.	0.0541	American Rest.	0.0442	Hotel	0.1023	Office	0.0574
Event Space	0.0495	Tea Room	0.0481	Wine Bar	0.0373	Building	0.0869	Coffee Shop	0.0535
Cocktail Bar	0.0495	Bar	0.0472	Sushi Rest.	0.0319	Event Space	0.0593	Cosmetics Shop	0.0419
Lounge	0.0495	Spa or Massage Parlor	0.0416	Mexican Rest.	0.0306	Sandwich Place	0.0376	General Entertain	0.0408
Speakeasy	0.0471	Salon or Barbershop	0.0403	Lounge	0.0297	Hotel Bar	0.0342	French Rest.	0.0406
Breakfast Spot	0.0382	Vietnamese Rest.	0.039	Pizza Place	0.0278	Lounge	0.0342	High Tech Outlet	0.0388
French Rest.	0.0334	Art Gallery	0.0342	Coffee Shop	0.0256	Other Outdoors	0.0298	Salon or Barbershop	0.0368
Boat or Ferry	0.0316	Cocktail Bar	0.0316	Salon or Barbershop	0.0256	Performing Arts Venue	0.0289	Miscellaneous Shop	0.0331
TOPIC 6	prob.	TOPIC 7	prob.	TOPIC 8	prob.	TOPIC 9	prob.	TOPIC 10	prob.
College Acad.	0.0808	Park	0.1343	Art Gallery	0.2773	American Rest.	0.1023	Home	0.2005
Food Truck	0.0756	Other Outdoors	0.1	Park	0.1021	Deli or Bodega	0.0619	Building	0.0591
University	0.0653	Scenic Lookout	0.0767	Other Outdoors	0.0892	Office	0.0569	Deli or Bodega	0.0471
College Library	0.0639	General Travel	0.0753	Cafe	0.0555	Pizza Place	0.0464	Pizza Place	0.0442
General College/University	0.0573	Building	0.074	Playground	0.049	Bar	0.0448	Laundromat or Dry Cleaner	0.0342
College Dorm	0.0565	Airport	0.074	Automotive Shop	0.0386	Food Truck	0.0434	Coffee Shop	0.0317
Cafe	0.0499	Harbor or Marina	0.0616	Event Space	0.033	Sandwich Place	0.0392	Drugstore or Pharmacy	0.0291
Plaza	0.0485	Taxi	0.0534	Strip Club	0.0265	Coffee Shop	0.0346	Chinese Rest.	0.0256
Park	0.0382	Government Building	0.048	Sculpture Garden	0.0241	Burger Joint	0.0326	Mexican Rest.	0.0236
College Classroom	0.0374	Seafood Rest.	0.0343	Plaza	0.0233	Cafe	0.0307	Apartment Building	0.0206

school

home

Experiments on Real World Data

POI topic distribution over latent trip purposes for origin and destination

39

Synchronization Effect

UPPER WEST SIDE Cooper Hewitt Smithsonian Design. MANHATTAN Island Pa 92nd Street American Museum of Natural History Robert F. Kennedy Bridge The Metropolitan Astoria Park Museum of Art The Dakota he Loeb Boathouse UPPER FAST SIDE 0 Lincoln Cente the Performing Arts Rumsey Playfield Manhattan Sculpture Park Hunter Colle 0 **Cruise Terminal** Carnegie Hall 🕗 Intrepid Sea, Air @ & Space Museum C The Plaza ASTORIA KITCHEN The Museum Gershwin Theatre of Modern Art Barrymore Theatre New York City Housing 0 Authority Times Square O ٥ St. Patrick's Cathedra Ed Koch Museum of the Moving Image 0 **Oueensboro Bridge** MIDTOWN S The Roosevelt **Bryant Park** Japan Societ AMC Loews 34th Street 14 C Macy's Herald Square Hotel Pennsylvania The High Line GARDENS C Empire State Building Freedoms Park HUNTERS POINT 0 0 LONG State Park ner Gallery Queens Blvd ISLAND CITY SUNNYSIDE Ballroom AMC Loews Kins Bay 15

 $\alpha_{AB} = 8.27066832$ A and B have a higher synchronization rate A and C have a lower synchronization rate

Synchronization Effect

POIs distributions of region A POIs distributions of region B POIs distributions of region C Numbers of POIs Numbers of POIs Numbers of POIs 12 0.5 POI ID 0 120 140 POI ID POI ID 220 20 240 Arrival distribution of region A Arrival distribution of region B Arrival distribution of region C 2.5 × 10⁵ 9000 8000 7000 Numbers of Arrivals Numbers of Arrivals Numbers of Arrivals 2000 1000 0-2 2-4 0-2 2-4 Time Time Time

Conclusion Remarks

Der Problem

Human mobility modeling

Two research questions

- What is the nature of the spatial diffusion of human mobility across functional regions?
- □ How to spot and trace the trip purposes of trajectories?

Property (provide in-depth understanding)

- □ Identify the synchronization property of human mobility
- Modeling (make it predictable and traceable)
 - Provide a unique perspective of modeling human mobility as stochastic point processes
 - Use human mobility synchronization property to link mobility arrivals, functional regions, and trip purposes

43

Looking Forward to Future Collaboration

THANK YOU

Homepage: www. yanjiefu.com