Learning Urban Community Structures: A Collective Embedding Perspective with Periodic Spatial-temporal Mobility Graphs

Pengyang Wang, Yanjie Fu, Jiawei Zhang, Xiaolin Li, Dan Lin



Outline

Background and Motivation

- Definition and Problem Statement
- Methodology
- □ Application
- Evaluation
- □ Conclusion

Background and Motivation

Urban life is getting more diverse and vibrant

Why we study urban communities?

Spatial Imbalance

----vibrancy differences between communities

□ Challenge I – Graph construction

How to unify and represent the POIs and human periodic mobility records as a set of mobility graphs?

Insight I

a set of periodic spatial-temporal mobility graphs

□ Challenge II – Collective embedding

How to collectively learn the embeddings of POIs from multiple periodic mobility graphs?

Insight II

6

Collective deep auto-encoder

Challenge III - Embedding aggregation

How to align and aggregate POI embeddings for community structure representation learning?

Insight III

7

unsupervised graph-based weighting method

Background and Motivation

Definition and Problem Statement

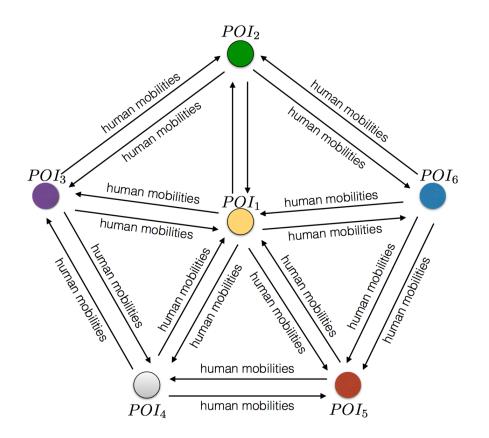
- Methodology
- □ Application
- Evaluation
- □ Conclusion

Definition I

Definition II

10

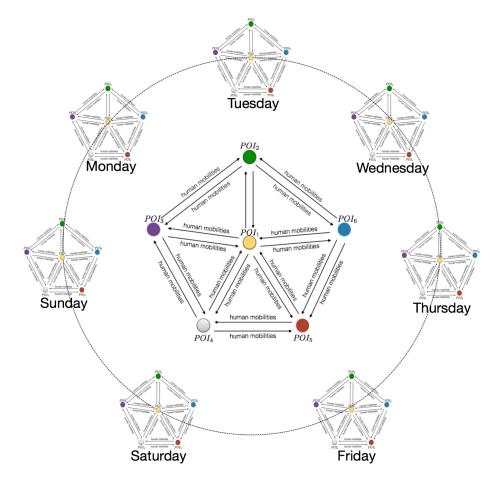
Mobility Graph



Definition III

11

Periodic Mobility Graphs



Problem Statement

11

□ Given

- □ Residential communities (locations, POIs)
- □ Human mobility (e.g., taxi GPS traces)

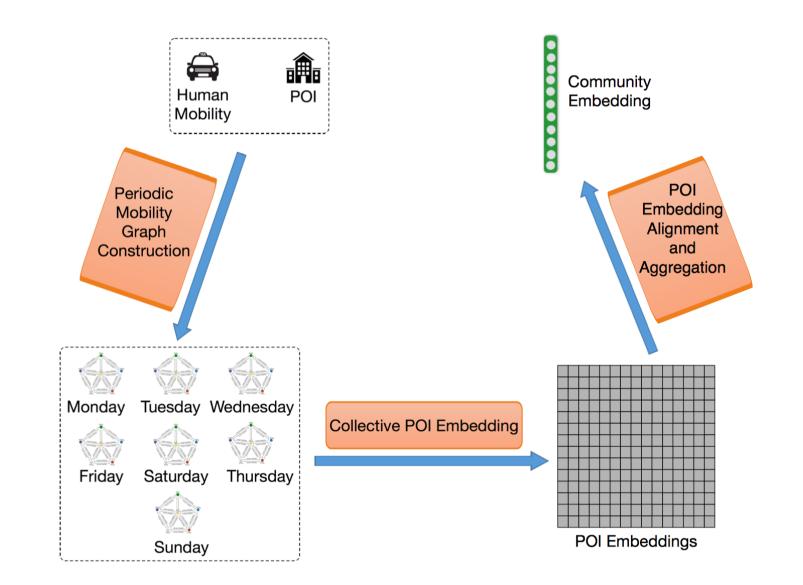
Objective

- □ Learning representations about static spatial configurations
- Learning representations about dynamic human mobility connectivity of POIs in the community

Core tasks

- Construction of the periodic mobility graph set for a community
- Collectively embedding
- Aggregating and aligning POI embedding into community embedding.

Framework Overview



Outline

- Background and Motivation
- Problem Statement

Methodology

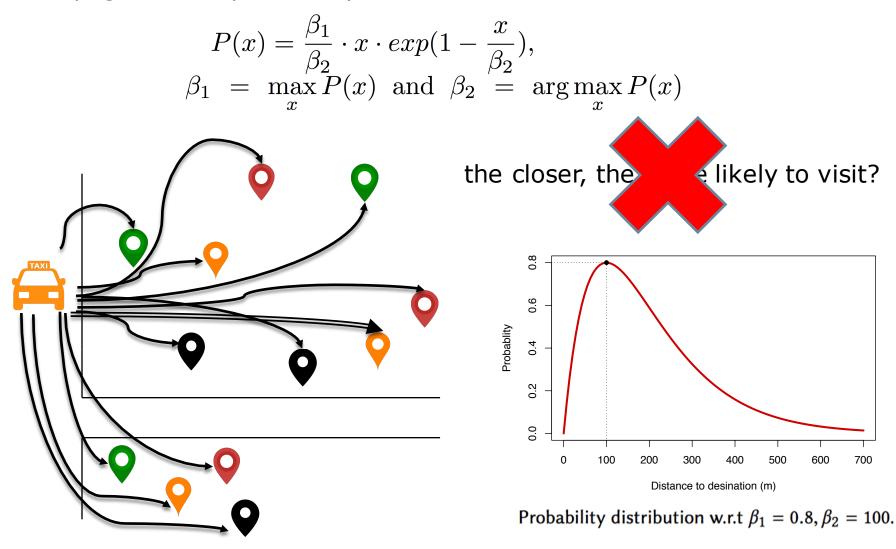
- Application
- Evaluation
- □ Conclusion

Methodology

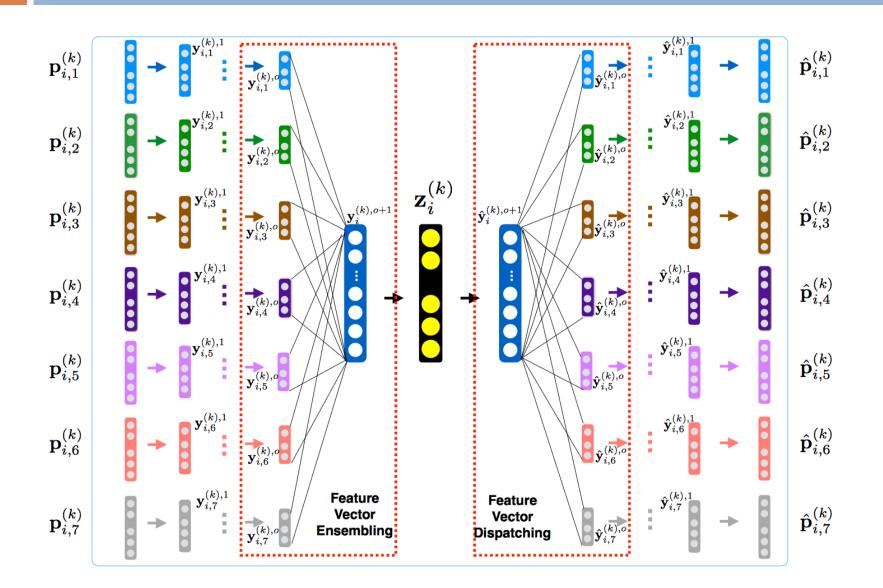
- Periodic Mobility Graph Construction
- Collective POI Embedding
- Aligning and Aggregating POI Embeddings to Community Embeddings

Periodic Mobility Graph Construction

Propagate visit probability



Collective POI Embedding



Collective POI Embedding

18

$$\text{Encoder} \quad \begin{cases} \mathbf{y}_{i,t}^{(k),1} &= \sigma(\mathbf{W}_{i,t}^{(k),1}\mathbf{p}_{i,t}^{(k)} + \mathbf{b}_{i,t}^{(k),1}), \forall t \in \{1, 2, \cdots, 7\}, \\ \mathbf{y}_{i,t}^{(k),r} &= \sigma(\mathbf{W}_{i,t}^{(k),r}\mathbf{p}_{i,t}^{(k)} + \mathbf{b}_{i,t}^{(k),r}), \forall r \in \{2, 3, \cdots, o\}, \\ \mathbf{y}_{i}^{(k),o+1} &= \sigma(\sum_{t} \mathbf{W}_{t}^{(k),o+1}\mathbf{y}_{i,t}^{(k),o} + \mathbf{b}_{t}^{(k),o+1}), \\ \mathbf{z}_{i}^{(k)} &= \sigma(\mathbf{W}^{(k),o+2}\mathbf{y}_{i}^{(k),o+1} + \mathbf{b}^{(k),o+2}), \end{cases}$$

Decoder <

$$\begin{cases} \hat{\mathbf{y}}_{i}^{(k),o+1} &= \sigma(\hat{\mathbf{W}}_{i}^{(k),o+2}\mathbf{z}_{i}^{(k)} + \hat{\mathbf{b}}^{(k),o+2}), \\ \hat{\mathbf{y}}_{i,t}^{(k),o} &= \sigma(\hat{\mathbf{W}}_{t}^{(k),o+1}\hat{\mathbf{y}}_{i}^{(k),o+1} + \hat{\mathbf{b}}_{t}^{(k),o+1}), \\ \hat{\mathbf{y}}_{i,t}^{(k),r-1} &= \sigma(\hat{\mathbf{W}}_{i,t}^{(k),r}\hat{\mathbf{y}}_{i,t}^{(k),r} + \hat{\mathbf{b}}_{i,t}^{(k),r}), \forall r \in \{2, 3, \cdots, o\}, \\ \hat{\mathbf{p}}_{i,t}^{(k)} &= \sigma(\hat{\mathbf{W}}_{i,t}^{(k),1}\hat{\mathbf{y}}_{i,t}^{(k),1} + \hat{\mathbf{b}}_{i,t}^{(k),1}), \end{cases}$$

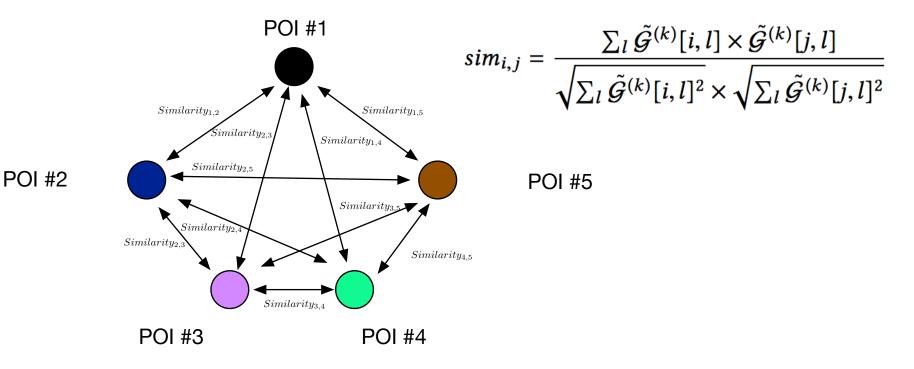
Loss Function:

$$\mathcal{L}^{(k)} = \sum_{t \in \{1, 2, \dots, 7\}} \sum_{i} \| (\mathbf{p}_{i, t}^{(k)} - \hat{\mathbf{p}}_{i, t}^{(k)}) \odot \mathbf{v}_{i, t}^{(k)} \|_{2}^{2}$$

Aligning and Aggregating POI MISSOURI Embeddings to Community Embeddings

19

Graph based weighting method



POI similarity graph

Graph based weighting method

Weight Calculation

20

$$w_l^{(k)} = \frac{\sum_{i \in c_k} \sum_{j \in c_k} sim_{i,j} \times |\tilde{\mathcal{G}}^{(k)}[i,l] - \tilde{\mathcal{G}}^{(k)}[j,l]|}{M}$$

if the l-th dimension of the latent feature makes more sense, when POI p_i and p_j are very similar, the difference of p_i and p_j on the l-th dimension $|\tilde{\mathcal{G}}^{(k)}[i,l] - \tilde{\mathcal{G}}^{(k)}[j,l]|$ should be very small. Therefore, if the l-th dimension of the latent feature does not make much sense, |g[i,l] - g[j,l]| will increase; if p_i and p_j are very similar, $Sim_{i,j}$ will further penalize |g[i,l] - g[j,l]|

$$\hat{\mathcal{G}}^{(k)}[s,l] = \sum_{p_i \in \Phi_s} \tilde{\mathcal{G}}^{(k)}[i,l] \times w_l^{(k)}$$

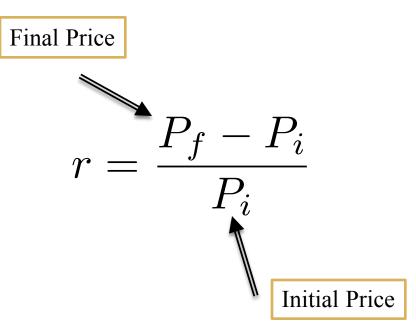
Outline

- Background and Motivation
- Definition and Problem Statement
- Methodology
- Application
- Evaluation
- □ Conclusion

Application I

22

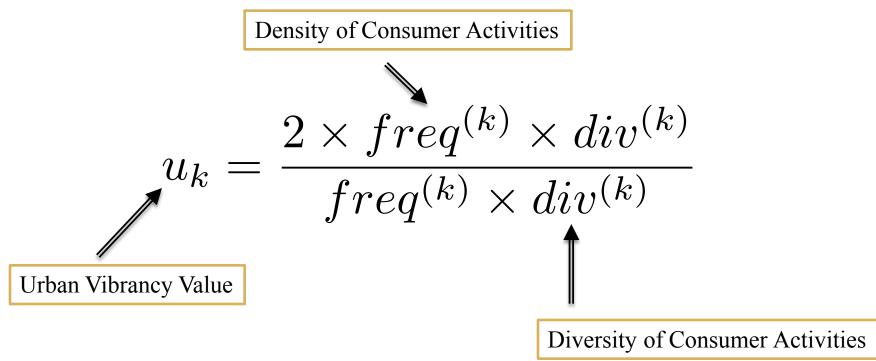
Predicting Willing to Pay (WTP)



Application II

23

Spotting vibrant urban communities



Outline

- Background and Motivation
- Definition and Problem Statement
- Methodology
- □ Application
- Evaluation
- Conclusion and Future Work

Evaluation

26

Data Description

From Beijing City

Data Sources	Properties	Statistics	
Taxi Traces	Number of taxis	13,597	
	Effective days	92	
	Time period	Apr Aug. 2012	
	Number of trips	$8,\!202,\!012$	
	Number of GPS points	111,602	
	Total distance(km)	$61,\!269,\!029$	
Residential	Number of residential	2,990	
	$\operatorname{communities}$		
$\operatorname{Communities}$	Latitude and Longitude		
	Time period of transactions	04/2011 - 09/2012	
POIs	Number of POIs	328668	
	Number of POI categories	20	
	Latitude and Longitude		
Check-Ins	Number of check-in events	2,762,128	
	Number of POI categories	20	
	Time Period	01/2012- $12/2012$	

The Application of WTP Prediction

Baselines

26

- Explicit Features (EF): (i) POI numbers per category; (ii) Average commute distance; (iii) Average commute speed; (iiii) Average commute time; (v) Number of mobilities; (vi) Average distance between POIs.
- Latent Features (LF): Specifically, the latent features are learned from the proposed collective embedding method.
- The combination of EF and LF (ELF).
- Variation of step1 (V-1): using distance-based matching of the records.
- Variation of step2 (V-2): computing the POI embedding as an average of the embeddings.
- Variation of step3 (V-3): averaging over the POI embeddings.

Evaluation Metric

Root-Mean-Square Error (RMSE)

The Application of WTP Prediction

□ Results

Feature set	ELF	LF	EF	V-1	V-2	V-3
RMSE	0.0036	0.0057	0.0422	0.0273	0.0350	0.0193

Spotting vibrant urban communities

Baselines

Learning to Rank

(1)MART: it is a boosted tree model, specifically, a linear combination of the outputs of a set of regression trees.

(2)RankBoost (RB): it is a boosted pairwise ranking method, which trains multiple weak rankers and combines their outputs as final ranking.

(3)LambdaMART (LM): it is the boosted tree version of LambdaRank.

(4)ListNet (LN): It is a listwise ranking model with permutation top-k ranking likelihood as objective function.

(5) RankNet (RN): it uses a neural network to model the underlying probabilistic cost function.

Feature Set

(1)Explicit Features

(2)Latent features

(3)Explicit&Latent features

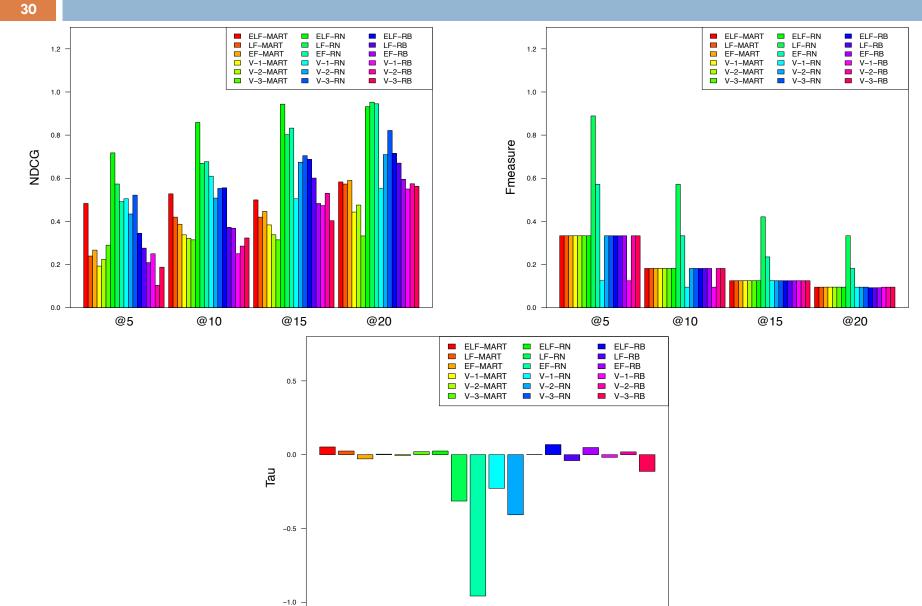
Evaluation

29

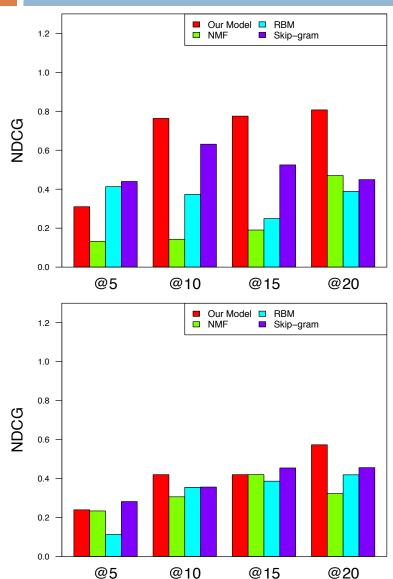
Evaluation Metrics

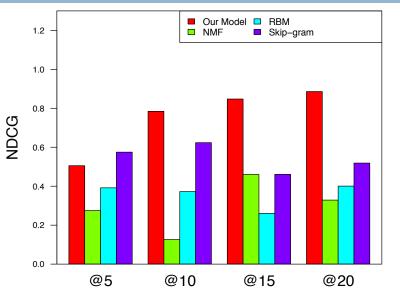
- Root-Mean-Square Error (RMSE)
- Normalized Discounted Cumulative Gain(NDCG@N)
 - Evaluate the ranking performance at TopN
- Kendall's Tau Coefficient(Tau)
 - Measure the overall ranking accuracy.
- F-measure@N
 - "high-vibrancy" and the rating > 3
 - "low-vibrancy" and the rating < 3
 - measure the ranking precision and recall @ TopN

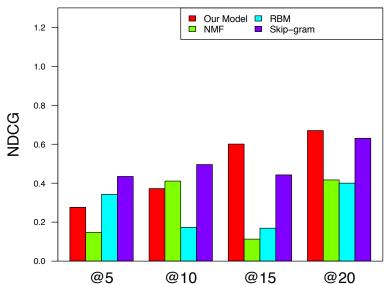
Overall performance



Comparison with Representation Learning Algorithms

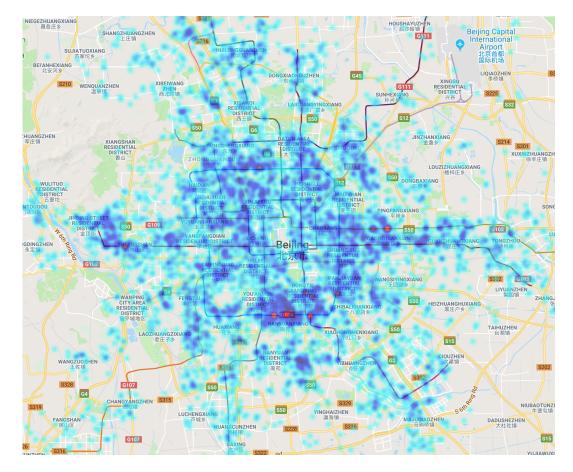






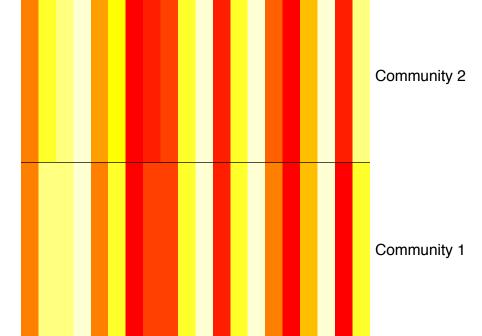
Investigation of Community Structure Properties

Community Connectivities.



Investigation of Community Structure Properties

The Learned Representation of the Community Structure



Visualization of the learned structure representations of two similar communities

Outline

- Background and Motivation
- Definition and Problem Statement
- Methodology
- □ Application
- Evaluation
- Conclusion

Conclusion

- We formulate the problem as a learning task over multiple mobility graphs of POIs and propose a novel collective embedding framework.
- We started with a probabilistic propagation method to unify and represent static POIs and dynamic human mobility records as periodic spatial-temporal mobility graphs.
- We then developed a collective embedding method to learn the embeddings of POIs from the obtained mobility graphs.
- Based on the POIs embeddings, we further proposed an unsupervised graph based weighted aggregation method to identify community embeddings.
- □ The method is effective.

Thanks!

Questions?