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Background and Motivation

¨ Urban life is gettingmore diverse and vibrant
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Why we study urban communities?

§ Spatial Imbalance

----vibrancy differencesbetween communities
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Challenges & Insights

¨ Challenge I – Graph	construction
How	to	unify	and	represent	the	POIs	and	human	periodic	mobility	records	
as	a	set	of	mobility	graphs?

¨ Insight I
a	set	of	periodic	spatial-temporal	mobility	graphs
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Challenges & Insights
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¨ Challenge II – Collective	embedding
How	to	collectively	learn	the	embeddings of	POIs	from	multiple	periodic	
mobility	graphs?

¨ Insight II
Collective	deep	auto-encoder



Challenges & Insights
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¨ Challenge III - Embedding	aggregation
How	to	align	and	aggregate	POI	embeddings for	community	structure	
representation	learning?

¨ Insight III
unsupervised	graph-based	weighting	method
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Definition I

¨ Urban communities
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Definition II

¨ Mobility	Graph
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Definition III

¨ Periodic	Mobility	Graphs
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Problem Statement

¨ Given
o Residential communities (locations, POIs)
o Human mobility (e.g., taxi GPS traces)

¨ Objective
o Learning representations about static spatial configurations
o Learning representations about dynamic human mobility

connectivity of POIs in the community
¨ Core tasks

o Construction of the periodic mobility graph set for a 
community

o Collectively embedding
o Aggregating and aligning POI embedding into community 

embedding.
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Framework Overview
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Methodology

¨ Periodic	Mobility	Graph	Construction
¨ Collective	POI	Embedding
¨ Aligning	and	Aggregating	POI	Embeddings to	
Community	Embeddings
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Periodic Mobility Graph Construction
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Collective POI Embedding
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Collective POI Embedding
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Aligning and Aggregating POI 
Embeddings to Community Embeddings

¨ Graph	based	weighting	method
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Graph based weighting method

¨ Weight Calculation
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Application I

¨ Predicting	Willing	to	Pay	(WTP)
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Application II

¨ Spotting	vibrant	urban	communities
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Evaluation
26

¨ Data Description

From Beijing City



The Application of WTP Prediction

¨ Baselines
v Explicit	Features	(EF): (i)	POI	numbers	per	category; (ii)	Average	commute	

distance;	(iii)	Average	commute	speed; (iiii)	Average	commute	time;	(v)	Number	
of	mobilities;	(vi)	Average	distance	between	POIs.

v Latent	Features	(LF):	Specifically,	the	latent	features	are	learned	from	the	
proposed	collective	embedding	method.

v The	combination	of	EF	and	LF	(ELF).

v Variation	of	step1	(V-1): using	distance-based	matching	of	the	records.

v Variation	of	step2	(V-2): computing	the	POI	embedding	as	an	average	of	the	
embeddings.

v Variation	of	step3	(V-3): averaging	over	the	POI	embeddings.

¨ Evaluation	Metric
v Root-Mean-Square	Error	(RMSE)

26



The Application of WTP Prediction

¨ Results

27



Spotting vibrant urban communities
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¨ Baselines
v Learning to Rank

(1)MART: it	is	a	boosted	tree	model,	specifically,	a	linear	combination	of	
the	outputs	of	a	set	of	regression	trees.

(2)RankBoost (RB): it	is	a	boosted	pairwise	ranking	method,	which	trains	
multiple	weak	rankers	and	combines	their	outputs	as	final	ranking.

(3)LambdaMART (LM):	it	is	the	boosted	tree	version	of	LambdaRank.
(4)ListNet (LN):	It	is	a	listwise ranking	model	with	permutation	top-k	

ranking	likelihood	as	objective	function.
(5)	RankNet (RN):	it	uses	a	neural	network	to	model	the	underlying	

probabilistic	cost	function.
v Feature Set

(1)Explicit Features
(2)Latent features
(3)Explicit&Latent features



Evaluation
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¨ Evaluation	Metrics
v Root-Mean-Square	Error	(RMSE)
v Normalized	Discounted	Cumulative	Gain(NDCG@N)

- Evaluate the rankingperformance at TopN
v Kendall’s	Tau	Coefficient(Tau)

- Measure	the	overall	ranking	accuracy.
v F-measure@N
- “high-vibrancy”	and	the	rating	>	3
- “low-vibrancy”	and	the	rating	<	3
- measure the rankingprecision and recall@ TopN



Overall performance
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Comparison with Representation 
Learning Algorithms
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Investigation of Community Structure 
Properties

¨ Community	Connectivities.
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Investigation of Community Structure 
Properties

¨ The	Learned	Representation	of	the	Community	
Structure
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Community 1

Community 2

Visualization of the learned structure representations of 
two similar communities
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Conclusion
36

¨ We formulate the problem as a learning task over multiple 
mobility graphs of POIs and propose a novel collective 
embedding framework.

¨ We started with a probabilistic propagation method to unify 
and represent static POIs and dynamic human mobility 
records as periodic spatial-temporal mobility graphs.

¨ We then developed a collective embedding method to learn 
the embeddings of POIs from the obtained mobility graphs.

¨ Based on the POIs embeddings, we further proposed an 
unsupervised graph based weighted aggregation method to 
identify community embeddings.

¨ The method is effective.
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Thanks! 

Questions? 


