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Background and Motivation

¨ Car accident facts
2



Driving Behaviors
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Driving Behaviors
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It is essential to learn
the pattern of driving
behaviors



Challenges & Insights

¨ Challenge I: GPS traces – Non-applicable
GPS	traces	(e.g.,	 time,	latitude,	longitude)	encode	the	driving	

operations,	states,	and	styles	in	a	semantically implicit	way

¨ Insight I:
Transforming GPS traces into graphs
Convenient for representation learning
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Challenges & Insights

¨ Challenge II: How to model dependencies?
peer dependencies
temporal dependencies

¨ Insight II
jointly	model	the	graph-graph	peer	dependency	across	drivers,	as	well	

as	the	current-past	temporal	dependency	within	a	driver,	in	representation	
learning.
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Definition I

¨ Driving	Operation
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Driving	operations	are	defined	as	a	set	of	activities	
and	steps	that	a	driver	operates	when	driving	a	
vehicle,	according	to	the	driver’s	personal	judgment,	
experience	and	skills.

Speed-related: acceleration, deceleration, constant speed
Direction-related: turning left, turning right, moving straight



Definition II

¨ Driving	State
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A	driving	state	concerns	the	way	that	a	vehicle	moves	at	a	
specific	time	point	or	in	a	small	time	window.	In	other	
words,	a	driving	state	of	a	vehicle	contains	both	the	speed	
status	(i.e.,	acceleration,	deceleration,	constant	speed)	and	
the	direction	status	(i.e.,	turning	left,	turning	right,	moving	
straight)	of	a	vehicle.	For	instance,	a	driving	state	example	
of	a	car	can	be	<constant	speed,	moving	straight>.



Definition III

¨ Driving	State	Transition	Graph
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Driving State 1

Driving State 2

Driving State 3 Driving State 4

Driving State 5



Problem Statement

¨ Given
o a driver (a vehicle)
o corresponding GPS trajectories

¨ Objective
o learning a mapping function

¨ Core tasks
o Constructing multi-view driving state transition graphs
o Automated profiling of driving behavior via peer and 

temporal-aware representation learning
o Applications to transportation safety
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Framework Overview
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Methodology

¨ Construction of multi-view driving state transition
graphs

¨ Peer and temporal-aware representation learning
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Construction of multi-view driving
state transition graphs

v Detecting	Driving	Operations

v Extracting	Driving	State	Sequences
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v Detection of driving-related operations.
v Detection of direction-related operations.

(1)acceleration while turning right, 
(2)acceleration while turning left,
(3)acceleration while straightforward, 
(4)deceleration while turning right, 
(5)deceleration while turning left, 
(6)deceleration while straightforward, 
(7)constant speed while turning right, 
(8)constant speed while turning left, 
(9)constant speed while straightforward



Construction of multi-view driving
state transition graphs
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v Constructing	Multi-view	Driving	State	Transition	Graphs

Driving State 1

Driving State 2

Driving State 3 Driving State 4

Driving State 5

Driving State 1

Driving State 2

Driving State 3 Driving State 4

Driving State 5

Transition probability view Transition duration view



Peer and temporal-aware representation
learning

¨ Intuition	1:	Structural	Reservation
¨ Intuition	2:	Temporal	Dependency
¨ Intuition	3:	Peer	Dependency
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For Intuition 1: Structural Reservation

¨ Base Model - Autoencoder
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For Intuition 2: TemporalDependency
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(ŷk�1
i )⌧ = �(Ŵk(ŷk
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For Intuition 3: Peer Dependency
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Objective Function
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Application

¨ Prediction	and	Historical	Assessment	of	Driving	
Scores

¨ Risky	Area	Detection
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Evaluation
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¨ Data Description
From Beijing City

Driving Score Distribution



Evaluation
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¨ Baselines
(1) Auto-Encoder:minimizes	the	loss	between	the	original	feature	

representations	and	reconstructed	ones.
(2)	DeepWalk: uses	local	information	obtained	from	truncated	random	

walks	to	learn	latent	representations.
(3) LINE	: optimizes	the	objective	function	that	preserves	both	the	local	

and	global	network	structures	with	an	edge-sampling	algorithm.
(4) Driving	State	Vector	(DSV)	: the	traditional	transportation	approach.



Evaluation
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¨ Evaluation	Metrics
v Square	Error

-Measure	regression	errors
v Coefficient	of	Determination

- measure	the	regression	accuracy
v Normalized	Discounted	Cumulative	Gain(NDCG@N)

- Evaluate the rankingperformance at TopN
v Kendall’s	Tau	Coefficient(Tau)

- Measure	the	overall	ranking	accuracy.



Overall performance
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Robustness Check
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Robustness check in the score-based group



Robustness Check
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Robustness check in the driving-state-based group



Study of Peer and Temporal Dependencies
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Study of Performance in Different Views
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Historical Assessment of Driving Scores
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Risky Area Detection
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Conclusion
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¨ We investigated driving behavior analysis from the 
perspective of representation learning.

¨ We developed an analytic framework that jointly 
modeled the peer and temporal dependencies
¨ constructing multi-view driving state transition graphs from 

GPS traces to characterize driving behavior.
¨ incorporating the idea of gated recurrent unit to model both 

the graph-graph peer dependency and integrating graph-
graph peer penalties to capture the current-past temporal 
dependency in a unified optimization framework,

¨ applying our proposed method to enable the applications of 
driving score prediction and risky area detection

¨ The method is effective.
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Thanks! 

Questions? 


