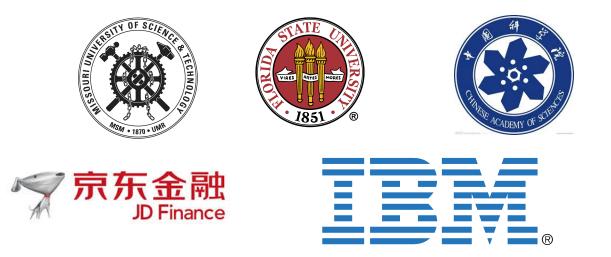


You Are How You Drive: Peer and Temporal-Aware Representation Learning for Driving Behavior Analysis

Pengyang Wang, Yanjie Fu, Jiawei Zhang, Pengfei Wang, Yu Zheng, Charu Aggarwal



Outline

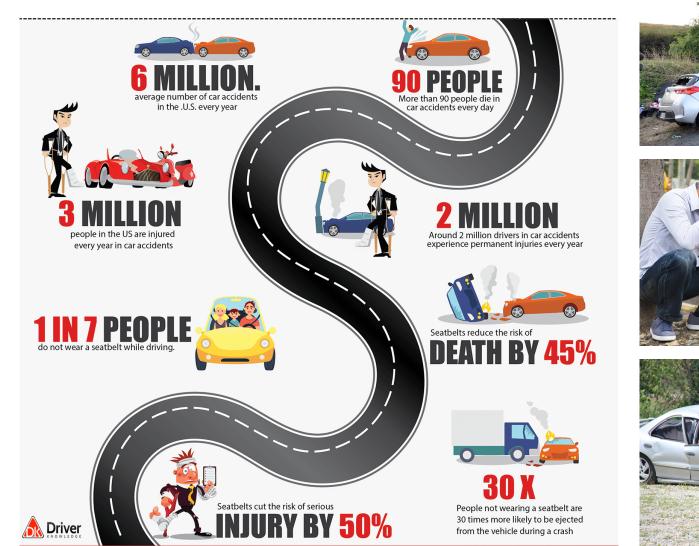
Background and Motivation

- Definition and Problem Statement
- Methodology
- □ Application
- Evaluation
- □ Conclusion

Background and Motivation

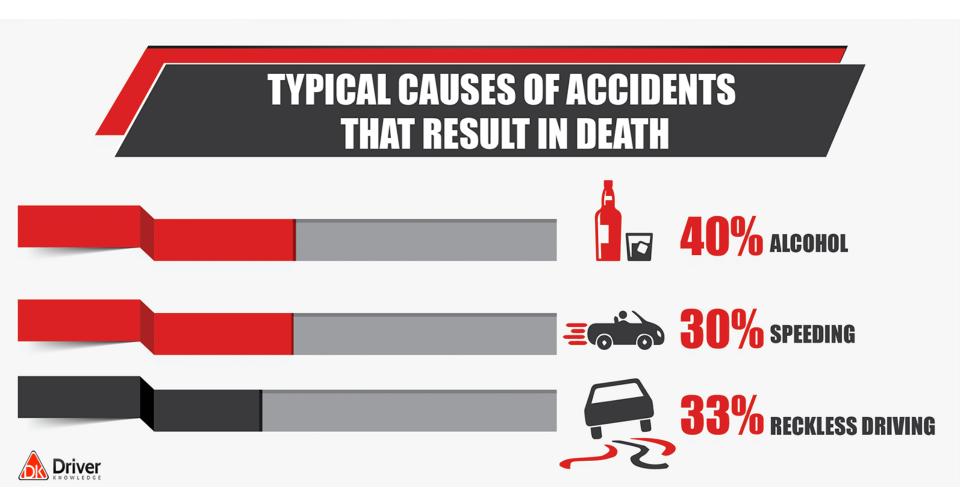
2

□ Car accident facts



Driving Behaviors

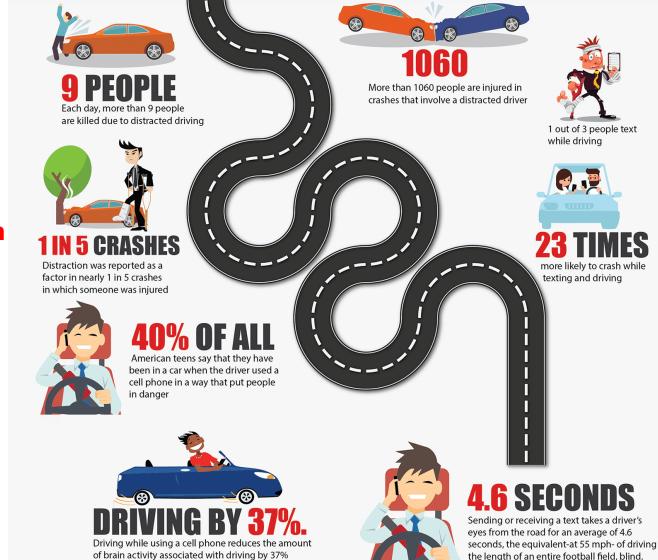
3



Driving Behaviors

4

It is essential to learn the pattern of driving behaviors



□ Challenge I: GPS traces – Non-applicable

GPS traces (e.g., time, latitude, longitude) encode the driving operations, states, and styles in a semantically implicit way

Insight I:

Transforming GPS traces into graphs

Convenient for representation learning

□ Challenge II: How to model dependencies?

- peer dependencies
- temporal dependencies

Insight II

7

jointly model the graph-graph peer dependency across drivers, as well as the current-past temporal dependency within a driver, in representation learning.

Background and Motivation

Definition and Problem Statement

- Methodology
- □ Application
- Evaluation
- □ Conclusion

Definition I

9

Driving Operation

Driving operations are defined as a set of activities and steps that a driver operates when driving a vehicle, according to the driver's personal judgment, experience and skills.

Speed-related: acceleration, deceleration, constant speed Direction-related: turning left, turning right, moving straight

Definition II

10

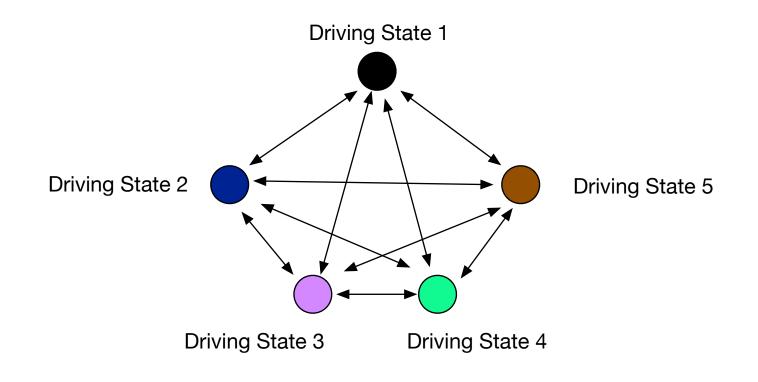
Driving State

A driving state concerns the way that a vehicle moves at a specific time point or in a small time window. In other words, a driving state of a vehicle contains both the speed status (i.e., acceleration, deceleration, constant speed) and the direction status (i.e., turning left, turning right, moving straight) of a vehicle. For instance, a driving state example of a car can be <constant speed, moving straight>.

Definition III

11

Driving State Transition Graph



Problem Statement

□ Given

□ a driver (a vehicle)

 \Box corresponding GPS trajectories $D = [\langle t, \varphi_t, \lambda_t \rangle]_{t=1}^T$

Objective

 \square learning a mapping function $f:D \to V$

$$\mathbf{V} = [\mathbf{v}_n]_{n=1}^N \quad \blacksquare$$

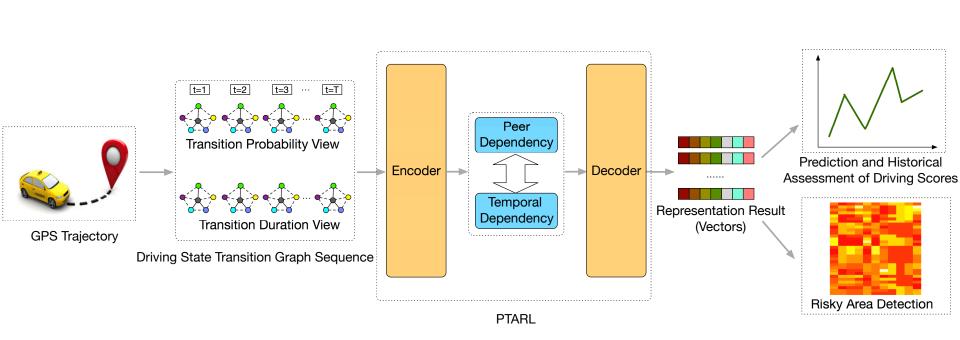
a sequence of time-varying yet relational vectorized representations

Core tasks

- Constructing multi-view driving state transition graphs
- Automated profiling of driving behavior via peer and temporal-aware representation learning
- □ Applications to transportation safety

Framework Overview

12



Outline

- Background and Motivation
- Problem Statement

Methodology

- Application
- Evaluation
- Conclusion

14

Construction of multi-view driving state transition graphs

Peer and temporal-aware representation learning

Construction of multi-view driving state transition graphs

Detecting Driving Operations

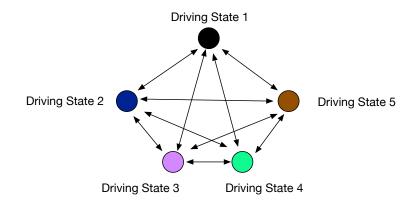
Detection of driving-related operations.
Detection of direction-related operations.

Extracting Driving State Sequences

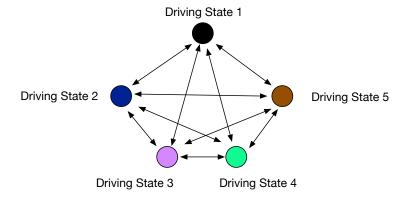
(1)acceleration while turning right,
(2)acceleration while turning left,
(3)acceleration while straightforward,
(4)deceleration while turning right,
(5)deceleration while turning left,
(6)deceleration while straightforward,
(7)constant speed while turning right,
(8)constant speed while turning left,
(9)constant speed while straightforward

Construction of multi-view driving state transition graphs

Constructing Multi-view Driving State Transition Graphs



17



Transition probability view

Transition duration view

Peer and temporal-aware representation learning

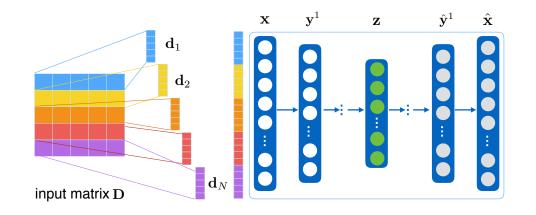
Intuition 1: Structural Reservation
 Intuition 2: Temporal Dependency
 Intuition 3: Peer Dependency

For Intuition 1: Structural Reservation

Base Model - Autoencoder

$$\begin{cases} \mathbf{y}_{i}^{1} &= \sigma(\mathbf{W}^{1}\mathbf{x}_{i} + \mathbf{b}^{1}), \\ \mathbf{y}_{i}^{k} &= \sigma(\mathbf{W}^{k}\mathbf{y}_{i}^{k-1} + \mathbf{b}^{k}), \forall k \in \{2, 3, \cdots, o\}, \\ \mathbf{z}_{i} &= \sigma(\mathbf{W}^{o+1}\mathbf{y}_{i}^{o} + \mathbf{b}^{o+1}). \end{cases} \qquad \begin{cases} \hat{\mathbf{y}}_{i}^{o} &= \sigma(\hat{\mathbf{W}}^{o+1}\mathbf{z}_{i} + \hat{\mathbf{b}}^{o+1}), \\ \hat{\mathbf{y}}_{i}^{k-1} &= \sigma(\hat{\mathbf{W}}^{k}\hat{\mathbf{y}}_{i}^{k} + \hat{\mathbf{b}}^{k}), \forall k \in \{2, 3, \cdots, o\}, \\ \hat{\mathbf{x}}_{i} &= \sigma(\hat{\mathbf{W}}^{1}\hat{\mathbf{y}}_{i}^{1} + \hat{\mathbf{b}}^{1}). \end{cases}$$

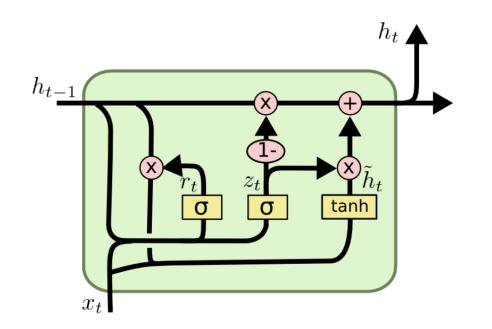
MISSOURI



For Intuition 2: TemporalDependency

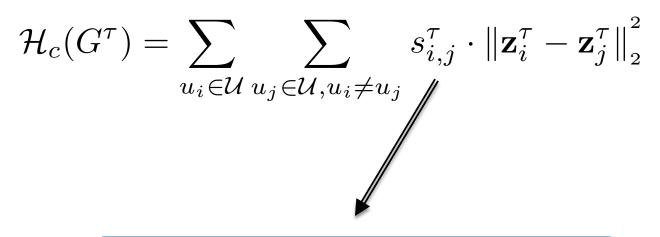
20

$$\begin{cases} \#Sequential Encode Step \\ (\mathbf{y}_{i}^{1})^{\tau} &= \sigma(\mathbf{W}^{1}\mathbf{x}_{i}^{\tau} + \mathbf{b}^{1}), \\ (\mathbf{y}_{i}^{k})^{\tau} &= \sigma(\mathbf{W}^{k}(\mathbf{y}_{i}^{k-1})^{\tau} + \mathbf{b}^{k}), \forall k \in \{2, 3, \cdots, o\}, \\ \mathbf{z}_{i}^{\tau} &= (1 - c^{\tau})\mathbf{z}_{i}^{\tau-1} + c^{\tau}\tilde{\mathbf{z}}_{i}^{\tau}. \end{cases} \begin{cases} \#Sequential Decode Step \\ (\hat{\mathbf{y}}_{i}^{o})^{\tau} &= \sigma(\hat{\mathbf{W}}^{o+1}\mathbf{z}_{i}^{\tau} + \hat{\mathbf{b}}^{o+1}), \\ (\hat{\mathbf{y}}_{i}^{k-1})^{\tau} &= \sigma(\hat{\mathbf{W}}^{k}(\hat{\mathbf{y}}_{i}^{k})^{\tau} + \hat{\mathbf{b}}^{k}), \forall k \in \{2, 3, \cdots, o\}, \\ \hat{\mathbf{x}}_{i}^{\tau} &= \sigma(\hat{\mathbf{W}}^{1}(\hat{\mathbf{y}}_{i}^{1})^{\tau} + \hat{\mathbf{b}}^{1}). \end{cases}$$



For Intuition 3: Peer Dependency

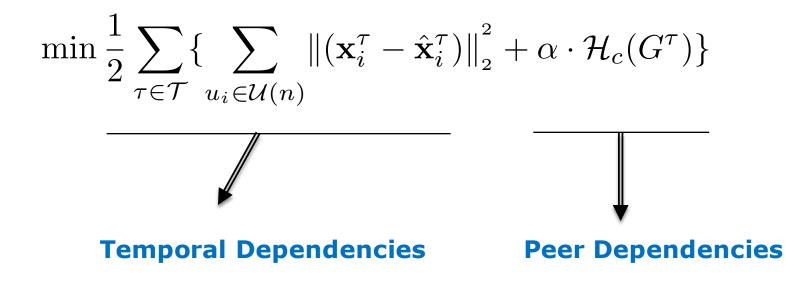
21



the similarity of driving behavior between the driver u_i and u_j at the time slot τ .

Objective Function

22



Outline

- Background and Motivation
- Problem Statement
- Methodology
- Application
- Evaluation
- □ Conclusion

Prediction and Historical Assessment of Driving Scores

Risky Area Detection

Outline

- Background and Motivation
- Definition and Problem Statement
- Methodology
- □ Application
- Evaluation
- Conclusion and Future Work

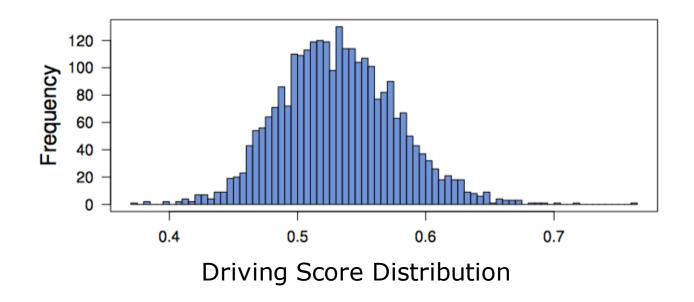
Evaluation

26

Data Description

From Beijing City

Properties	Statistics
Number of drivers	10,357
Time range	Feb.2 - Feb.8
City	Beijing



Evaluation

27

Baselines

(1) Auto-Encoder: minimizes the loss between the original feature representations and reconstructed ones.

(2) DeepWalk: uses local information obtained from truncated random walks to learn latent representations.

(3) LINE : optimizes the objective function that preserves both the local and global network structures with an edge-sampling algorithm.

(4) Driving State Vector (DSV) : the traditional transportation approach.

Evaluation

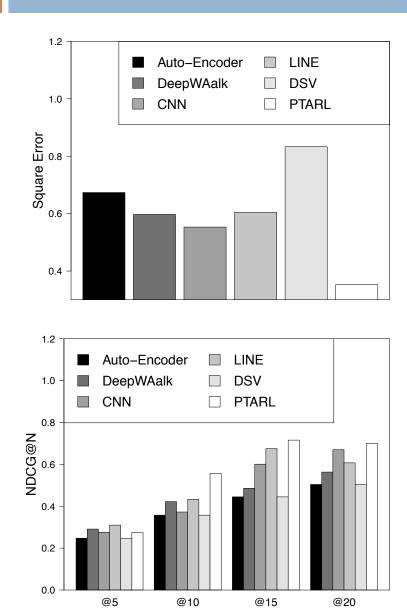
Evaluation Metrics

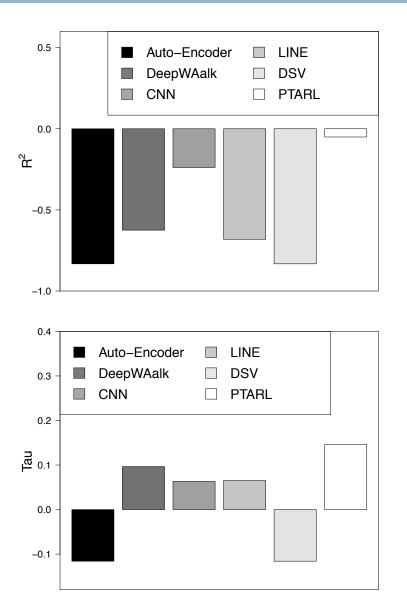
Square Error

- Measure regression errors
- Coefficient of Determination
 - measure the regression accuracy
- Normalized Discounted Cumulative Gain(NDCG@N)
 - Evaluate the ranking performance at TopN
- Kendall's Tau Coefficient(Tau)
 - Measure the overall ranking accuracy.

Overall performance

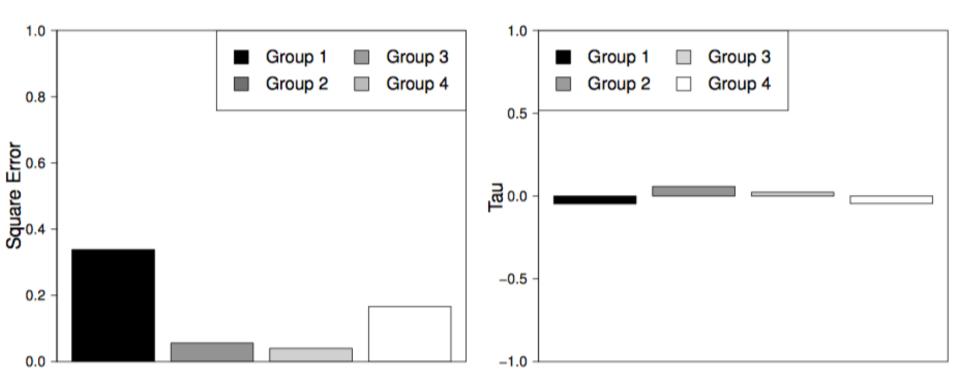
30





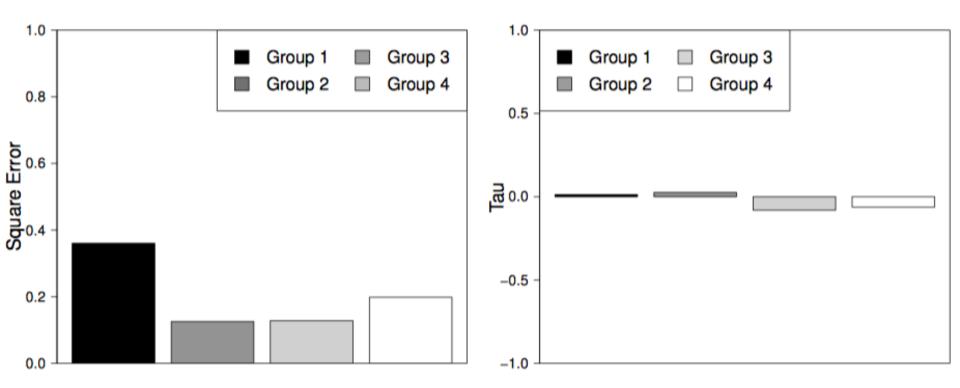
Robustness Check

MISSOURI SET



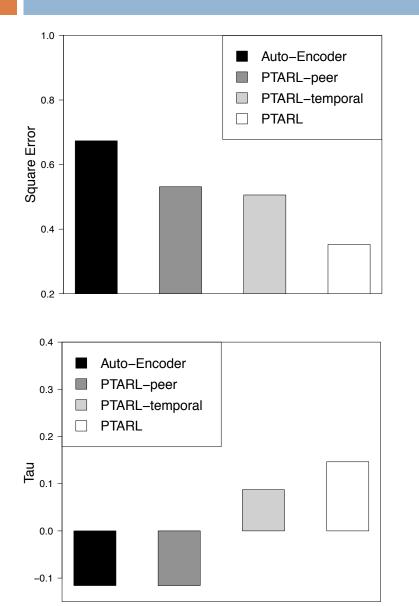
Robustness check in the score-based group

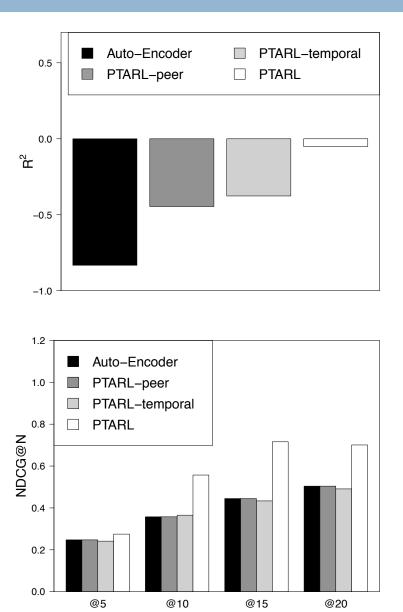
Robustness Check



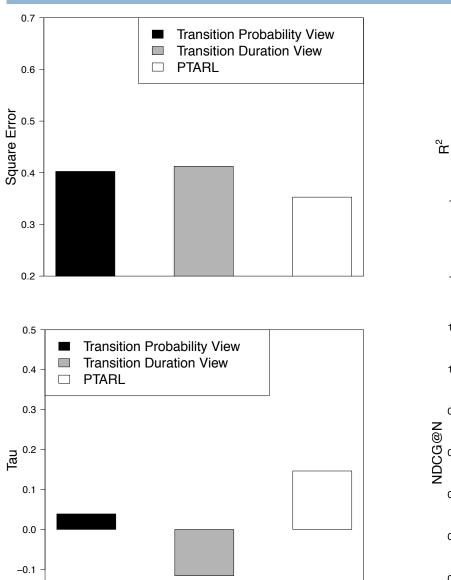
Robustness check in the driving-state-based group

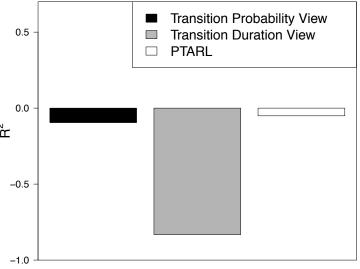
Study of Peer and Temporal Dependencies

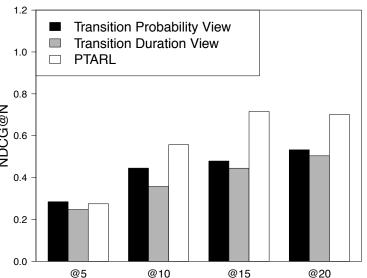




Study of Performance in Different Views

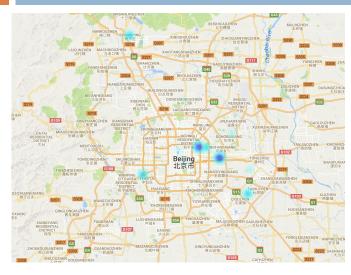




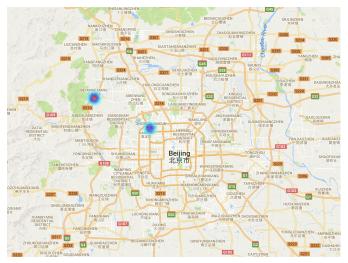


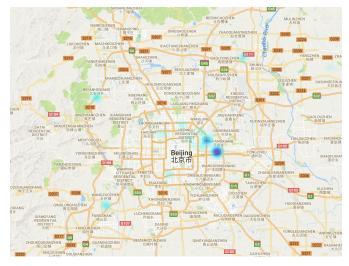


Risky Area Detection

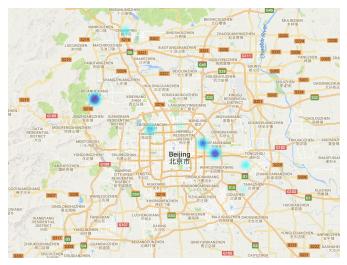


t=1





t=2



t=3

Outline

- Background and Motivation
- Definition and Problem Statement
- Methodology
- □ Application
- Evaluation
- Conclusion

Conclusion

- We investigated driving behavior analysis from the perspective of representation learning.
- We developed an analytic framework that jointly modeled the peer and temporal dependencies
 - □ constructing multi-view driving state transition graphs from GPS traces to characterize driving behavior.
 - incorporating the idea of gated recurrent unit to model both the graph-graph peer dependency and integrating graphgraph peer penalties to capture the current-past temporal dependency in a unified optimization framework,
 - applying our proposed method to enable the applications of driving score prediction and risky area detection
- □ The method is effective.

Thanks!

Questions?