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Motivation Application: Toward Adaptive 
User Interfaces
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Mobile	user	profiling

A	similarity	graph	of	users,	
transportations,	OD	pairs	

Adaptive	interfaces	by:	
(1) inferring	trip	purposes,
(2) transport	modes,	
(3) origin-destination	pairs
to	improve	user	engagement	and	
performances



Challenge I: Implicit User Patterns in
Mobile Activities
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¨ Human	activities are	spatially,	temporally,	and	socially	
structural.

• How	can	we	identify	a	data	structure	to	better	describe	a	mobile	user’s	
activities?



From Users To Activity Graphs
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Spatial-temporal	transition	
patterns

User	Activity	Graph
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Problem Formulation: Representation 
Learning with Activity Graphs
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f(							,																											)	=	
z 

• Given	a	user	and	corresponding	user	activity	graph,	we	aim	
to	map	the	user	to	a	profile	vector	
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User	Profile	Vector



Global Behavioral Pattern

¨ Entire structures: how	a	user’s	activities	globally	
interact	with	each	other	(strongly	link,	weakly	link,	
no	link)
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Substructure Behavioral Pattern
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¨ Substructures:	topology	of	subgraphs	that	feature	
the	unique	behavioral	patterns	of	a	user’s	activities	

A Young Faculty with Young Kids
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Problem Reformulation: Representation Learning 
with Global and Sub-Structure Awareness
8
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Preserving Entire-Structures
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Learned representation from hidden layer

Encode Decode



Preserving Substructures
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Preserving Substructures
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Preserving Substructures
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Preserving Substructures



Approximating Substructure Detector
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Training CNN

Pre-train a	Convolutional	Neural	Network	(CNN)	to	
approximate	the	traditional	substructure	detector

Not differentiable



Approximating Substructure Detector
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Pre-train a	Convolutional	Neural	Network	(CNN)	to	
approximate	the	traditional	substructure	detector



Summary
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Encoder Decoder

Pre-trained CNN
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• Generator
Autoencoder linked with an
approximated substructure
detector (pre-trained CNN)

• Discriminator
A	multilayer	percetron

• Adversarial	Training
• Discriminator	accuracy

• Generator	loss



Optimization
16

¨ Training

¨ Testing

Discriminator Loss Generator Loss

Reconstruction Loss

Encoder
xx

zz

Well Trained



What To Do Next: Inferring Next Activity Type
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User Representation

Next Activity Recommendation

User Profiling

User

Adversarial Substructured Learning

……
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User Activity Graph

1. Given	a	time	period,	learn	a	user’s	profiles	from	
corresponding	user	activity	graph

2. Exploit	user	profiles	to	forecast	next	activity	type



¨ Data
o Mobile	activity	checkin data	

of	NYC	and	Tokyo

¨ EvaluationMetrics
o The	precision@N of	activity	

category	prediction
o The	precision@N of	new	

activity	recommendation
¨ Baselines

o Autoencoder
o DeepWalk: use	truncated	

random	walks	to	learn	latent	
representations

o LINE: preserve	both	local	and	
global	network	structures	with	
an	edge-sampling	algorithm

o CNN: Convolutional Neural
Network

Overall Comparisons on New York and 
Tokyo Activity Check-in Data
18

• Our	model	achieves	the	best	performances	on	user	
profiling

• Substructures	 in	a	graph	are essential for user	behavior	
patterns

Apply	the	learned	representations to	predict	next	
activity	type	(next	POI	category)



Study of Node and Circle Substructures
19

¨ EvaluationMetrics
o The	precision@N of	activity	

category	prediction

o The	precision@N of	new	
activity	recommendation

¨ Baselines
o StructRL:	consider	node	and	

circle	substructures
o StructRL-Node:	only	

consider	node	substructures

o StrucctRL-Circle:	only	
consider	circle	substructure

¨ Findings
o Circle	substucture are	more	

effective
o Capturing	more	subgraph	

topologies	can	help



Conclusion

¨ Research Problem
¨ Learn to profile users by both considering general interests and specific

interests for certain activity types

¨ Method
¨ Users as Activity Graphs
¨ Formulate modeling specific interests as preserving substructures of user

activity graphs
¨ Propose an adversarial substructured learning model to integrate substructure

into representation learning

¨ Take Away Messages
¨ Adversarial learning plays the role of regularization
¨ Substructure is very important for quantifying user behavior patterns
¨ Pre-train neural networks to approximate undifferentiable algorithms
¨ Circle is more effective than independent vertexes for profiling users
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Thanks! 

Questions? 



Will The Traditional Solution Work?
24
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Topologies,	contents,	locations	of	subgraphs	will	
dynamically	change	over	users



Will The Traditional Solution Work?

0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0
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0 0 0 0

0 0 0 0

0 1 1 0

0 1 1 0

Example:	Dynamic	binary	indicator	of	subgraphs	in	
the	activity	matrix/graphs	of	two	users



Robustness Check
15

@5 @10 @15 @20

Pr
ec

is
io

n@
N

0.0

0.1

0.2

0.3

0.4
12 Apr. 2012 −− 12 Jun. 2012
13 Jun. 2012 −− 13 Aug. 2012
14 Aug. 2012 −− 14 Oct. 2012
15 Aug. 2012 −− 15 Oct. 2012
16 Oct. 2012 −− 16 Feb. 2013

@5 @10 @15 @20

Pr
ec

is
io

nne
w
@

N

0.00

0.05

0.10

0.15

0.20
12 Apr. 2012 −− 12 Jun. 2012
13 Jun. 2012 −− 13 Aug. 2012
14 Aug. 2012 −− 14 Oct. 2012
15 Aug. 2012 −− 15 Oct. 2012
16 Oct. 2012 −− 16 Feb. 2013

@5 @10 @15 @20

Pr
ec

is
io

n@
N

0.0

0.1

0.2

0.3

0.4

0.5
Group 1
Group 2
Group 3

Group 4
Group 5

@5 @10 @15 @20

Pr
ec

is
io

nne
w
@

N

0.00

0.05

0.10

0.15

0.20

0.25

0.30
12 Apr. 2012 −− 12 Jun. 2012
13 Jun. 2012 −− 13 Aug. 2012
14 Aug. 2012 −− 14 Oct. 2012
15 Aug. 2012 −− 15 Oct. 2012
16 Oct. 2012 −− 16 Feb. 2013

New York

Tokyo

• The	performances	of	our	method	can	achieve	a	small	
variance	and	are	relatively	stable,	especially	when	K	is	
small.

¨ Five Periods
o 12	Apr.	2012	– 12	Jun.	2012
o 13	Jun.	2012	– 13	Aug.	2012
o 14	Aug.	2012	– 14	Oct.	2012
o 15	Aug.	2012	– 15	Oct.	2012
o 16	Oct.	2012	– 16	Feb.	2013

¨ Prediction
o set	the	last	day’s	activities	of	each	

time	period	as	a	predictive	target


