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Human-Social-Technologic Systems S&T
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Human Activities in Human-Social- MISSOURI

Technologic Systems S&T
0 Spatial, Temporal, and Networked (STN) data can be
Spatial: Point-of-Interests, blocks, zones, regions
Spatiotemporal: Taxi trajectories, bus trips, bike traces

Spatiotemporal-networked: Geo-tagged twitter posts, power
grid netload

0 from a variety of sources
Devices: phones, WIFIs, network stations, RFID
Vehicles: bikes, taxicabs, buses, subways, light-rails

Location based services: geo-tweets (Facebook, Twitter), geo-
tagged photos (Flickr), check-ins (Foursquare, Yelp)

, - (= ICS
«@\ i -] i - ati .
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Taxicab GPS Traces Bus Traces Phone Traces

Represent the spatial, temporal, social, and semantic contexts of
dynamic human/systems behaviors within and across regions
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Important Applications
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Unprecedented and Unique Complexity S&T

0 Spatiotemporallly non-i.i.d.

Spatial autocorrelation
Spatial heterogeneity
Sequential asymmetric patterns

Temporal periodicity and dependency
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Unprecedented and Unique Complexity S&T
10|

0 Networked over time
-1 Collectively-related

0 Heterogeneous
- Multi-source
o Multi-view
- Multi-modality

0 Semantically-rich

o Trajectory semantics
- User semantics
-1 Event semantics

- Region semantics
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Technical Pains in Pattern Discovery (1) S&T
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0 Feature identification and quantification

Traditional method: Find domain experts to hand-craft
features

Can we automate feature/pattern extraction?
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Technical Pains in Pattern Discovery (2) S&T
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Traditional method: Extract features, weigh features,
weighted combination

Can we automatically extract features from multi-source
unbalanced data?
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Technical Pains in Pattern Discovery (3) S&T
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o Field data/real-world systems are usually lack of
benchmark labels (i.e., y, responses, targets)

Example: Netload in power grids: behind-the-meter gas-generated
electricity and solar-generated electricity are unknown

Can we learn features without labels (unsupervised)?
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Deep Learning Can Help S&T
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Technical Pains in Pattern Discovery (4) S&T
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Traditional method: revised classic algorithms + spatiotemporal
networked data regularities
Regression + spatial properties = spatial autoregression method
Clustering + spatial properties = spatial co-location method

Can we learn features while maintaining the regularities of
spatiotemporal networked data?



Data Regularity-aware Unsupervised MISSOURI

Representation Learning S&T

I Feature learning from

. Spatial hierarchy (hierarchical clustering)
multi-source data

Hidden semantics

|

|

|

Sequential asymmetric transition I
|
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Spatial locality

Human and system Regularities of Data Regularity-
behaviors have spatiotemporal aware
spatiotemporally networked representation
socially regularities learning
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The Overview of The Talk S&T

Automated Feature Learning from Spatial-Temporal-Networked Data

| Collective representation 1|
learning with multi-view

: data |
Collective
Learning
M N e . T [ e ot 3o .
Dynamic representation | Structured representation |
| |
learning with stream data | learning with global and |
| B |
___________ | sub structure preservation |
Dynamic Structured

Learning Learning
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Outline S&T

0 Background and Motivation

Deep Collective Representation
Learning

0 Deep Dynamic Representation Learning

0 Deep Structured Representation Learning

1 Conclusion and Future Work
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The Rising of Vibrant Communities S&T

0 Consumer City Theory, Edward L. Glaeser (2001), Harvard
University.
-1 More by Nathan Schiff (2014), University of British Columbia. Victor
Coutour (2014), UC Berkeley. Yan Song (2014), UNC Chapel Hill.

Spatial Characters: walkable, dense, compact, diverse, accessible,
connected, mixed-use, etc.

Socio-economic Characters: willingness to pay, intensive social
interactions, attract talented workers and cutting-edge firms, etc.

— - - 1 Al
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Supported by NSF CISE
pre-Career award (lll-
1755946)

i What are the underlying driving forces of a |
! vibrant community? :
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Measuring Community Vibrancy Sy
20 |
o Mobile checkin data

. Urban vibrancy is reflected by ! |-
| the frequency and diversity of |
!
!

user activities. 4
—————————————————— Shopping Transport  Dinning Travel

0 Frequency and diversity of mobile checkins

Frequency: fre = #(checkin)

. i #(checkin,type) #(checkin,type)
DlverSIFy: div = Ztype- #(checkin) lo #(checkin)
the activity type of mobile users

0 Fused scoring
Vibrancy = (1 + £?)

, Where type denotes

Vibrancy

frexdiv
Score

(B?%*fre+div)
f controls the weights of fre and div
Power-law distributed

Some are highly vibrant while most are somewhat vibrant

c c e c e t
0 o] 500 1000 1500 2000 2500 3000

Community rankings



Spatial Unbalance of Urban Community
Vibranc

leeszangtj\ingxmue ‘ c g HOU;HA.Y’;%H N
SHANGZHUANGZHEN . ) = ot Beijing Capital
n LEW - . Q International
SUJIATUOXIANG W j»?:lrport ‘
1 HRILY a- @;E%ﬂ
BEFANHEXIANG * ’~ il
=
’ DONGXIAOKOUZHEN [ G5 I [RHeoues 188
5210 XIBEIWANG & ¢ XINGGU
WENQUANZHEN ) HEN L b G111 RESIDENTIAL
BRY FILRE, ‘ SUNHEXIANG g 18225
. i1 9 el
LaICHRNGYINGXIANG ) B
RIES |
-
'HUANGZHEN JINZHANXIANG
EEW XIANGSHAN ERY 18214
RESIDENTIAL - 's201
DISTRICT 9 XUXINZHUANGZH
=] REFEY
\ LouzIZHUANCXIANG
: -
_ WULITUO s 2 D&Gsﬁﬁme .
SIDENTIAL - J lal /
ISTRICT ‘ R AIZIDIAN
% ABE ) | $ = =3 NT _
0ROV s ) = : N A =T E PINGFANGXIANG 3 SONC
s P il | SFE,é
N « '\ »
2\ ® - : S50 . G102 | S
d %, -. 5 L
[ o
IGDINGZHEN 6% SLaN ; i . ' A IANG’ puczHoy \
IKE I : U N\
S : . » & - . 0
™ il . IS raa s
ANGSIYINGXIANG [ 6103 N
3L ] B .
- b - I LIYUANZHEN
R . 55 " HE e,
z D - HEIZHUANGHUXIANG 3
RESIDENTIAL % HIBALIDIANXIA! >
" DISTRIC NS BEFY 4
T -
» g ' TAIHUZHEN
LAOZHUANGZIXIA A R
Yy ZETY 2 N
. 2
-
WANGZUOZHEN
T N_— 18202,
»
.-t si07 o0 3
. S
/ 18315 N
A _ CHANGYANGZHEN N - 8329 \‘\"P NIUBAOTUNZI
= LUCHENGXIANG f o ™ 550 VINGHAIZHEN 56 HEARTH
FANGSHAN LY | OZHE| DADUSHEZHEN
i ¢ ) W ST 5028 336! AHAEH
7 A G107 | I - 15
% DAXING =5

>4 = . \
ARE e o4 YUJIAWUXI

SIMTLER

MISSOURI

Sal




Motivation Application: How to Quantify MISSOURI

Spatial Configurations and Social Interactions S&T
22
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From Regions to Graphs S&T
10|

Spatial Regions as Human Mobility Graphs

0 POIls = nodes

0 Human mobility
connectivity betwee Ig"’” ios 11 man mobiles
two POls - edge b
weights -‘

0 Edge weights are
asymmetric
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Periodicity of Human Mobility S&T
24|

o Different days-hours = different periodic mobility
patterns = different graph structures

%’5’&\&, -ﬁ]é'ﬁagy \%E\
YW o I

K/Ionday Wednesday

ZI> 28,
\W Y
//H\\ X
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Saturday Frlday



Collective Representation Learning with MISSOURI

Multi-view Graphs S&T
12
Spatial Objects Multiple Feature Vector
(e.g., Regions) Graphs Representations

...............................................

Mondéy Tuesday Wed'nesday
Friday Saturday Thursday

N 7
\\‘v/' /’

..............................................

Constraint: the multi-view graphs
are collaboratively related



MISSOURI
Solving Single-Graph Input S&T
_ 26|

o The encoding-decoding representation learning paradigm

Encoder: compress a graph into a latent feature vector
Decoder: reconstruct the graph based on the latent feature vector

Objective: minimizing the difference between original and
reconstructed graphs
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signal ensemble (Multi-perceptron summation )



Solving the Optimization Problem S&T

te{1,2,...,7} 1

MISSOURI

28
- (yBt = (W ® L p®h vt e (1,2, 7],
: | (k),r (k),r (k:) (k) .
' 1. Multi-graph | JYi =o(W;, +b; "), Vr €{2,3,-- o},
k),o+1 k),0+1 k: o k),0+1
. Ensemble Encoding | z(-k) " U(ZtWé ; :(rk? vy ) + byt
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L e Reconstruction loss
o
: 3. Objective : (k) (k) 7 (’f) (k)
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Sparsity regularization: If mobility connectivity =
0, weight=1 to penalize the loss
If mobility connectivity >0, weight>1
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Comparisons with Features Generated By S
&

Different Methods
29

0o Data
Beijing Checkin Data

o Ranking Models ., |
MART: it is a boosted tree ranking model

B ELF-MART @@ ELF-RN W ELF-RB
| m LF-MART B LF-RN B LF-RB «y . . . .
"2 © EF-MART = EF-AN  m EF-RB RankBoost (RB): it is a boosted pairwise ranking
0O V-1-MART O V-1-RN B V-1-RB . . .
O V-2-MART B V-2-RN B V-2-RB method, which trains multiple weak rankers and
B8 V-3-MART @ V-3-RN | V-3-RB . . . .
10 - T combines their outputs as final ranking.

RankNet (RN): it uses a neural network to model
the underlying probabilistic cost function.

O Feature Sets
Explicit Features (EF)
Latent features (LF)
Explicit & Latent features (ELF)

Features generated by variation 1 of our method:
distance graphs not mobility graphs

| Features generated by variation 2 of our method:
@5 @10 @15 @20 average not collective

Features generated by variation 3 of our method:
non-weighted not unsupervised weighted.

0 Evaluation Criteria
NDCG: Evaluate the ranking performance at Top N

NDCG




NDCG

NDCG@N comparisons over LambdaMART

NDCG

Comparison with Baseline Representation
Learning Algorithms
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NDCG@N comparisons over RankBoost

B Our Model O RBM
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$
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O

O

O

MISSOURI
S&

Ranking Models
LAMBDAMART
ListNet
MART

RankBoost

Baseline Methods

RBM: restricted
Boltzmann machine

NMEF: non-negative matrix
factorization

Skip-gram
Evaluation Criteria

NDCG: Evaluate the
ranking performance at
Top N
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Summary S&T
_31 |

0 Task

1 Collective representation learning with multi-view graphs

0 Modeling

[0 Develop an ensemble-dissemble encoding-decoding
approach

0 multi-graph ensemble encoding and multi-graph dissemble
decoding

0 Application

71 Quantifying urban communities for understanding urban
vibrancy
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Outline S&T

0 Background and Motivation

0 Collective Representation Learning
0 Dynamic Representation Learning
0 Structured Representation Learning

1 Conclusion and Future Work
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Social Fairness in Insurance Sector S&T
33

Money Companies Markets Tech Media

AUtO Insurers charge (some) safe drlvers
higher rates

by Melanie Hicken @melhicken
000

(O January 28, 2013: 4:48 PM ET

-_— e L -

Consumers Union finds Auto Insurers Penalize

What can we do to defend social
fairness on insurance rates?

o Msu mers of their credit history and other factors that

e St ales, eers often Ut ore elgnt on ncome relten o Ilion have nothing to do with their driving
record, according to Consumers Union,

. . the policy and advocacy division of
Nonprofit Publisher o mer Reports.

of Consumer Reports The consumer group urged regulators to
ban the use of credit histories and some
other non-driving factors for setting premiums at a National Association of
Insurance Commissioners (NAIC) hearing on November 19th.

Washington, D.C. — Many good drivers
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Motivation Application: Machine-Learning
Based Driving Behavior Analysis S&T
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Defining Driving Operations & States S&T

Speed-related:

acceleration, deceleration, constant speed
Direction-related:

Turning right, left, moving straight

Definition: speed operation + direction operation

Speed Operation Direction Operation
Acceleration Turning Right
Deceleration & Turning Left

Constant Speed Moving Straight
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Quantifying Driving Habits with Driving
State Transition Graphs S&T
36

Left turn + deceleration
@ Right turn + deceleration = @ - —,{_)’_, Transition Duration

Left turn + @
deceleration

Straight+
Accelerati

'L» Transition Probability
: Driving style & habit :

I patterns I

-_—es o e e e e e e = = o)
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Driving State Transition Graph Sequence S&T

Driving State

—
—
—
——

Driving State

7
@
A 4 \

-
- -

: * Transition frequency: how frequently a driver changes his/her driving state
1 from one to another (unusual high-frequency: drunk?)

: * Transition duration: how quickly a driver changes his/her driving state

' from one to another (unusually fast: non-comfortable driving habits)



Dynamic Representation Learning with MISSOURI

Graph Stream S&T

38
t=1 t=2 t=3| --- t=T
f S o h0 e d 0 ahin - ah)

. Map a sequence of time-varying yet relational graphs to a |
| sequence of time-varying yet relational vectors
I
|

|
e s.t.spatial and temporal dependencies :
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Three Modeling Constraints S&T
_ 39|

0 Structural Reservation

71 If two graphs’ structures are similar, their feature vectors
are similar

0 Temporal Dependency

71 Current driving operations are related to previous driving
operations

0 Peer Dependency

1 Drivers with similar driving behaviors should share similar
feature vectors
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Modeling Structural Reservation S&T

40 |
0 Structural Reservation: Minimizing reconstruction loss
» Input vector Embedding

y! a(Wlxz + b1> §9 = o(Wotlz, + botl),
1 o
g

yE = o(WkyP1 £ bF) Yk € {2,3,--- ,0 (Whyk 4 bF) Yk € {2,3,--- 0},
7 = o(Worlyg F b7, (W'yt>~bl).

\ 1 SN
\

\ Encoded vector In;;ut vector Decoded vector
Embedding

Learned
_Representation

I
| The encoding phrase: encode input vector into embedding;
' The decoding phrase: decode the embedding to recover input.
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Modeling Temporal Dependency S&T

0 Temporal Dependency: Current driving operations are
related to previous driving operations

hi
=2 =N
hi1 2 ’P\I}
wm] <o whe T el
o] (o] [tanh]
~ ~ i J
Representation] |y I | mmaE | EEE /
/
i |
!
( 4 Sequential FEncode Step Feed the output of Autoencoder’s

' hidden layer into Gated Recurrent Unit |

(v;)” =o(W'x] +bl),
(yiﬁ)T :O-(Wk(yf_l)T—l_bk)?\v/k € {2737 70}7

T =(1—c )zl ' 477,
i (1-c /LZz e ( #Sequential Decode Step
o II_ ____________ < (¥¢) = g(Wotlgl 4 both),
ck—I\t A kT -
I Current hidden layer depends on previous | (yi )7 = o(WH(F:)™ +b"), vk €{2,3,--- 0},
: hidden layer S < =o(Wi(yi)" +bl).
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Modeling Peer Dependency S&T

0 Peer Dependency: Drivers with similar driving behaviors
should share similar latent representations

Graphical regularization: if a spatial item i
and a spatial item j are similar at time T, the
representation Zi and Zj are similar;

Transition Graph Representation punished otherwise. N

~
~
~

~

I ' E :
:10 earnin . H(GT) = Z Z si iz — 25|,
/

\‘ u; €U (% Eu,ui;éuj 4
i 1 :
/
/
similar similar !
l The similarity of driving behavior between
learning 1 the driver u; and u; at the time slot 7
T T T
. N s; i = cos(x;, x;
- - | EEEEEEY L] ir %
@& -0 —>

using descriptive statistics of various historical
driving operations
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A Joint Optimization Objective S&T
43

~
\\
~

Mode| Structu re Multi-spatial © o@@ ...... @
S~o Graphs Series
o Gm
L S

\J
Peer Temporal
Dependence f Dependence

Embedding
Vectors

Structural reservation: the
representation that is
encoded from input can be R
decoded to recover input =

min > S i 0 +a ()

TEZ' u; EU(N)

v

N\ ,/
N\ P g
AN Peer dependéncy: the similar
Temporal dependency: current graph streams from two similar drivers

embedding is related to past embedding share similar representations



Applications: Driving Performance

.gcorinﬁ and Riskx Area Detection

. Transition Probability View . / :

z N U EEN Prediction and Historical

‘ 9 5 —+Eacoder _> _’ Dezalr _> """ Assessment of Driving Scores
& IO .;Y «foelo e ‘I‘ I - =n- :
E - Representation Result 5

: . Transition Duration View @ | t
GPS Trajectory et oo s ) (Voctors \

o )
-

,
s
,

Lord’
Q
E
[}

s : Rlsky Area Detection

1. Learn driving behavior profiles from driving state
transition graphs

2. Use driving behavior profiles to automatically
score driving performances and detect risky areas



Comparison with Baseline Methods S&T

Apply the learned representations to predict driving scores

B Auto-Encoder [ LINE 0.5 B Auto-Encoder [ LINE
ol B DeepWAak L) DSV B DeepWAak  [] DSV
' © CNN I PTARL B CNN O PTARL
ug.los %07 o
o o ﬁ
5] o
=}
jon
(%]
06
-0.5
0.4 3
-1.0
1.2 0.4
Bl Auto-Encoder [ LINE H Auto-Encoder [ LINE
101 W DeepWAalk [J Dsv 034 B DeepWAalk [ DSV
I CNN ] PTARL 0 CNN [J PTARL
08
- Jl { 0.2 u
% —
>
806 u S 0.1
=4 ||
0.4 -
u 0.0
0.2 -
-0.1 4
0.0~
@5 @10 @15 @20

: * Our model achieves the best performances
 © Peer and temporal dependencies are essential for
I representing driving behavior

O

O

O

MISSOURI

Data

Frequenc

T-drive (Beijing GPS trajectories of
volunteer drivers)

T T T T
0.4 0.5 0.6 0.7

Driving Score Distribution

Evaluation Metrics

Square Error
Coefficient of Determination (R?)

Normalized Discounted Cumulative Gain
(NDCG@N)

Kendall Tau Coefficient (Tau)

Baselines

Autoencoder

DeepWalk: use truncated random walks
to learn latent representations

LINE: preserve both local and global
network structures with an edge-
sampling algorithm

CNN: Convolutional Neural Network

Driving State Vector (DSV) — a traditional
transportation approach

PTARL—Our model



Study of Peer and Temporal Dependencies S&T

NDCG@N

Square Error
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PTARL: -Our model
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[0 PTARL-temporal
[J PTARL
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Bl Auto-Encoder 05
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 The Autoencoder that ignores both dependencies performs the worst

@15

@20

Bl Auto-Encoder

[l PTARL-peer

[0 PTARL-temporal
[J PTARL

0.0 4
-0.1 4 . .

|| W Auto-Encoder

I PTARL-peer

0 PTARL-temporal
] PTARL

0.0
N .
—0.5 4
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MISSOURI

o Two variants of our model

PTARL-peer that only considers

the peer dependency.

PTARL-temporal that only
considers the temporal

dependency.

|

|
|
1 * The temporal dependency is more significant in profiling driving behavior :
' than the peer dependency I
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Historical Assessment of Driving Scores S&T

—a— Riskier Driver I_ —————— ”— -
--e-- Safer Driver : Scores of the “Safer

|
|
i Driver” are relatively |
1 higher at most time, :
: while the scores of the
|

|

|

|

1 “Riskier Driver” are
——_! relatively lower at
most time
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Risky Area Detection
48
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Summary Sy
_ 49|

0 Task

71 Dynamic representation learning with graph streams

0 Modeling

1 Develop a temporal and peer-aware dynamic
representation learning approach

[0 Robustness checks over structural preservation, temporal
dependency, and peer dependency

0 Application

1 Driving behavior analysis for inferring driving scores and
risk area detection
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Outline S&T

Background and Motivation

Deep Collective Representation Learning

[]

[]

0 Deep Dynamic Representation Learning

0 Deep Structured Representation Learning
[]

Conclusion and Future Work



Less Matches Between Human and MISSOURI

Technologies S&T
51

Non-personalized news Non personalized
feeds educatlon
....... F 9
Is Google murdering Google+ with poor Ul design? x- oo hard f“ Learning
oster child for poor interface design Re SO u rCES

O9O0ODO OO
= Google+ People Q Search ) .

What can we do to |mprove user
performance and engagement in human-
technological systems?
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Motivation Application: Precision User S
&

Profilin
52

Webpage = Contents + Structure

Webpage Content Template

Pro-Writing Questions:
* \What is the goal of this page?
*  Which audience/persona is this page targeting?
*  Which phase of their buying cycle is this page addressing?
* Based on the iopic you're covering, what are the 3 primary benefits you want 1o
communicato?
*  What keywords and phrases do you need to include for SEO?

Page Headline / Title (shoukd be <h1>, clear and catchy, include prmary keyword/phrase
i possidio) For details contact [ Author Name |

First narancanh .. What is the NNF thinn wy i want the | 1

User = Explicit Activities + Latent Behavioral Structure ?
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From Users To Activity Graphs S&T

0.2%0.1=0.02  1.0*0.7=0.7

fgas station f restaurant
market school | home

0.0%0.1=0.0 0.2%0.1=0.02 Library < IT
Q. T T TT T T T
, Spatial-temporal asymmetric | / \
l transition patterns l

L e e e e e e e e e e - ] Lab :\A\‘ / » Department

PizzaHut Office

\ Hospital
PreSchool —» Home < Regal
é ‘ / / \ Cinemas
N Walma Costco
MacDonald
“ / Zoo
Auto

Gas . Service
Station Sixflag



Problem Reformulation: Representation MISSOURI

Learning with Activity Graphs S&T
54
| User Profile Vector
/ \

Lab =

\A\‘ / > Department
PizzaHut Office Hospital
[ ]
’ PreSchool > Home +—» C!Regal
inemas
Walma

Costco

MacDonald
/ Zoo
Auto

Gas . Service
Station Sixflag
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Global Behavioral Patterns S&T
55

0 Global structures: how a user’ activities globally
interact with each other (strongly link, weakly link,

no link) Wi B "

PizzaHut Hospital

™~ .

PreSchool —» Home <« HRHegal

Cinemas
v / Walma/ \Y

Costco

MacDonald
/ Zoo
Auto

Gas . Service
Station Sixflag
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Substructure Behavioral Patterns S&T
56

0 Substructures: topology of subgraphs that feature
the unique behavioral patterns of a user’s activities

\‘Substructure 1:
high-frequency
discrete nodes

Regal

% Home -

Cinemas
/ Auto

Service

MacDonald

Substructure 2: high- Statlon Sixflag
frequency circle
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Representation Learning with Behavioral
Global and Substructure Preservation

57

0 Traditional solution: global structure (encoding-
decoding) + substructure (loss regularization)

Input Output
ﬁr - - ]
. ........ _\\ \7—r\\ //1_(/ //_
/ \ y .- \ I\ v Code 4—x 7\ / —
/ \ ~ - / \
Lab- R - /LN~ -7\ . i
~\ v/ oy NS Ly v/ \
T o Hospita — N NN N N
Pr | L\V H i g | )\ | /< | / >\ Bl >\ | /( |
74 Cinemas I AN = VSN N N R W
wamars” /| O\ T aa, - \ 1/ \L s ~ N L7y Ly L
aaaaaaaa d Costco . ‘ / \ / \ / - - ~ \\ / \ / \\
/ 200 —/ P A~ L\ ]
Aut_o L / I P ~a - \ [
s,‘ji‘fn Sixflag Service L [ _ -~ ~\ L
N\ J N\ J
Yo Yo
Encoder Decoder

-
1 * Global structure:

: * Minimize the loss between the input graph and the reconstructed
| graph

: e Substructure preservation:

| e Strongly penalize the loss if the model cannot accurately

: reconstruct substructures
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Will The Traditional Solution Work? S&T
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Library ALDI €«=— T J Maxx < Walmart

/ \ * Pharmacy
Lab <« \ / » Department Farmer / Hospital
Market
Regal
PizzaHut o A / g

Office Hospital <«—” Cinemas

*
*

\ - A 7 “‘.' PreSchool —» Home —
PreSchool s—¥% Home ~—> c:?srj:;s o / \ Costco
/ . V% "0” PetSmart Zoo
MacDonald e Cb'stcpr: ’ Library
-“ 7 0"" .'.,... Gas - .GVm -«
s Auto o3 ‘e, Sixflag =

Gas . Service o* *+, Statio .

Station Sixft:ag ervi(:g‘ .'".,. :
. W, b |
'+ Different users show | e Substructure are |

[ I I . [ [ .
' different substructure ! . dynamically distributed in
| I |
| I I |

topology and contents different locations of graphs
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Adversarial Substructured Learning S&T
59|

0 Translate substructure-aware representation

learning into an adversarial substructured learning
problem

An encoder-decoder Erooder D?e};'&&ér'"":
network: learnthe " 7=--___ I

representations of a — ,_.'
graph

__________________________

Adversarlal training:
A substructure detector Substructure to match original

detect substructure AN, substructures with
\Substructure .' 5 |« [Substructure
patterns Detector \ / Detector reconstructed

L @/ substructures
) R(e-s Real
yr n \

b o Di t

)2 o) — B

A discriminator: classify
—SUBstructure Fake

original substructure and« -
reconstructed substructure
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Will The New Formulation Work? S&T
60

_______________________

Encoder | Decoder

deep first search based subgraph detection

! |
! |
| . s
! | |
Procedure DFS (input: graph G) - i g _"E_’_"i_’ — i_’
begin i : i !
Stack S: ! . ! |
Integer s,x: ' ! :\ !
Substructure
I/”}.‘\\\
Substructure ,' 5 | <« [Substructure
Detector N / Detector

while (G has an unvisited node) do
s := an unvisited node;

visit(v):
push(v,S) ;
While (S is not empty) do
x := top(S): Fake
if (x has an unvisited neighbor y) then @
visit(y): _ Real / Real
push(y,S) : /’ ) \ @
(2 e — (B
pop (S) ; g \
endif Substructure Fake
endwhile
endwhile
end

' l
|
. not differentiable i
' |
|
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How to Approximate Substructure Detector? S&T
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Non-differentiable Lab 2 4
substructure detection Pizz o Differentiable CNN
algorithm e '—”'m = Cinemas
Procedure DFS (input: graph G) MacDonaIdW ostee ( ) ( ) ( ) ( ) ( )
ST e IXLXIXIXL
Integ s,Xx; on Sixfla ag rvice \ y A y \ y \ y \ y
while (G has an unvisi tednod)d
‘sn;—tr)unv1s ited node O O O O
push(v,S) ;
While (S is not empty) do
x := top(S):
if (x has an unvisited neighbor y) then
visit(y)
push(y,S)
© s(p_?;ol:t(s):
. Substructure Latent embedding
PreSchool —>» Home
_—e— o s s e e e O O O O e O T e EE EE EE e D EE EE IS EE EE I I I IS EE EE EE EE I EE EE Ew e . l



Approximated Adversarial Substructured MISSOURI

Learning S&T

" ©) Encoder’ 'Decoder (O) |
- &4
CNN-based detector: . ! SR '
detect and output a __ Substructure
substructure feature 24> AN
~~~~~~ a0 L L T e
vector T Y o S
e’ Fake 7/ s
Real @/ Real
,/'_o\\\ @ / 1
( o) —> [Discriminator]—» @
\(:’ // \ O
Substructure Fake

:_The Mini-Max Game in Optimization

e Discriminator: is trained to maximize the accuracy of classifying detected
and generated substructures

e Generator: is trained to minimizing the probability that Discriminator
correctly classify generated substructures
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Solving The Min-Max Game Sy

D|scr|m|nator accuracy Reconstruction loss

I 1. Minimizing iL — _AD‘Z:D + AG‘CG + AAELAE

: Objective Function

: 2. Update :
: discriminator to :
| Maximize accuracy

: 3. Update generator :
: to confuse :
! discriminator :

Train G to minimize D’s accuracy on
generated substructures

m

1 : .
l l
< Vo, - E [logDSS ) + log‘Sl — D(G(x")))]
\
\ i=1 Classify ground true " Classify generated
Maximize likelihood ¢ ,bstructure to 1 substructure to 0

Vour Zlog(l - D(G(x")))

Classify generated
Mlnlmlze I|keI|hood substructure to 0

R 2
Vo, g ll(xi —x3)ll,
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Recap: Training and Testing of
rsari I red L &;

A
64

X S

Deep
— | First |—*>
@ Search Substructure (Label)

Encoder !
I
I
I
:
I
— O8> 7
i
I
i
I
I
U

Real
1

’
1
1
)
1
1
)
)
— :
)
1
1
1
)
1
1
1
\

Substructure —*> - \ ____________ -

Training CNN oo Well Trained

(a) Pre-train the CNN to approximate the substruc- (b) Adversarial training process to integrate the (c) Utilize the well-trained model to generate rep-
ture detector. substructure. resentations of mobile user profiles.



What To Do Next: Inferring Next Activity M5O

for POI Recommendations S&T

Walmai
aaaaa
User /
rvice

on Sixflag

i ncoder! H
: : + Decoder : Wi 0
' ' : '
' ' ' 1
\ ' H | [
1 1 B :
: - — '
' ' i ; o e 21
1 '

PizzaHut H | | 1
1 | ! |
\ | | |

PreS ho |—> Ho meH _R gal Substructure —_ User Profiling
1/’—‘\\\
ubstructure / \ ubstructure
etector etector )
aKke
WO .
| ] iscrimi 5 & ]

User Activity Graph

1. Given a time period, learn a user’s profiles from
corresponding user activity graph

2. Exploit user profiles to forecast next activity
category



Performance Comparisons on New York and MSSOURI
Tokyo Activity Checkin Data

Apply the learned representations to predict next
activity type (next POI category)

,ﬂ 0.15 H Auto-Encoder OJ LINE 7"
0.35 1 W Auto-Encoder [ LINE B DeepWalk O StructRL
B DeepWalk [0 StructRL @ CNN
03071 @ CNN

neW@N
3

Precision

0.05

®
50.20
i)
3
&015 1 u

0.10 -| u

0.05 | u u u

mill || 4 p |
0.00 — 0.00
@5 @10 @15 @20 @5 @10 @15 @2

(a) Precision@N with New York dataset

0

0.4 4 n &
W Auto-Encoder [J LINE . MW Auto-Encoder 0 LINE
B DeepWalk O StructRL 020 { B DeepWalk O StructRL
@ CNN O CNN
0.3 -
Z,
z 0.15
® 4
S 2
® 02 S
§ u .30,10
a o u
|| a
0.1
0.05 u
0.0 - 0.00 -
@5 @10 @15 @20 @5 @10 @15 @20

(c) Precision@N with Tokyo dataset

- S S S e S e e . ., . . — — — — — — — —

¢ Our model achieves the best performances on
I user profiling

I « Substructures in a graph are essential for user
I behavior patterns

(b) Precision™N*" @N with New York dataset

O Data

Mobile activity checkin data
of NYC and Tokyo

Sal

City # Check-ins | # POI Categories Time Period
New York 227428 251 12 April 2012 to 16 February 2013
Tokyo 573703 247 12 April 2012 to 16 February 2013

o Evaluation Metrics

The precision@N of activity
category prediction

The precision@N of new
activity recommendation

o Baselines
Autoencoder

DeepWalk: use truncated
random walks to learn latent
representations

LINE: preserve both local and
global network structures with
an edge-sampling algorithm

CNN: Convolutional Neural
Network
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Study of Node and Circle Substructures S&T

tos | W StUCiRLNode - 0.15 M StructRL-Node _
g 2::32I2t_0irde g :I:Sgtgt'o"de e  StructRL: consider both

0.30 1 nodes and circles
20 §p.10 l * StructRL-Node: only
S020 . consider node based
8os | i% substructure

010 | &o.05 | *  StructRL-Circle: only

consider circle based
:: | | I—H substructure
@5 @10 @15 @20 0.00 -

@5 @10 @15 @20
(a) Precision@N with New York dataset N
(b) Precision™*V @N with New York dataset

Precision@N

i B StructRL-Node ]
04 m StructRL-Node - 020 @ StructRL-Circle
O StructRL-Circle O StructRL
O StructRL
Z
0.3 4 0.15
o
2
c
Ke]
(7] 4
02 e
a
0.05
0.1 4
0.00 -
@5 @10 @15 @20
0.0 | m————
@5 @10

@15 @20 (d) PrecisionN" @N with Tokyo dataset

(c) Precision@N with Tokyo dataset
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Summary Sy
68|

0 Task

01 Structured representation learning with global and sub
structure preservation

0 Modeling
"1 Develop an adversarial substructured learning approach

71 Preserving global and sub structures via solving the mini-
max game

0 Application

1 Precision user profiling and quantification for
personalization and recommender systems



