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Human-Social-Technologic Systems
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IoT, GPS, wireless 
sensors, mobile 

Apps 

Cyber 
World

Physical 
World



Human Activities in Human-Social-
Technologic Systems

¨ Spatial, Temporal, and Networked (STN) data can be 
o Spatial: Point-of-Interests, blocks, zones, regions 
o Spatiotemporal: Taxi trajectories, bus trips, bike traces
o Spatiotemporal-networked: Geo-tagged twitter posts, power 

grid netload 
¨ from a variety of sources

o Devices: phones, WIFIs, network stations, RFID
o Vehicles: bikes, taxicabs, buses, subways, light-rails 
o Location based services: geo-tweets (Facebook, Twitter), geo-

tagged photos (Flickr), check-ins (Foursquare, Yelp)
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Taxicab GPS Traces Phone Traces Mobile Check-ins

Represent the spatial, temporal, social, and semantic contexts of 
dynamic human/systems behaviors within and across regions

Bus Traces



Important Applications
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User Profiling & 
Recommendation Systems

Intelligent 
Transportation Systems

Personalized and Intelligent 
Education

Smart Heath Care City Governance and 
Emergency Management

Solar Analytics for 
Energy Saving



Unprecedented and Unique Complexity 

¨ Spatiotemporallly non-i.i.d.
¨ Spatial autocorrelation
¨ Spatial heterogeneity
¨ Sequential asymmetric patterns
¨ Temporal periodicity and dependency
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Spatial autocorrelations

Temporal periodical patterns

Sequential asymmetric transitions

Spatial heterogeneity



Unprecedented and Unique Complexity 
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¨ Networked over time
¨ Collectively-related

¨ Heterogeneous
¨ Multi-source
¨ Multi-view
¨ Multi-modality

¨ Semantically-rich
¨ Trajectory semantics
¨ User semantics
¨ Event semantics
¨ Region semantics



Technical Pains in Pattern Discovery (1)

¨ Feature identification and quantification 
o Traditional method: Find domain experts to hand-craft 

features
o Can we automate feature/pattern extraction?
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Technical Pains in Pattern Discovery (2)

¨ Multi-source unbalanced data fusion
o Traditional method: Extract features, weigh features, 

weighted combination
o Can we automatically extract features from multi-source 

unbalanced  data?
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Technical Pains in Pattern Discovery (3)

¨ Field data/real-world systems are usually lack of 
benchmark labels (i.e., y, responses,  targets)
o Example: Netload in power grids: behind-the-meter gas-generated 

electricity and solar-generated electricity are unknown 
o Can we learn features without labels (unsupervised)?
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Deep Learning Can Help
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Technical Pains in Pattern Discovery (4)

¨ Classic algorithms are not directly available in 
spatiotemporal networked data
o Traditional method: revised classic algorithms + spatiotemporal 

networked data regularities
n Regression + spatial properties = spatial autoregression method 
n Clustering + spatial properties = spatial co-location method

o Can we learn features while maintaining the regularities of 
spatiotemporal networked data?
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Data Regularity-aware Unsupervised 
Representation Learning
16

Human and system 
behaviors have 

spatiotemporally 
socially regularities

Data Regularity-
aware 

representation 
learning 

• Lack of labels (unsupervised)
• Multi-source multi-view multi-modality
• Spatial autocorrelation (peer)
• Spatial heterogeneity (clustering)
• Temporal dependencies (current-past)
• Periodical patterns
• Sequential asymmetric transition
• Spatial hierarchy (hierarchical clustering)
• Hidden semantics
• Spatial locality
• Global and sub structural patterns in behavioral graphs

Regularities of  
spatiotemporal 

networked 
data

Car
Not car

Generic 
Deep 

Learning

Automated 
feature learning

Feature learning from 
multi-source data

Lack of 
labels

Data 
regularities



The Overview of The Talk
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Dynamic 
Learning

Collective 
Learning

Structured 
Learning

Collective representation 
learning with multi-view 

data

Dynamic representation 
learning with stream data

Structured representation 
learning with global and 

sub structure preservation

Automated Feature Learning from Spatial-Temporal-Networked Data
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The Rising of Vibrant Communities

¨ Consumer City Theory, Edward L. Glaeser (2001), Harvard 
University. 
¨ More by Nathan Schiff (2014), University of British Columbia. Victor 

Coutour (2014), UC Berkeley. Yan Song (2014), UNC Chapel Hill. 
¨ Spatial Characters: walkable, dense, compact, diverse, accessible, 

connected, mixed-use, etc.
¨ Socio-economic Characters: willingness to pay, intensive social 

interactions, attract talented workers and cutting-edge firms, etc. 

What are the underlying driving forces of a 
vibrant community?

Supported by NSF CISE 
pre-Career award (III-

1755946)
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¨ Mobile checkin data

¨ Frequency and diversity of mobile checkins
o Frequency: fre = # &ℎ(&)*+
o Diversity: div = −∑1234

#(674689:,1234)
#(674689:)

=>? #(674689:,1234)
#(674689:)

, where type denotes 
the activity type of mobile users

¨ Fused scoring
o @*ABC+&D = (1 + GH) IJ4∗L9M

(NO∗IJ4PL9M)

o G controls the weights of fre and div
o Power-law distributed
o Some are highly vibrant while most are somewhat vibrant

Measuring Community Vibrancy

Community rankings

Vibrancy 
Score

Shopping Transport Dinning Travel Lodging

Urban vibrancy is reflected by 
the frequency and diversity of 

user activities.



Spatial Unbalance of Urban Community 
Vibrancy
21



Motivation Application: How to Quantify 
Spatial Configurations and Social Interactions
22

Urban Community =Spatial Configuration + Social Interactions
Static Element Dynamic Element



From Regions to Graphs

¨ POIs à nodes
¨ Human mobility 

connectivity between 
two POIs à edge 
weights

¨ Edge weights are 
asymmetric

10

Spatial Regions as Human Mobility Graphs 



Periodicity of Human Mobility 

¨ Different days-hours à different periodic mobility 
patterns à different graph structures

24



Collective Representation Learning with 
Multi-view Graphs
12

f(              ,              ) = 

Multiple  
Graphs

Feature Vector 
Representations

Spatial Objects
(e.g., Regions)

Constraint: the multi-view graphs 
are collaboratively related



Solving Single-Graph Input

¨ The encoding-decoding representation learning paradigm
o Encoder: compress a graph into a latent feature vector
o Decoder: reconstruct the graph based on the latent feature vector
o Objective:  minimizing the difference between original and 

reconstructed graphs
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• Unsupervised (label-free): doesn’t require labels
• Generic: not specific for single application
• Intuitive: a good representation can be used to reconstruct original signals
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Solving Multi-graph Inputs: An Ensemble-Encoding 
Dissemble-Decoding Method
27

NN as an input unit 
of encoder

NN as an output 
unit of decoder

signal ensemble (Multi-perceptron summation ) signal dissemble (Multi-perceptron filtering )

Minimize reconstruction loss



Solving the Optimization Problem
28
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Ensemble Encoding
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Function
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Ensemble multi-graphs

Dissemble multi-graphs

Sparsity regularization: If mobility connectivity  = 
0, weight=1 to penalize the loss
If mobility connectivity >0, weight>1 

Reconstruction loss



Comparisons with Features Generated By 
Different Methods
29

¨ Data
o Beijing Checkin Data

¨ Ranking Models
o MART: it is a boosted tree ranking model
o RankBoost (RB): it is a boosted pairwise ranking 

method, which trains multiple weak rankers and 
combines their outputs as final ranking.  

o RankNet (RN): it uses a neural network to model 
the underlying probabilistic cost function.

¨ Feature Sets
o Explicit Features (EF)   
o Latent features (LF)
o Explicit & Latent features (ELF)
o Features generated by variation 1 of our method: 

distance graphs not mobility graphs
o Features generated by variation 2 of our method: 

average not collective
o Features generated by variation 3 of our method: 

non-weighted not unsupervised weighted.
¨ Evaluation Criteria

o NDCG: Evaluate the ranking performance at Top N
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Comparison with Baseline Representation 
Learning Algorithms
30
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NDCG@N comparisons over LambdaMART NDCG@N comparisons over ListNe

NDCG@N comparisons over MART NDCG@N comparisons over RankBoost

¨ Ranking Models
o LAMBDAMART
o ListNet
o MART
o RankBoost

¨ Baseline Methods
o RBM: restricted 

Boltzmann machine
o NMF: non-negative matrix 

factorization
o Skip-gram

¨ Evaluation Criteria
o NDCG: Evaluate the 

ranking performance at 
Top N



Summary

¨ Task
o Collective representation learning with multi-view graphs

¨ Modeling 
o Develop an ensemble-dissemble encoding-decoding 

approach
o multi-graph ensemble encoding and multi-graph dissemble 

decoding
¨ Application

o Quantifying urban communities for understanding urban 
vibrancy 
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Social Fairness in Insurance Sector
33

What can we do to defend social 
fairness on insurance rates?



Space Router
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Turn Left

Turn Right Accelerate

Motivation Application: Machine-Learning 
Based Driving Behavior Analysis
34

Driving Behavior 
Analysis

Insurance 
Companies



Defining Driving Operations & States
35

¨ Driving Operations
o Speed-related:

acceleration, deceleration, constant speed
o Direction-related:

Turning right, left, moving straight
¨ Driving States

o Definition: speed operation + direction operation

Speed Operation
Acceleration
Deceleration

Constant Speed

Direction Operation
Turning Right
Turning Left

Moving Straight

+



Quantifying Driving Habits with Driving
State Transition Graphs
36

Left turn + deceleration 
Right turn + deceleration 

Left turn + 
deceleration 

Straight+ 
Acceleration

Driving State

Transition Duration

Transition Duration View

Driving State

Transition Probability

Transition Frequency View

Driving style & habit 
patterns



Driving State Transition Graph Sequence
37

……

……

t=1 T=2 t=TDriving State

Driving State

Transition Frequency: 0.4

Transition Duration: 1 
minuets

• Transition frequency: how frequently a driver changes his/her driving state
from one to another (unusual high-frequency: drunk?)

• Transition duration: how quickly a driver changes his/her driving state 
from one to another (unusually fast: non-comfortable driving habits)



Dynamic Representation Learning with 
Graph Stream
38

f(  ) 

= 

• Map a sequence of time-varying yet relational graphs to a 
sequence of time-varying yet relational vectors 

• s. t. spatial and temporal dependencies



¨ Structural Reservation
o If two graphs’ structures are similar, their feature vectors 

are similar
¨ Temporal Dependency

o Current driving operations are related to previous driving 
operations

¨ Peer Dependency
o Drivers with similar driving behaviors should share similar

feature vectors

39

Three Modeling Constraints



Modeling Structural Reservation

¨ Structural Reservation:  Minimizing reconstruction loss
40
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The encoding phrase: encode input vector into embedding;
The decoding phrase: decode the embedding to recover input.

Learned 
Representation



Modeling Temporal Dependency

¨ Temporal Dependency: Current driving operations are 
related to previous driving operations

41
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i )
⌧ + b̂k), 8k 2 {2, 3, · · · , o},

x̂⌧
i = �(Ŵ1(ŷ1
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Modeling Peer Dependency

¨ Peer Dependency: Drivers with similar driving behaviors
should share similar latent representations

42

similar similar

Transition Graph Representation

learning

learning

Hc(G
⌧ ) =

X

ui2U

X

uj2U,ui 6=uj

s⌧i,j · kz
⌧
i � z⌧j k

2

2

The similarity of driving behavior between 
the driver Q9 and QR at the time slot S

T9,R
U = cos(Y9

U, YR
U)

using descriptive statistics of various historical 
driving operations

Graphical regularization: if a spatial item i
and a spatial item j are similar  at time T, the 
representation Zi and Zj are similar; 
punished otherwise. 



A Joint Optimization Objective
43

ŏŏMulti-spatial 
Graphs Series

G1 G2 G3 Gm

!Peer
Dependence  

Temporal 
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Structural reservation: the 
representation that is 
encoded from input can be 
decoded to recover input

Temporal dependency: current 
embedding is related to past embedding

Peer dependency: the similar 
graph streams from two similar drivers 
share similar representations

Model Structure



Applications: Driving Performance 
Scoring and Risky Area Detection 
44

1. Learn driving behavior profiles from driving state 
transition graphs 

2. Use driving behavior profiles to automatically 
score driving performances and detect risky areas



Comparison with Baseline Methods
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• Our model achieves the best performances
• Peer and temporal dependencies are essential for

representing driving behavior

Apply the learned representations to predict driving scores ¨ Data
o T-drive (Beijing GPS trajectories of

volunteer drivers)

¨ Evaluation Metrics
o Square Error
o Coefficient of Determination (ZH)
o Normalized Discounted Cumulative Gain

(NDCG@N)
o Kendall Tau Coefficient (Tau)

¨ Baselines
o Autoencoder
o DeepWalk: use truncated random walks 

to learn latent representations
o LINE: preserve both local and global 

network structures with an edge-
sampling algorithm

o CNN: Convolutional Neural Network
o Driving State Vector (DSV) – a traditional 

transportation approach
o PTARL—Our model
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Study of Peer and Temporal Dependencies
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PTARL: -Our model

¨ Two variants of our model
o PTARL-peer that only considers 

the peer dependency.
o PTARL-temporal that only 

considers the temporal 
dependency.

• The Autoencoder that ignores both dependencies performs the worst
• The temporal dependency is more significant in profiling driving behavior 

than the peer dependency



Historical Assessment of Driving Scores
47
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A “Safer Driver” is not always safe

A “Riskier Driver” is not always risky

Scores of the “Safer 
Driver” are relatively 
higher at most time, 
while the scores of the 
“Riskier Driver” are 
relatively lower at 
most time



Risky Area Detection
48

Dynamic evolution of the distribution 
of risky areas in 12 hours



Summary

¨ Task
o Dynamic representation learning with graph streams

¨ Modeling 
o Develop a temporal and peer-aware dynamic 

representation learning approach
o Robustness checks over structural preservation, temporal 

dependency, and peer dependency
¨ Application

o Driving behavior analysis for inferring driving scores and 
risk area detection
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Less Matches Between Human and 
Technologies 
51

Non-personalized news 
feeds

 

Non personalized 
education

What can we do to improve user 
performance and engagement in human-

technological systems?



Motivation Application: Precision User 
Profiling
52

Webpage =    Contents   +        Structure 

User =    Explicit Activities + Latent Behavioral Structure ? 



From Users To Activity Graphs
53

Spatial-temporal asymmetric 
transition patterns

User Activity Graph
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Problem Reformulation: Representation 
Learning with Activity Graphs
54

f(       ,                           ) = 
z 

• Given a user and corresponding user activity graph, we aim 
to map the user to a profile vector 
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Global Behavioral  Patterns

¨ Global structures: how a user’ activities globally 
interact with each other (strongly link, weakly link, 
no link)
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Substructure Behavioral Patterns
56

Substructure 1: 
high-frequency 
discrete nodes

Substructure 2: high-
frequency circle

¨ Substructures: topology of subgraphs that feature 
the unique behavioral patterns of a user’s activities 



Representation Learning with Behavioral 
Global and Substructure Preservation

¨ Traditional solution: global structure (encoding-
decoding) + substructure (loss regularization)

57

• Global structure: 
• Minimize the loss between the input graph and the reconstructed 

graph
• Substructure preservation: 

• Strongly penalize the loss if the model cannot accurately 
reconstruct substructures
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Will The Traditional Solution Work?
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• Different users show 
different substructure 
topology and contents
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• Substructure are 
dynamically distributed in 
different locations of graphs



Adversarial Substructured Learning

¨ Translate substructure-aware representation 
learning into an adversarial substructured learning 
problem 
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Encoder Decoder
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Detector

Discriminator
+

-Real

Fake

1

0

Real
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Substructure
Detector

Substructure

Substructure

An encoder-decoder 
network: learn the 
representations of a 
graph

A substructure detector: 
detect substructure 
patterns   

A discriminator: classify 
original substructure and 
reconstructed substructure 

Adversarial training: 
to match original 
substructures with 
reconstructed 
substructures



Will The New Formulation Work? 
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Encoder Decoder
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+
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1
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• Traditional subgraph detection algorithms are usually 
not differentiable

• Impossible to backpropagate gradience for optimization  

deep first search based subgraph detection



How to Approximate Substructure Detector?
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• Use CNN to replace substructure detection algorithms
• Use an embedding vector to replace a subgraph 

Non-differentiable 
substructure detection 
algorithm

Differentiable CNN

Latent embeddingSubstructure



Approximated Adversarial Substructured
Learning
62

Encoder Decoder
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+
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The Mini-Max Game in Optimization
• Discriminator: is trained to maximize the accuracy of classifying detected 

and generated substructures
• Generator: is trained to minimizing the probability that Discriminator 

correctly classify generated substructures

CNN-based detector: 
detect and output a 
substructure feature 
vector



Solving The Min-Max Game
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1. Minimizing 
Objective Function

4. Minimize 
reconstruction loss

3. Update generator 
to confuse 

discriminator 

Discriminator accuracy

Train G to minimize D’s accuracy on 
generated substructures

Reconstruction loss

2. Update 
discriminator to 

maximize accuracy Classify ground true 
substructure to 1

Classify generated
substructure to 0

Classify generated
substructure to 0Minimize likelihood

Maximize likelihood



Recap: Training and Testing of 
Adversarial Substructured Learning
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What To Do Next: Inferring Next Activity 
for POI Recommendations
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User Representation

Next Activity Recommendation

User Profiling

User

Adversarial Substructured Learning

……

Office Hospital

Costco

Gas 
Station

MacDonald
Walmart

PreSchool

Auto 
Service

Home

Zoo

Sixflag

PizzaHut

Regal
Cinemas

Lab 

Library IT 

Department

Encoder Decoder

Substructure
Detector

Discriminator
+

-Real

Fake

1

0

Real

Fake

Substructure
Detector

Substructure

Substructure

User Activity Graph

1. Given a time period, learn a user’s profiles from 
corresponding user activity graph

2. Exploit user profiles to forecast next activity 
category



¨ Data
o Mobile activity checkin data 

of NYC and Tokyo

¨ Evaluation Metrics
o The precision@N of activity 

category prediction
o The precision@N of new 

activity recommendation
¨ Baselines

o Autoencoder
o DeepWalk: use truncated 

random walks to learn latent 
representations

o LINE: preserve both local and 
global network structures with 
an edge-sampling algorithm

o CNN: Convolutional Neural
Network

Performance Comparisons on New York and 
Tokyo Activity Checkin Data
66

• Our model achieves the best performances on 
user profiling

• Substructures in a graph are essential for user 
behavior patterns

Apply the learned representations to predict next 
activity type (next POI category)



Study of Node and Circle Substructures
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• StructRL: consider both 
nodes and circles

• StructRL-Node: only 
consider node based 
substructure

• StructRL-Circle: only 
consider circle based 
substructure



Summary

¨ Task
o Structured representation learning with global and sub 

structure preservation 
¨ Modeling 

o Develop an adversarial substructured learning approach
o Preserving global and sub structures via solving the mini-

max game
¨ Application

o Precision user profiling and quantification for 
personalization and recommender systems

68


