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JExplosive Growth in Mobile Apps
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Facebook
QQ
WhatsApp
Messenger
WeChat
Instagram
Twitter
Line
Snapchat
LinkedIn
Pinterest
KakaoTalk
Viber
QZone

Source: Based on information contained in reports, press releases and other documents filed by these Social and Messaging App
Companies with the U.S. Securities and Exchange Commission (“SEC") as well as materials disclosed on the websites of such Social and
Messaging App Companies (“Reports”). ARK Investment Management LLC analyzed and internally ranked the social and messaging apps

based on information in those Reports.

Ref: ARK INVEST. https://ark-invest.com/research/social-messaging-apps
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User’s perspective:

0 Communicate with each otherin a
social network, like multi-media
messaging, moment post.

.....

e LET

rp0E.

o Engage in commercial activities, like §
conference calls, paying bills, etc.

ISP’s perspective:

o Understand users’ preferences.

||||||

o Provide personized services or . £ lﬂgf'ﬁ.ﬂm
advertisements. - TET

o Improve mobile users’ satisfaction.
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o Goal: to discover mobile users’ In-app activities

o Problem: Classify mobile Internet traffic into
different usage categories in a real-time manner.

o Challenges:
> Encrypted Internet traffic with very limited
Information from traffic packets (packet timestamp,
packet length and packet protocol).
> Need to handle large traffic flows from millions of
users simultaneously as an online analyzer.
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Definition 1: Internet Traffic Flow

An internet traffic flow TF consists of a sequence of encrypted
internet packets denoted by TF = {(t;, P;)i—,} where I is the total
number of packets and P; represents the packet received at time ¢;

Definition 2: Traffic Segment

A traffic segment S =< s, s; > IS a subsequence of an internet
traffic flow from time s, to s;.

Definition 3: Time Window Representation

A time window W, records a small portion of traffic sequence
starting from tg to ¢y, . The size of a time window 7 is fixed:

tw, — ty < 7. Thereis a time gap A between adjacent time
windows: tg ™t -t < A
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Mobile Volunteers WIFI Access  Traffic Crawler Messaging Traffic
And Smartphones Points and Analyzer Repository
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Data resources: daily usage of volunteers from
Rutgers University and employees from major ISP
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Example of Collect Internet Traffic Flow
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Given an incoming traffic flow TF = {(ti, Pl-){=1}, we need
to classify a sequence of in-App usage activities denoted by
{(b,,, e, uy)}Y_1, Where b,,, e,,, and u,, respectively
represent the begin time, the end time, and the activity class.

1. Traffic flow segmentation
2. Traffic segment in-app usage classification

Table 1: Usage Activities of three Different Mobile Apps (Class Label)

U# | Wechat Whatsapp Facebook

0 Audio Audio Moment

1 Location Picture Video upload

2 Picture Voice Call Video watch

3 Short Video | Text Picture

4 Video Call Short Video | New Video Upload
5 Moment Location

6 Text

7 Voice Call




Framework Overview

Online Analysis

Offline Training
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Figure 2: The Framework Overview.

Core algorithms
Offline Analysis: MIMD feature selection.

Online Analysis: rCKC traffic flow segmentation.
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Input: Raw traffic flow

Output: Activity class and its start-end time
1. Time window feature vector representation

& 1o S Time window sequence
£ 1000, -*4---*-: v
g% Y 2L ] ™
§ 200 - m.. ;__.;r—.i ;_,t ; : Feature of traffic window
2003 100 200 300 400 S00 600 708 of feature vector
Time (s)

2. Recursive connectivity constrained clustering (rCKC) for segmentation

3. Segmented traffic usage activity classification

HRF HRF
Em EEm) Em EEEEEEE ENN) SEEEEEE

Text Picture

4. Output: labeled traffic
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Time series feature extractlon
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Full feature set

» Packet length related features: basic statistics of packet lengths,
hopping count, length of longest monotone subsequences, size
percentiles, forward variances and backward variances.

» Packet time related features: basic statistics of adjacent packet time
Intervals, kurtosis, skewness.

» Traffic packet density (average number of packet second).

» Traffic speed (average packet size per second).

Advantages:
v" High in-app usage activity classification accuracy.

Disadvantages:

o Not completely independent feature elements.

o High latency due to complex feature extraction.

o Large memory requirement for high dimension feature vectors.
o Low impact on segmentation.
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Maximizing Inner activity similarity and Minimizing Different activity
similarity measurement (MIMD feature selection).

O Similarity of normalized feature vector of dimension N (Gaussian kernel)

N
SD(F,F) = ;,Z ~Fn=F)

Q Maximizing Inner activity S|m|Iar|ty

max TAS(A;F), IAS(a;;F) = ZSD (Ff 1, F7)
i k=1

O Minimizing Different activity similarity

min DAS(A # A';F), DAS(a;,d};F) = SDFES,FY)
O MIMD Objective:

max ®(IAS, DAS)), ®(IAS,DAS)=1AS — DAS
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1.0 :
MIMD feature selection:
» Recursive feature addition
© 0.8-
3 » Ahigh dimension feature
w - ;
e e provide high CV accuracy
B , but low MIMD score.
Q " ] |
B 6ad. sl b ] I > Dimension of optimal
g . ' | feature set from MIMD
S Eoew ! | . measurement is 6.
W 024 e-ias : :
.:ggu?g:sa ! | > Optimal feature set keeps a
ood—ownesal s L high CV accuracy (0.55%
0 5 10 15 20 25 30

lower than the highest
Feature Number value at dimension 25).
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Optimal feature set
Given a time window of N packets observation: {(t1, P1), ..., (ty, Pn)}

>

Percentile 25%: percentage of packets with length smaller than 25%

maximum packet length L, Pos = % N 6(Pi.l < 25% Lopgy)-

Percentile 75%: percentage of packets with length greater than 75%
maximum packet length L., P75 = %Z’i\’zl O(P;.l > 75% Lopgx)-

Top frequent continuous subsequence TCS: the highest repeating
frequency of packet subsequence of length 3.

. 1 N 2 1 N 2
Packet length variance var: var = " Q= Pi 19) — G Yz Pir D)
Traffic density: number of packets per second: TD = - Nt
N—t1
iy Pil

Traffic speed: average packet lengths per second: TD = p—
N—t1
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Traffic flow segmentation algorithm (rCKC)

Recursive Connectivity Constrained KMeans Clustering

Challenges:

« Time series segmentation problem-time continuity constraint
« Optimal number of single activity segment is unknown (undecided K)

Algorithm 1 rCKC(S = {w;,i=1,2,..., N},K)

Require: Input: {w;(F;;t;),i=1,2,...,N}
1: if TAS(S) > 6 then
2: output S ={w;,i=1,2,..,N; F(S)}
3: else )
4:  Imitial: CY = arg (p}lg{(v Zf:l DAS(cj,cjs1)

while C? # CP*! do
6: p — p+ 1 %next iteration
7: bP = a.rgn},%x TAS(S(wpp : wyn)):

; P

s =k YV w)
9: end while
10: for j=1: K do

a

11: rCKC(S;, K)
12:  end for
13: end if

Objective:

Group a sequence of time windows
{w; }I_, into single-activity segments
Recursive strategy:

1. Check input segment IAS—split input

segment or output as single-activity segment
for in-app usage activity classification.

2. Initial K segments by maximizing the
adjacent segment DAS.

3. lteratively optimize K — 1 split point as
sub-segment boundaries.

4. Each split sub-segment is fed into rCKC.
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Iterative feature vector update

Challenges:

* No enough cache space for large traffic flow from millions of users
 Fast packet processing with small and stable cache storage

Algorithm 2 Iteratively update feature and time window

Require: Two sets of temporary variable (initial 0):
tem=(N, Nas, Np, Ny, L, L, TCS)
tem’=(N', Nbg, Ny, Ni;, L', L2, TCS")

1: while Receive packet P do

2: if Pt — Ty < 7 then

3: Update(tem, P), Ty = P.i

4 if P.t—T, > A then

5: Update(tem’, P)

G: end if

7 else )

8: Nog = —7&1 N7s = var [ —;1'2
9: TCS = maXLeFCb FC.S(L)

10: TS—W TD—W Rpr—%r'u'
11: Store ftature 1\2r Nzs,var, TS, TD, Rp,
12: tem = tem’, tem’ =0, (pdate(t('m P), Ty=P.t
13:  end if

14: end while

Objective:
Construct time window feature vectors
online without the storage of raw packets.

Iterative strategy:

1. For each incoming Internet packet extract
packet information (¢, P., P. Pr), update two
sets of temporary variables tem, tem’.

2. tem variable is used for current time window
feature vector construction and tem’ for next
time window.

3. The packet is released after tem, tem’ update.
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Experimental Data

Table 2: Statistics of the WeChat Training data.
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Table 3: Statistics of the Whatsapp Training data.

# | Usage Type | Records | Packets | Traffic Tra/min # | Usage Type | Records | Packets | Traffic | Tra/min
1 | audio 136 44K 23.53M 208K 1 | audio 176 72K 26.62M | 436K
2 | location 112 119K 31.79M | 348K 2 | picture 197 178K 141.5M | 2.26M
3 | picture 100 132K 103.2M | 986K 3 | call 194 143K 21.64M | 287K
4 | sight 63 163K 141.11M | 1.33M 4 | text 202 34K 3.22M 42K
5 | video call 100 1.170K | 239.76M | 2.17M 5 | video 173 483K 472M 11.06M
6 | moment 67 K L1SM | 50K 6 | location 80 11.52K | 8.03M | 47.77K
7 | text 229 30K 4.5M 32K
8 | voice call 105 265K 32.54 758K

Table 4: Statistics of the Facebook Training data. Table 2, 3, 4 show the basic statistics of

our collected single activity traffic data.

# | Usage Type | Records | Packets | Traffic | Tra/min
1 | moment 101 40K 21.65M | 607K
2:. | daoup 7 21K 1 6.56M | 238K n gddition, we collect two-activity
3 | video watch | 108 1,216K | 1,326M | 42M . . ; ;
4 | picture 97 57K 51M so6m  traffic data with the time duration of
O« | sewndce: | TR UK [ SHM [1M __ each segment ranging from 5s to 120s.
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Study of Traffic Flow Classifier

Proposed Classifier:
Random Forest with VoIP-no\olIP traffic filtering. (HRF)

Baselines:
Random Forest; Support Vector Classifier; K-Nearest
Neighbors Classifier; Gaussian Naive Bayesian Classifier.

Evaluation Metrics:
Overall accuracy, Precision, Recall, F-Measure.
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Study of Traffic Flow Analyzer

Proposed Analyzer:
rCKC traffic flow segmentation + HRF segmented traffic classifier

Baselines:

AC + RF: Agglomerative Connectivity Constrained Clustering + RF
CUMMA: Adjacent packet merging strategy + RF

SW+REF: Sliding window based segmentation + RF.

Evaluation Metrics: - i 3

! _ : TDA = o > Z S(as — as)T(SNS)

TDA: traffic duration accuracy. S &

TVA: traffic volume accuracy.  1va 3" d(as - as)V(S N S
S g

V(TF)
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Wechat Performance Comparison
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Figure 4: Performance Comparison of Wechat
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Whatsapp Performance Comparison
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Wechat Two-activity Test
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Online test
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An online mobile app traffic analyzer for classifying
encrypted mobile app Internet traffic into different types

of service usages.

» MIMD Internet packet time series feature selection criteria.
» rCKC Internet packet time series segmentation algorithm.
» VoIP-noVoIP filtered RF classifier for segmented traffic.
» Online iterative feature vector update strategy.

» Real world mobile Internet traffic of most popular Apps:
Wechat, Whatsapp and Facebook



