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Feature Selection as An Exploration Process

Feature selection: An iterative exploration process to find
an optimal / near optimal subset of features
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Reinforcement Learning as A Tool of %’

Exploration ”
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o Reinforcement learning: exploration + exploitation
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Automated Feature Subspace Exploration %’
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Feature Selection as A Multi-Agent

Reinforcement Learning Task (1) "
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Feature Selection as A Multi-Agent %
Reinforcement Learning Task (2)
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Feature Selection as A Multi-Agent

Reinforcement Learning Task (3) °
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Feature Selection as A Multi-Agent %,

Reinforcement Learning Task (4) "
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Feature Selection as A Multi-Agent

Reinforcement Learning Task (5)
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Feature Selection as A Multi-Agent

Reinforcement Learning Task (6)
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Participating & Non-participating Agents B%

For the current ky, iteration

Participating feature agents:
Select action (ky, iteration ) & Select action((k-1)y, iteration)
Select action (ky, iteration ) & Deselect action((k-1),, iteration)
Deselect action (ky, iteration) & Select action((k-1),, iteration)
Non-participating agents:

Deselect action (ky, iteration ) & Deselect action((k-1),;, iteration)
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Reward Assignment Strategy
16

o Participating agents

Equally share the overall reward.
0 non-participating agents:
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Three State Representation Methods U%

Meta descriptive statistics.
Auto-encoder based representation.

Dynamic-graph based Graph Convolutional
Network(GCN).



Meta Descriptive Statistics

Selected Feature Matrix

Descriptive Statistics Matrix

Meta Descriptive Statistics Matrix
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Step 1: Draw statistics column-wisely.
Step 2: Draw statistics row-wisely.
Step 3: Expand the statistics matrix.




Auto-Encoder Based Representation %
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Selected Feature Matrix

Latent Matrix Static Encoded Matrix State Vector
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Step 1: Encode column-wisely.
Step 2: Encode row-wisely.

Step 3: Expand the encoded matrix.



Dynamic-Graph Based GCN
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Selected Feature Matrix
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Step 1: Draw a fully-connected graph.
Step 2: Update each node’s representation.

Step 3: Aggregate all nodes’ representations.
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GMM Based Sampling for Acceleration

G-

o Improve quality of training data in Experience Replay.

—
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Conventional sampling strategy.
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GMM based sampling strategy.



Summary
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Experimental Setup Uk_%‘?

Experimental Data

The experiments are carried on a publicly available dataset with
15120 samples and 54 features.

https://www.kaggle.com/c/forest-cover-type-prediction/data.
Predictive Task
The task is to classify the forest cover types into 7 classes.

Experimental Questions

Can our study improve feature selection performance?

How do different reward quantification methods impact the
performance of our method?

How do different state representation methods impact the
performance of our method?

Can GMM sampling strategy improve exploration efficiency?



Performances over Different Classifiers and

Feature Selectors

Predictors

RF |LASSO| DT | SVM | XGBoost

K-Best 0.7943 | 0.8246 | 0.8125 | 0.8324 | 0.8076

o | MRMR | 0.8042 | 0.8124 | 0.8096 | 0.8175 | 0.8239
g LASSO | 0.8426 | 0.8513 | 0.8241 | 0.8131 | 0.8434
'g RFE 0.8213 | 0.8236 | 0.8453 | 0.8257 | 0.8348
201 GFS 0.8423 | 0.8318 | 0.8350 | 0.8346 | 0.8302
< SARLES | 0.8321 | 0.8295 | 0.8401 | 0.8427 | 0.8450
MARLEFS | 0.8690 | 0.8424 | 0.8583 | 0.8542 | 0.8731

Our method: MARLFS.
For the accuracies, the higher, the better.

K-Best
Selection, mRMR,
LASSO, Recursive
Feature
Elimination (RFE),
Genetic Feature
Selection (GFS)
and Single-Agent
Reinforcement
Learning Feature

Selection
(SARLFS).

overall accuracy
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Recall @ Class

Performances over Different Reward Functions
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Performances over Different State
Representation Methods
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Performance over Different GMM
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Conclusions

Understandings
Feature selection is a space exploration process.

Feature selection can be improved by multi-agent
reinforcement learning framework.

Techniques
We propose three state representation methods.
We propose GMM-based sampling strategy.

We design reward quantification and assignment.
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