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Feature Selection as An Exploration Process
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Feature selection: An iterative exploration process to find
an optimal / near optimal subset of features
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Reinforcement Learning as A Tool of
Exploration

¨ Reinforcement learning: exploration + exploitation

¨ Applications
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Traffic light control via RL Taxi fleet management via RL



Automated Feature Subspace Exploration

Inspiration: Can reinforcement learning help to
solve/improve feature selection?
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Question 1 of 4
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How can we reformulate the feature
selection problem into a reinforcement

learning task?
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Feature Selection as A Multi-Agent
Reinforcement Learning Task (1)
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Agent: Each
feature is
controlled by a
corresponding
feature agent.
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Feature Selection as A Multi-Agent
Reinforcement Learning Task (2)
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Action: Select
or deselect the
corresponding
feature.
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Feature Selection as A Multi-Agent
Reinforcement Learning Task (3)
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Environment: 
Feature subset
space: {{f4},
{f1,f2},
{f1,f3,f5}…}.
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Feature Selection as A Multi-Agent
Reinforcement Learning Task (4)
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State: 
Representation
of selected
feature subset.
E.g.,
S({f1,f3,f5}).
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Feature Selection as A Multi-Agent
Reinforcement Learning Task (5)
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Overall Reward: 
Weighted sum
of prediction
accuracy,
redundancy
and relevance
of selected
feature subset.
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Feature Selection as A Multi-Agent
Reinforcement Learning Task (6)
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Reward
Scheme: Assign
overall reward
to each agent.



Question 2 of 4
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How can we design the assignment strategy?



Participating & Non-participating Agents
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¨ For the current kth iteration
¨ Participating feature agents:

o Select action (kth iteration) & Select action((k-1)th iteration)
o Select action (kth iteration) & Deselect action((k-1)th iteration)
o Deselect action (kth iteration) & Select action((k-1)th iteration)

¨ Non-participating agents:
o Deselect action (kth iteration) & Deselect action((k-1)th iteration)
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Reward Assignment Strategy

¨ Participating agents
o Equally share the overall reward.

¨ non-participating agents:
o 0 reward.
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Question 3 of 4
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How can we better quantify the state
representation?



Three State Representation Methods

Ø Meta descriptive statistics.
Ø Auto-encoder based representation. 
Ø Dynamic-graph based Graph Convolutional 

Network(GCN).

18



Meta Descriptive Statistics
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Step 1: Draw statistics column-wisely.
Step 2: Draw statistics row-wisely.
Step 3: Expand the statistics matrix.
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Auto-Encoder Based Representation
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Dynamic-Graph Based GCN
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Step 1: Draw a fully-connected graph.
Step 2: Update each node’s representation.
Step 3: Aggregate all nodes’ representations.



Question 4 of 4
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How can we improve the training
efficiency of DQN in MARL?



GMM Based Sampling for Acceleration

¨ Improve quality of training data in Experience Replay.
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GMM based sampling strategy.
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Summary
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Experimental Setup

¨ Experimental Data
o The experiments are carried on a publicly available dataset with 

15120 samples and 54 features. 
o https://www.kaggle.com/c/forest-cover-type-prediction/data.

¨ Predictive Task
o The task is to classify the forest cover types into 7 classes.

¨ Experimental Questions
o Can our study improve feature selection performance?
o How do different reward quantification methods impact the

performance of our method?
o How do different state representation methods impact the

performance of our method?
o Can GMM sampling strategy improve exploration efficiency?
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Performances over Different Classifiers and
Feature Selectors
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Our method: MARLFS.
For the accuracies, the higher, the better.

Baselines: K-Best 
Selection, mRMR, 
LASSO, Recursive 
Feature 
Elimination (RFE), 
Genetic Feature 
Selection (GFS) 
and Single-Agent 
Reinforcement 
Learning Feature 
Selection 
(SARLFS). 
Evaluation Metrics: 
overall accuracy



Performances over Different Reward Functions
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Performances over Different State
Representation Methods
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Performance over Different GMM 
Sampling Strategies
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Conclusions

¨ Understandings
o Feature selection is a space exploration process.
o Feature selection can be improved by multi-agent

reinforcement learning framework.
¨ Techniques

o We propose three state representation methods.
o We propose GMM-based sampling strategy.
o We design reward quantification and assignment.
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Thank you!
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