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Preface  

Service-Oriented Computing (SOC), web software development, cloud computing, big data processing, and 

artificial intelligence represent the modern software engineering theories, practices, and technologies, 

which have reshaped the world in all aspects. The amount of the data is not the key. The relationship among 

all data and the meaning behind the data are the key. Efficiently finding the connections of all related data 

and using these connections to make intelligent decisions become possible after the maturity of these 

cutting-edge theories, practices, and technologies. The goals of the book are to introduce and exercise these 

cutting-edge theories, practices, and technologies through lectures and assignments based on the lectures. 

The text takes a comprehensive and coherent approach to studying the latest service-oriented architecture, 

distributed computing paradigm, and distributed software development and system integration technologies. 

The goal is to learn the concepts, principles, methods, development frameworks, and their applications. The 

methodology is learning by developing examples. In the service development part, we assume that students 

have good knowledge in object-oriented computing, such as C++, C#, Java, or Python. Students learn to 

build services through class definition, interface specification, the association between class methods and 

service operations, service deployment, and service hosting. In the system integration part, we assume that 

students have a basic understanding of software architecture through a general software engineering course. 

We take an architecture-driven approach to help students create the working solution step-by-step from 

their architecture design. The first step is to design the architecture, which includes the major components 

and the interconnection. The next step is to define the interfaces among the components using the standard 

data types. Finally, the behavior of each component is linked to remote services or local objects. The 

elaborated architecture is automatically translated into the executable. 

The text consists of 12 chapters and 3 appendices. They are organized into three parts. Each part can be 

taught as a separate course, even though they are intrinsically related to the central goals and objectives of 

the book. 

Part I: Distributed Service-Oriented Software Development and Web Data Management 

Chapter 1 Introduction to Distributed Service-Oriented Computing 

Chapter 2  Distributed Computing with Multithreading  

Chapter 3 Essentials in Service-Oriented Software Development 

Chapter 4 XML and Web Data Formats 

Chapter 5 Web Application and State Management 

Chapter 6 Dependability of Service-Oriented Software 

 

Part II: Advanced Service-Oriented Computing and System Integration 

Chapter 7 Advanced Services and Architecture-Driven Application Development 

Chapter 8 Enterprise Software Development and Integration 

Chapter 9 IoT, Robotics, and Device Integration via Visual Programming 

Chapter 10 Interfacing Service-Oriented Software with Databases 

Chapter 11  Big Data Processing and Cloud Computing 



xiv 

Chapter 12  Artificial Intelligence and Machine Learning 

 

Part III: Appendices: Tutorials on Service-Oriented System Development 

Appendix A Web Application Development 

Appendix B Visual IoT/Robotics Programming Language Environment 

Appendix C ASU Repository of Services and Applications 

Part I includes the first six chapters, which can be used for a distributed computing, service-oriented 

computing, or web software development course at the junior, senior or graduate level of universities. This 

part emphasizes the computing paradigm, data representation, state management, and programming 

languages based SOC software development. It introduces fundamental concepts and principles, in addition 

to technologies and tools, which are not being taught in traditional software engineering courses. 

Chapter 1 gives an overview and explains fundamental concepts of distributed software architecture, design 

patterns, distributed computing, service-oriented architecture, and enterprise software architecture. The 

connections and distinctions between object orientation and service orientation are discussed in detail. 

Chapter 2 studies parallel computing in multithreading. It discusses threading, synchronization, 

coordination, event-driven programming, and performance of parallel computing under multicore 

computers. 

Chapter 3 introduces the essential concepts and techniques in service-oriented architecture, particularly the 

three-party model of service-oriented software development: Service providers, service brokers, and service 

consumers. Service interfaces, service communication protocols, and service hosting are keys for 

supporting this new computing paradigm.  

Chapter 4 discusses XML and related technologies, which are used almost everywhere in service-oriented 

software development. XML is used for representing data, interface, standards, protocols, and even the 

execution process definition. This chapter studies not only XML representations, but also XML processing 

and transforming. 

Chapter 5 is a longer chapter and comprises application logic, data and state management, and presentation 

design. It involves application building based on architecture design using existing services and components, 

stateful web application development using different state management techniques, including view state, 

session state, application state, file management, and web caching. At the presentation layer, it discusses 

dynamic graphics generation, animation, and phone app development. 

Chapter 6 deals with the dependability issues in web-based applications, including access control through 

Forms security, encryption and decryption applications, and Secure Sockets Layer in web communication. 

The chapter also discusses the reliability issues in web application design and particularly in web 

communication. 

Part II includes the next six chapters. These chapters are built on the basic concepts and principles discussed 

in Part I, yet they do not rely on the details of the first six chapters. This part emphasizes software and 

system composition and integration using existing services and components. It is based on an architecture-

driven approach, workflow, higher-level data management, and message-based integration. The material is 

good for an advanced software engineering, software integration, or system integration course at the senior 

or graduate level of universities. 

Chapter 7 starts with reviewing service-oriented computing and service development covered in Part I. 

Then the chapter moves on to discuss more advanced service development that supports self-hosting and 

asynchronous communications. It also presents more detail in RESTful service development that has been 
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briefly discussed in Part I, as well microservices. Finally, the chapter moves on to advanced web application 

development in HTML5, MVC, and .Net Core architecture development. 

Chapter 8 starts with workflow-based software development and Workflow Foundation that supports 

architecture-driven software development. It uses examples and case studies to demonstrate software 

development by drawing the flowchart consisting of blocks of services and local components, adding 

inputs/outputs to the blocks, and then compiling the flowchart into executables. The chapter further 

discusses flowchart-based and architecture-driven software development by using other process languages 

and development environments. It first discusses BPEL (Business Process Execution Language) and BPEL-

based development environments. Then the discussion is extended into message-based software integration 

and Enterprise Service Bus tools for integrating web contents. 

Chapter 9 extends web-based computing to Internet of Things (IoT) and Robot as a Service (RaaS). As an 

example, robotics applications are studied in detail, using the service-oriented Visual IoT/Robotics 

Programming Language Environment (VIPLE) developed at Arizona State University. Full programming 

examples in VIPLE and hardware platform supported are discussed. 

Chapter 10 covers service-oriented database management, which focuses on the interface between service-

oriented software and relational databases, XML databases, and LINQ (Language Integrated Query), and 

using LINQ to access object, relational, and XML databases.  

Chapter 11 studies the cutting-edge topics in big data and cloud computing. It discusses major issues in big 

data, including big data infrastructure, big data management, big data analytics, and big data applications. 

Hadoop and VIPLE are used for illustrating automated data splitting and parallel computing. The 

relationship between big data and cloud computing is discussed. Finally, the chapter presents cloud 

computing and its main layers: Software as a Service, Platform as a Service, and Infrastructure as a Service. 

As examples, cloud platforms from Amazon Web Services, Google, IBM, Microsoft, and Oracle are 

discussed. 

Chapter 12 presents the latest artificial intelligence, machine learning, and ontology theories and 

technologies. The latest generation of artificial intelligence is based on big data analysis and processing. 

This chapter presents its development, main concepts, and examples of developing machine-learning 

programs. Ontology is presented as a part of knowledge representation for big data processing and artificial 

intelligence applications. 

Part III consists of three appendices that supplement and support the main contents on web application 

development and IoT/robotics application development.  

Appendices A and B contain tutorial-based materials that provide stepwise instructions, without missing 

pieces, to build working applications from scratch. These tutorials and exercises can help students to learn 

concepts by examples. This part, in conjunction with parts of Chapter 3 and Chapter 9, can also be used for 

a freshman level course to introduce computing concepts through basic web application development and 

robotics programming.  

Appendix C is the entrance to ASU Repository of Services and Applications. It lists and explains some of 

the deployed examples and URLs of SOAP services, RESTful services, web applications, and other 

resources used in this text. Free services found on the Internet come and go without any guarantee on quality 

of service. The repository provides a stable resource for teaching from this book without worrying about 

the availability and performance of the free services found on the Internet. ASU Repository of Services and 

Applications is open to the public and can be accessed at:  

http://neptune.fulton.ad.asu.edu/WSRepository/ 

Updates are carried out throughout the book, and major revisions have focused on several chapters in this 

edition. The programming examples using the early editions of Visual Studio programming environment 
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are updated to Visual Studio 2019 edition. The links to external services have been checked and updated 

where applicable. 

In this edition, Chapter 7 is significantly extended. Microservices are included, and the advanced web 

application architecture is extended to HTML5 and Core MVC architecture. Workflow-based application 

development and Workflow Foundation are moved from Chapter 7 to Chapter 8, forming a stronger 

composition and integration-oriented enterprise application development chapter. 

Major revisions are made in Chapter 9. The latest VIPLE version is incorporated, and new functions and 

examples are added. For example, CodeActivity–Python and TORCS autonomous driving simulation are 

included in this edition. 

In Chapter 10, a section on installing a database and using SQL Server Management Studio to create local 

SQL database projects are added. 

Major revisions and extensions are done to Chapter 11, resulting in its splitting into two chapters in this 

edition. The new Chapter 11 keeps big data processing and cloud computing contents, while the new 

Chapter 12 focuses on artificial intelligence, machine learning, and ontology. VIPLE simulation is used for 

illustrating automated parallel computing principles in big data processing. New case studies, on a guide 

dog project and on flight data collection, training, and flight path recognition are added to Chapter 12. 

The book embraces extensive contents. It can be used in multiple courses. At Arizona State University, we 

use the book as the text for two major required courses. The first course is CSE445/598 (Distributed 

Software Development), where the CSE445 session is for juniors and seniors, while the CSE598 session is 

for graduate students. The course started in Fall 2006, and first edition of the book was developed for this 

course in 2008. The first six chapters in Part I of this text are used for this course. 

A second course CSE446/598 (Software Integration and Engineering) was piloted in 2010 and 2011, and 

the course became a regular course in 2012. The six chapters in Part II of this text is used for this course. 

Both CSE445 and CSE446 are required courses of the Software Engineering Concentration in the Computer 

Science program at Arizona State University. 

The following table illustrates the lectures of CSE445/598 and CSE446/598. Each lecture is 75-min long 

and counts as 1.5 lecture hours. Each course is completed in about 44 lecture hours. 

The first course focuses on distributed software development, including multithreading programming, 

event-driven programming, Web data representation, service development, and application building using 

programming languages as the composition language. Both C# and Java are used in the development. The 

course objectives and outcomes of ASU CSE445/598 are as follows: 

1. To develop an understanding of the software engineering of programs using concurrency and 

synchronization. 

• The student can identify the application, advantages and disadvantages of concurrency, 

threads, and synchronization.  

• The student can apply design principles for concurrency and synchronization.  

• The student can design and write programs demonstrating the use of concurrency, 

threads, and synchronization.  

2. To develop an understanding of the development of distributed software. 

• The student can recognize alternative distributed computing paradigms and technologies.  

• The student can identify the phases and deliverables of the software life cycle in the 

development of distributed software.  

• The student can create the required deliverables in the development of distributed 

software in each phase of a software life cycle.  
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• The student understands the security and reliability attributes of distributed applications. 

3. To develop an ability to design and publish services as building blocks of service-oriented 

applications.  

• The student understands the role of service publication and service directories 

• The student can identify available services in service registries.  

• The student can design services in a programming language and publish services for the 

public to use.  

4. To build skills in using a current technology for developing distributed systems and applications. 

• The student can develop distributed programs using the current technology and standards.  

• The student can use the current framework to develop programs and web applications 

using graphical user interfaces, remote services, and workflow. 

 

CSE445/598 Lecture by Lecture Contents CSE446/598 Lecture by Lecture Contents 
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The second course focuses on software and system integration using workflow languages and cutting-edge 

topics in software and system development. The course objectives and outcomes of ASU CSE446/598 are 

as follows: 

1. To understand software architecture and software process.  

• Students understand the requirement and specification process in problem solving. 

• Students understand software life cycle and process management 

• Students can identify advantages and disadvantages of software architectures and their 

trade-offs in different applications.  

2. To understand and apply composition approach in software development. 

• Students can apply software architecture to guide software development in the problem-

solving process. 

• Students understand interface requirement of software services. 

• Students can compose software based on interfaces of services and components.  

• Students can develop software system using different composition methods and tools. 

3. To understand and apply data and information integration in software development. 

• Students can compose software systems using different data resources in different data 

formats. 

• Students can integrate application logic with different databases. 

• Students can apply the entire software life cycle to develop working software systems.  

We recommend teaching the two courses in a sequence. However, the two courses can be taught 

independently without making one to be the prerequisite of the other. In this case, the basic concepts and 

principles from Part I, including those from a part of Chapter 1 and the first section of Chapter 4, should be 

reviewed or be assigned as reading materials for preparing the course using Part II. It is also sensible to 

choose a few topics from Part I and Part II to teach one course from the book. For example, Chapters 1, 3, 

5, and 8 can form a good service-oriented computing course. Chapter 9 and Appendix B can be used for a 

computational thinking-based robotics course for students who do not have much programming language 

background. 

We like to thank my colleagues at Arizona State University in preparing this book and related courses. Prof. 

Wei-Tek Tsai has taught CSE445/598. He was a coauthor of the book’s first five editions. Dr. Janaka 

Balasooriya has been teaching CSE445/598 for several semesters and has constantly provided feedback and 

suggestions for improving the contents of the course and the book. Prof. Yann-Hang Lee contributed to the 

course contents related to IoT and robotics development. Prof. Hessam Sarjoughian and Prof. Stephen Yau 

contributed to the development of CSE445/598 and CSE446/598 courses. Many of our sponsors, colleagues, 

cooperators, and students have been involved in this project, including Prof. Xiaoying Bai of Tsinghua 

University, Prof. Farokh Bastani of University of Texas at Dallas, Dr. J. Y. Chung of IBM, Prof. Zhongshi 

He of Chongqing University, Prof. Mei Hong of Beijing Institute of Technology, Prof. Yingxu Lai of 

Beijing University of Technology, Prof. Yinsheng Li of Fudan University, Prof. Zhongtao Li of University 

of Jinan, Prof. K. J. Lin of University of California at Irvine, Mr. John Oliver of Intel, Dr. Raymond Paul 

of DoD OSD NII, Profs. Qian Wang and Yongkang Xing of Chongqing University, Profs. Ruzhi Xu and 

Zhizheng Zhou of Qilu University of Technology, and Prof. I-Ling Yen of University of Texas at Dallas. 

They contributed to our understanding of the materials. We also acknowledge the generous support from 

Intel, the US Department of Education, the US Department of Defense, and the National Science 

Foundation. Without their support, this book would not be possible. We also thank the teaching assistants 

and research assistants at Arizona State University, including Calvin Cheng, Gennaro De Luca, Jay Elston, 

Qian Huang, Adam Lew, Wu Li, Gavin Liu, Mengxue Liu, Sami Mian, Xin Sun, Jingjing Xu, Xinyu Zhou, 

Thomas Zelpha, and Peide Zhong. Gennaro De Luca is the main developer of the VIPLE environment. 

They implemented and validated many of the examples and assignments used in the book. Finally, we 

would like to thank our families for their support and understanding of taking on such a project while 

carrying out a full research and teaching load at the university. 
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Note for Instructors 

All the assignments and projects have been classroom-tested at Arizona State University for many years. 

Furthermore, all the code presented in this book has been developed and tested. Contact the authors if you 

are interested in obtaining more materials in this book. Instructor-only resources, such as complete 

presentation slides, assignments, and tests, can be obtained by directly contacting the authors at 

yinong@asu.edu. 
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Chapter 1 

Introduction to Distributed Service-Oriented 

Computing  

This chapter introduces computer architecture, different computing paradigms, and particularly, the 

distributed computing paradigm and Service-Oriented Computing (SOC) paradigm. 

1.1 Computer Architecture and Computing Paradigms 

Software architectures and distributed software development are related to the computer system 

architectures on which the software is executed. This section introduces the computer architectures and 

various computing paradigms. 

1.1.1 Computer Architecture 

The computer architecture for a single-processor computer often refers to the processor architecture, which 

is the interface between software and hardware or the instruction architecture of the processor (Patterson 

2004). For a computer with multi-processors, the architecture often refers to the instruction and data streams. 

Flynn’s Taxonomy (Flynn 1972) categorized computer architecture into four types:  

1. Single Instruction stream and Single Data stream (SISD), which refers to the simple processor 

systems;  

2. Single Instruction stream and Multiple Data streams (SIMD); for example, the vector or array 

computers;  

3. Multiple Instruction streams and Single Data stream (MISD); for example, fault-tolerant computer 

systems that perform redundant computing on the same data stream and voting on the results; 

4. Multiple Instruction streams and Multiple Data streams (MIMD), which refers to the systems 

consisting standalone computer systems with their own memory and control, ALU, and I/O units.  

The MIMD systems are often considered distributed systems, which have different areas of concerns, as 

shown in Figure 1.1. Distributed computing is about the principles, methods, and techniques of expressing 

computation in a parallel and/or distributed manner. Distributed software architecture concerns 

organization and interfacing among the software components. Network architecture studies the topology 

and connectivity of network nodes. Network communication deals with the layers of protocols that allow 

the nodes to communicate with each other and understand the data formats of each other. Some studies use 

operating systems to differentiate distributed systems and networks. Distributed systems have coherent 

operating systems, while a set of network nodes has independent operating systems. 
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Figure 1.1. Distributed systems and networks 

1.1.2 Software Architecture 

The software architecture of a program or computing system is the structure, which comprises software 

components, the externally visible properties of those components, and the relationships between them 

(Bass 2003). The design of software architecture does not mean to develop the operational software. Instead, 

it can be considered a conceptual model of the software, which is one of the development steps enabling a 

software engineer to:  

• analyze the effectiveness of the design in meeting its stated requirements; 

• consider architectural alternatives at a stage when making design changes is still relatively easy; 

• define the interfaces between the components;  

• reduce the risks associated with the construction of the software. 

It is important to design software architecture before designing the algorithm and implementing the 

software, because software architecture enables the communication between all parties (stakeholders) 

interested in the development of a computer-based system. The service-oriented architecture (SOA), which 

is a main topic of the book, explicitly involves three parties—service providers, service brokers, and service 

requesters—in the software architecture design, while each party conducts its algorithmic design and coding 

independently. 

The software architecture highlights early design decisions that will have a profound impact on all software 

engineering work that follows and on the ultimate success of the system as an operational entity. 

1.1.3 Computing Paradigms 

Numerous programming languages have been developed in history, but only several thousands of them are 

actually in use. Compared to natural languages that were developed and evolved independently, 

programming languages are far more similar to each other. They are similar to each other because of the 

following reasons. They share the same mathematical foundation (e.g., Boolean algebra, logic). They 

provide similar functionality (e.g., arithmetic, logic operations, and text processing). They are based on the 

same kind of hardware and instruction sets. They have common design goals: to find languages that make 

it simple for humans to use and efficient for hardware to execute. The designers of programming languages 

share their design experiences. 
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Some programming languages, however, are more similar to each other, although some other programming 

languages are more different from each other. Based on their similarities or the paradigms, programming 

languages can be divided into different classes. In programming language’s definition, paradigm is a set 

of basic principles, concepts, and methods of how computation or algorithm is expressed. The major 

paradigms include imperative, OO, functional, logic, distributed, and SOC. 

The imperative, also called the procedural, computing paradigm expresses computation by fully specified 

and fully controlled manipulation of named data in a step-wise fashion. In other words, data or values are 

initially stored in variables (memory locations), taken out of (read from) memory, manipulated in ALU 

(arithmetic logic unit), and then stored back in the same or different variables (memory locations). Finally, 

the values of variables are sent to the I/O devices as output. The foundation of imperative languages is the 

stored program concept-based computer hardware organization and architecture (von Neumann machine) 

(see for example http://en.wikipedia.org/wiki/Von_Neumann_machine). Typical imperative programming 

languages include all assembly languages and earlier high-level languages like FORTRAN, Algol, Ada, 

Pascal, and C. 

The object-oriented computing paradigm is the same as the imperative paradigm, except that related 

variables and operations on variables are organized into classes of objects. The access privileges of 

variables and methods (operations) in objects can be defined to reduce (simplify) the interaction among 

objects. Objects are considered the main building blocks of programs, which support the language features 

like inheritance, class hierarchy, and polymorphism. Typical OO programming languages include Smalltalk, 

C++, Java, and C#. 

The functional, also called the applicative, computing paradigm expresses computation in terms of 

mathematical functions. Since we have been expressing computation in mathematical functions in many of 

the mathematical courses, functional programming is supposed to be easy to understand and simple to use. 

However, since functional programming is rather different from imperative or OO programming, and 

because most programmers first get used to writing programs in imperative or OO paradigm, it becomes 

difficult to switch to functional programming. The main difference is that there is no concept of memory 

locations in functional programming languages. Each function will take a number of values as input 

(parameters) and produce a single return value (output of the function). The return value cannot be stored 

for later use. It must be used either as the final output or used immediately as the parameter value of another 

function. Functional programming is about defining functions and organizing the return values of one or 

more functions as the parameters of another function. Functional programming languages are mainly based 

on the lambda-calculus. Typical functional programming languages include ML, SML, and Lisp/Scheme. 

The logic, also called the declarative, computing paradigm expresses computation in terms of logic 

predicates. A logic program is a set of facts, rules, and questions. The execution process of a logic program 

is to compare a question to each fact and rule in the given fact and rulebase. If the question finds a match, 

then we receive a yes-answer to the question. Otherwise, we receive a no-answer to the question. Logic 

programming is about finding facts, defining rules based on the facts, and writing questions to express the 

problems we wish to solve. Prolog is the only significant logic programming language.  

All these computing paradigms support both “programming-in-the-small” and “programming- in-the-large.” 

The former emphasizes the development of program components or modules using basic programming 

constructs such as sequential, conditional branching, and looping constructs. The latter emphasizes 

developing large applications. Large applications often require more people and effort, and they are used 

in critical applications such as banking, e-business, embedded systems, and e-government. 

Another important paradigm is component-based computing. This paradigm emphasizes composing large 

applications based on preprogrammed components or modules. Components or modules are often 

precompiled program units, and they are linked into the application prior to the execution. Conceptually, 

component-based computing is not new. OO computing is widely considered component-based computing, 

where each class or object is a component. A namespace (a group of classes) can also be considered a 
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component. However, both of these views are tightly coupled with the specific definition of a “class.” 

Component-based computing can have a broader meaning, which allows any unit or module to be 

considered a component, and thus, can be considered a distinct paradigm different from OO computing. A 

component can be as small as an object and can be as large as an application, and a component is often well 

encapsulated. Thus, for some, SOC is really component-based computing, as services can be components. 

In their minds, SOC is essentially component-based computing but each component is specified using open 

standards.  

Distributed computing involves computation executed on more than one logical or physical processor or 

computer. These units cooperate and communicate with each other to complete an integral application. The 

computation units can be functions (methods) in the component, components, or application programs. The 

main issues to be addressed in the distributed computing paradigms are concurrency, concurrent computing, 

resource sharing, synchronization, messaging, and communication among distributed units. Different levels 

of distribution lead to different variations. Multithreading is a common distributed computing technique 

that allows different functions in the same software to be executed concurrently. If the distributed units are 

at the object level, this is distributed OO computing. Some well-known distributed OO computing 

frameworks are CORBA (Common Object Request Broker Architecture) developed by OMG (Object 

Management Group) and Distributed Component Object Model (DCOM) developed Microsoft. 

Service-oriented computing (SOC) is another distributed computing paradigm. SOC differs from 

distributed OO computing in several ways: 

• SOC emphasizes distributed services (with possibly service data) rather than distributed objects; 

• SOC explicitly separates development duties and software into service provision, service brokerage, 

and application building through service consumption; 

• SOC supports reusable services in (public or private) repositories for matching, discovery, and 

(remote or local) access; 

• In SOC, services communicate through open standards and protocols that are platform independent 

and vendor independent. 

Figure 1.2 summarizes the features of different computing paradigms. 

It is worthwhile noting that many languages belong to multiple computing paradigms; for example, C++ is 

an OO programming language. However, C++ also includes almost every feature of C. Thus, C++ is also 

an imperative programming language, and we can use C++ to write C programs.  

Java is more an OO language, that is, the design of the language puts more emphasis on the object 

orientation. However, it still includes many imperative features; for example, Java’s primitive type 

variables use value semantics and do not obtain memory from the language heap.  

Lisp contains many nonfunctional features. Lisp and Scheme are functional programming languages, but 

they also contain many nonfunctional features such as sequential processing when input and output are 

involved.  

Prolog is a logic programming language, but its arithmetic operations use the imperative approach.  

In summary, these computing paradigms often overlap with each other; for example, OO computing 

languages are often imperative programming languages, and SOC languages such as C# and Java are OO 

programming languages. Thus, a single programming language can be used to write programs in different 

computing paradigms. See (Chen 2006) for an introduction to these computing paradigms using C, C++, 

Scheme, and Prolog.  
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1.2 Distributed Computing and Distributed Software Architecture 

In distributed computing, computation is distributed over multiple computing units (processors or 

computers), rather than confined to a single computing unit. Virtually all large computing systems now are 

distributed, as the multi-core processor design is introduced. 

 

Figure 1.2. Features of different computing paradigms. 

1.2.1 Distributed Computing 

Software architecture describes the system structure and functionality allocation over a number of logical 

or physical computing units. Having the right architecture for an application is essential to achieve the 

desired quality of service. 

Distributed computing often has to deal with multiple dimensions of challenges, including complexity, 

communication and connectivity, security and reliability, manageability, and unpredictability and 

nondeterministic behaviors. These challenges are well expressed in the following eight fallacies of 

distributed computing, proposed by Sun Microsystems fellows   

(http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing): 
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3. Bandwidth is infinite.  

4. The network is secure.  

5. Topology does not change.  

6. There is one administrator.  

7. Transport cost is zero.  

8. The network is homogeneous 

The first four fallacies, called the fallacies of networked computing, were proposed by Bill Joy and Tom 

Lyon in 1991. Peter Deutsch added the next three, which are often referred to as Deutsch’s seven fallacies. 

James Gosling added the eighth fallacy in 1997.  

1.2.2 N-Tier Architecture 

Similar to the OSI seven-layer network architecture, distributed software architecture often has a layered 

structure, in which components are organized in layers and refers to N-Tier Architecture; for example, 

complex business software can be organized in the following five-tier model: 

1. Presentation tier: The layout of the Graphical User Interface (GUI); 

2. Implementation of the presentation tier: Program the GUI in certain programming language; 

3. Business logic tier: Implementation of the business objects, rules, and policies; 

4. Data access tier: Interfaces from the business logic to the databases; 

5. Data tier: Databases. 

The tiered design is well suited for distributed computing, with one tier or a number of adjacent tiers 

residing on one node of the distributed system. Another advantage is the flexibility in maintaining the 

system; the tiers can be modified relatively independently; for example, if tier 2, the implementation of the 

presentation, needs to be changed, none of the other tiers needs to be changed from the logic point of view. 

The user can still use the same interfaces and the business logic can remain unchanged. From the 

programming point of view, the tier above may need to be changed if different user interfaces are offered 

at the modified tier. 

Two-tier architecture and three-tier architecture are the most widely used distributed architecture. In the 

two-tier architecture, also known as client-server architecture, the application is modeled as a set of 

services that are provided by servers and a set of clients that use these services. Clients know of servers, 

but servers do not need to know of clients. Both clients and servers are logical processes, which can reside 

on the same computer or on different computers. Figure 1.3 shows an example of the client-server 

architecture. The servers can form a federation, which allows them to back each other up to provide 

dependable services to their clients. The federation is often transparent to the clients. Data services provided 

by databases are important to most business applications, and the databases are part of the server in this 

architecture. 

The client-server architecture can be further classified into thin-client and fat-client architectures. In the 

thin-client architecture, all of the application processing and data management are carried out on the server. 

The client is simply responsible for running the presentation software. 

In the fat-client architecture, the software on the client implements the application logic and the interactions 

with the system user. The server is responsible for data management (database) only. 
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Figure 1.3. Client-server architecture, with the federation among the servers. 

 

The further development of the federation of client-server architecture is the virtualization, which allows 

multiple servers to be seen as a single virtual server, as well as a single server to be seen as multiple virtual 

servers. Each virtual server can be used in a similar way as a physical server. To further improve resource-

sharing efficiency, a virtual server can host multiple tenants, each of which can share the environment and 

resources in the environment. Virtualization and multitenancy are the key technologies of implementing 

cloud computing. 

Three-tier architecture consists of three layers as shown in Figure 1.4. Each layer is executed on a separate 

processor. It is a more balanced approach, which allows for better performance than a thin-client approach 

and is simpler to manage than a fat-client approach. Three-tier architecture is a more scalable architecture—

as demands increase, extra servers can be added. 

 

Figure 1.4. Three-tier architecture. 

 

Figure 1.5 shows an example of a three-tier Internet banking system, where the clients can include GUI of 

ATM (Automated Teller Machine), POP (Point of Purchase), and web access to the user account. The 

application-processing layer can reside in the bank’s IT center, responsible for processing all the requests. 

The data, such as account information and balance, are stored in a different server managing the databases. 
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Figure 1.5. Example of a three-tier Internet banking system 

 

The service-oriented architecture can be implemented as four-tier architecture, as shown in Figure 1.6(a), 

which consists of a presentation layer, application layer, service repository layer, and data management. 

However, service-oriented architecture does not have to be tied to this architecture, where only adjacent 

tiers can communicate with each other. Figure 1.6(b) and (c) show two possible variations of implementing 

the SOA. 

 

Figure 1.6. Four-tier architecture and its variations 

1.2.3 Distributed Object Architecture 

Different from the N-tier architecture, where the clients and servers are explicitly differentiated, the 

distributed object architecture makes no explicit distinction between clients and servers. Each distributable 

entity is an object that provides service to other objects and receives services from other objects.  

Distributed object architecture is more generic in implementing different applications. However, it is more 

complex to design and to manage than the tiered architecture, because it allows the system designer to delay 

decisions on where and how services should be provided. In other words, it is an open system architecture 

that allows new resources to be added to the system as required. The system built on distributed object 

architecture is flexible and scalable. It is possible (e.g., written in the same language) to reconfigure the 

system dynamically with objects migrating across the network as required. As a logical model, distributed 

object architecture allows developers to structure and organize the system. In this case, developers can 

focus more on provision of the application functionality in terms of services and combinations of services.  

The two major implementations of the distributed object architecture are CORBA (Common Object 

Request Broker Architecture) developed by OMG (Object Management Group) and Distributed 

Component Object Model (DCOM) developed by Microsoft. 
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In CORBA, object communication is through a middleware system called an Object Request Broker (ORB), 

also called software bus, as shown in Figure 1.7. 

CORBA objects are comparable, in principle, to objects in C++, C#, and Java. The objects have a separate 

interface definition that is expressed using a common language IDL (Interface Definition Language), which 

is similar to C++. The interfaces of an object can be written in any language. A program translator can be 

used to translate the interface code; for example, in C++ and Java, into IDL code, and thus the objects 

written in different programming languages can communicate with each other. The ORB handles object 

communication through the stubs written in IDL. A service provider will make its service ports known as 

the IDL stubs. If a service requester calls a stub, the call will be translated to a call to the function of the 

service provider.  

 

Figure 1.7. CORBA architecture 

 

Another platform that supports distributed object architecture is the Java Enterprise Edition (Java EE). Java 

Message Service (JMS) is the software bus to connect the Java objects. Java Remote Method Invocation 

(Java RMI) over Internet Inter-Orb Protocol (RMI-IIOP) provides an IDL interface to communicate with 

CORBA. Java RMI over IIOP was jointly developed by Sun and IBM. Java EE objects can also 

communicate with Microsoft platforms. Java Native Interface (JNI) can be used to communicate with C++ 

and C# programs. 

DCOM (Distributed Component Object Model) is Microsoft’s distributed software development 

framework before Visual Studio .Net. DCOM allows software components to distribute across several 

networked computers to communicate with each other. Initially, the distributed software development 

framework was called OLE (Object Linking and Embedding), a distributed object system. The framework 

evolved for several generations. It was extended into “Network OLE” and then to COM (Component Object 

Model) in 1993, which provides the communication capacity among objects. In Windows 2000, significant 

extensions were made to COM and it was renamed COM+, before it evolved into DCOM. All technologies 

in DCOM were integrated into or replaced by Visual Studio .NET, which is an all-in-one OO, distributed, 

and service-oriented software development environment. 

Distributed object architecture is a predecessor of SOC. It has many characteristics of SOC. The significant 

improvements and achievements made in SOC include: 

• All major computer companies have agreed on the SOC standards, protocols, and interfaces for 

creating interoperable services, which are platform and language independent. In the case of 

distributed object architecture, CORBA and DCOM have similar functionality and goals; however, 

the systems developed in the two environments are not interoperable, and DCOM is platform 

dependent. 

• SOC has explicitly separated the duties of development: The service providers develop services, 

the service requesters build the application using existing services, and service brokers publish the 

services and facilitate the matching and discovery of services. In distributed object architecture, 
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there is no explicit separation of duties, and there are no external mechanisms for service 

publication and discovery.  

• The web service implementation of SOC makes use of the pervasive Internet infrastructure to 

deliver the services, while allowing using local area networks to build private SOC applications 

using the same technologies and standards. 

Multithreading is the basic distributed computing model, which allows the parallel computing units to be 

specified by the programmer at the function and class levels, which are executed as independent operating 

processes and are running on the same processor or on different processors, depending on the operating 

system’s scheduling and dispatching. Communication, resource sharing, and synchronizations among the 

threads are managed by the programmer. Chapter 2 will cover multithreading in detail. 

1.3 Service-Oriented Architecture and Computing  

1.3.1 Basic Concepts and Terminologies  

A service is the interface between the service producer (or provider) and the consumer. The producer (also 

called provider) of a computing service is the person who develops the computer program (or the computer 

that runs or hosts the program) for others to use, while a service consumer is a person or a computer program 

that uses a service. From the producer’s point of view, a service is a function module that is well-defined, 

self-contained, and does not depend on the context or state of other functions. These services can be newly 

developed modules or just modules wrapped around existing legacy programs to give them new interfaces.  

From the application builder or service consumer’s point of view, a service is a unit of work done by a 

service provider to achieve desired results. Different from an application, a service normally does not have 

the human user’s interface. Instead, it provides Application Programming Interface (API) so that the service 

can be called (invoked) by an application or another service. For human users to use a service, a user 

interface needs to be added. A service with a user interface is an application. 

The discovery of services by service consumers can be facilitated by service brokers. A service broker 

allows a service producer to publish their service definitions and interfaces, and at the same time allows a 

service consumer to search its database to discover the desired services.  

An important feature of SOC is to divide the software development into three parties (stakeholders): service 

requesters or consumers, providers, and brokers. This three-party structure adds significant flexibility to the 

software system structure and supports a new approach of software development: composition. 

Service-Oriented Architecture (SOA) is a distributed software architecture, which considers a software 

system consisting of a collection of loosely coupled services that communicate with each other through 

standard interfaces, such as WSDL (Web Services Description Language) interface and via standard 

message-exchanging protocols such as SOAP (Simple Object Access Protocol). These services are 

autonomous and platform independent. They can reside on different computers and make use of each 

other’s services to achieve their own desired goals and end results. Software in SOA should be developed 

and maintained by three independent parties, service requester (application builders), service brokers, and 

service providers. Service providers develop services and publish them in service brokers, while the service 

requesters discover the services via service brokers using the available services to compose their 

applications. As the same services can be published by many service providers, the service requesters can 

dynamically discover new services and bind them into their applications at runtime, as better services are 

discovered. 

Service-Oriented Computing (SOC) refers to the computing paradigm that is based on the SOA 

conceptual model. SOC includes the concepts, principles, and methods that represent computing in three 

parallel processes: service development, service publication, and application composition using services 
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that have been developed. The essential difference between SOA and SOC is that SOA is a conceptual 

model that does not concern the algorithmic design and implementation to create operational software, 

while SOC involves a large part of the software development life cycle from requirement, problem 

definition, conceptual modeling, specification, architecture design, composition, service discovery, service 

implementation, and testing, to evaluation. As a result, SOA is more of a concern to the application builders 

(service requesters), while SOC is of concerned to all three parties of the SOC software development.  

Service-Oriented Development (SOD) refers to the entire software development cycle based on SOA 

concepts and SOC paradigm, including requirement, problem definition, conceptual modeling, 

specification, architecture design, composition, service discovery, service implementation, testing, 

evaluation, deployment, and maintenance, which will lead to operational software.  

In the literature, SOA is often extended to include the meaning of the SOC, and thus, SOA and SOC are 

used interchangeably, particularly when the specific differences between SOA and SOC are not the concern 

of the discussion. On the other hand, SOC is often extended to include the meaning of SOD, particularly 

when the specific differences between SOC and SOD are not the concern of the discussion. Thus, in this 

book, we will use SOC for SOA and SOD as well, to simplify the use of terminology, if the differences 

among them are not the concern of the discussion.  

Figure 1.8 illustrates the relationship between SOA, SOC, and SOD. The dotted circle shows the coverage 

of this book. 

 

Figure 1.8. SOA, SOC, and SOD 

 

We use “Distributed Service-Oriented Software Development” as the title of the book to contrast the widely 

used Distributed Object-Oriented Software Development approach, and to emphasize the fact that service-

oriented software development is distributed in nature. Not only is the software under development 

distributed in different computers in different locations, but also the development process is distributed in 

the sense that the application builders, service brokers, and service providers are developers working 

independently in different locations, but following the same interfaces and standards. Furthermore, Chapter 

2 discusses distributed computing in general and how SOA, SOC, and SOD fit into the framework of 

general distributed computing. 

Web services (WS) are services accessible over the web. Web services-based computing is a specific 

implementation of SOC. It is perhaps the most widely known SOC example; however, other SOC 

implementations are also possible. Web services support SOC, and have a set of enabling technologies 

including WSDL, SOAP, and XML. XML is the standard for data representation; SOAP enables remote 

invocation of services across network and platforms. WSDL is used to describe the interfaces of services. 

UDDI (Universal Description Discovery and Integration) and ebXML (electronic business eXtensible 

Markup Language) are used to publish web services, which enable publishing, searching, and discovery, 

manually and programmatically. More standards and protocols are being included in the WS technology 

set every day. Web services have several technical aspects: 

• Services are functional building blocks. Multiple services can form a composite service, and the 

composite service becomes a new building block. However, the code of a web service does not need 

to be imported and integrated into the application. Instead, a service runs at the service provider’s site 

and is loosely coupled with the application using messages. Thus, the service does not have to been 

written in the same programming language and does not have to be developed or running on the same 

platform. 
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• Services are software modules that can be identified by URL (Uniform Resource Locator) and whose 

interfaces and bindings are capable of being defined, described, and discovered as XML artifacts.  

• Web services are often described by WSDL, accessed by the protocol SOAP over HTTP. With an 

added human interface, a single service or a composite service can form a web application. Web 

services are normally accessed by computer programs, whereas web applications are accessed by 

human users using a web browser. 

Composition is a key concept in SOC, which uses available services to compose a composite service or an 

application. Two composition methods are proposed and realized: Orchestration and Choreography. In 

orchestration, a central process, which can be a service itself, takes control over the involved services and 

coordinates the execution of different operations. The involved services communicate with the central 

process only. Orchestration is useful for private business process. BPEL (Business Process Execution 

Language) is the major composition language that supports orchestration. In choreography, there is no 

central coordinator. Each service involved can communicate with any partners; choreography is useful for 

public business process and allows dynamic composition. WS-CDL (Web Services Choreography 

Description Language) is a composition language that supports choreography. 

Service-Oriented Infrastructure (SOI): This term can have two meanings. The first meaning refers to the 

hardware and software support for SOC, as SOC involves many new kinds of operations not commonly 

used in traditional computing such as publishing, discovery, policy-based governance, orchestration, and 

choreography; for example, if the number of services is huge, the search algorithm needs to be efficient, 

with a good caching mechanism. Otherwise, a significant amount of time will be spent on discovery. 

Another example is the policy governance mechanism. As policies need to be enforced at runtime, the 

enforcement mechanism needs to be efficient and run at the real time as the application is running. As some 

of the SOC operations can be quite expensive, it is quite logical that some of these operations should be 

executed by hardware or supported by hardware to save cost and time. This is particularly true if the SOC 

system needs to be used in mission-critical real-time systems.  

Another meaning of SOI is that a hardware system can be organized in a service-oriented manner like a 

software system. An example of this kind of SOI is now being developed by Intel in their SOI group. The 

principal idea is to treat computing components, memory components, and networking components as 

virtual services. Essentially, they are treating these hardware components as services like software services, 

and they control these hardware services like software services in a service-oriented manner. Intel calls this 

PaaS (Platform-as-a-Service) so to compare the SaaS (Software-as-a-Service) concept. In this way, a 

hardware system can be composed and recomposed like a software system and managed like an SOC system. 

Another interesting implication is that once a hardware system is organized in an SOI manner, hardware is 

constructed as recomposable services, which allow hardware components to be replaced or upgraded 

without stopping the operation of the system. This means that current fault-tolerant computing techniques 

can be seamlessly integrated into the architecture design. This will be a research topic for the future. 

Web 2.0 is the proposed next generation of web or Internet. The core concepts include users as active 

contributors (rather than just passive observers), peer collaboration, collective intelligence, moving the 

computing platform from desktop to the web, user-centric computing, and service orientation. One well-

known example is Wikipedia, where millions of users participate in writing an online encyclopedia. This 

approach has been particularly successful as Wikipedia has become a popular way for people to learn. Note 

that the Wikipedia Company had only 280 employees in 2017, yet it has produced millions of pages of 

knowledge, and almost all the knowledge is contributed by users. This is an excellent example how massive 

collaboration can create something that is of great value. This book has many citations to Wikipedia, which 

proves that the materials in the Wikipedia are indeed useful, particularly for the rapidly developing 

disciplines. The approach of conducting business using Web 2.0 is now called Wikinomics 

(http://en.wikipedia.org/wiki/Wikinomics). Numerous organizations are now trying to duplicate this 

approach in creating something of great value.  
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Semantic Web. Semantic Web is defined by W3C, which provides a vision for the future of the web. The 

Semantic Web provides a common framework that allows data to be shared and reused across application, 

enterprise, and community boundaries. The idea is to give information explicit meaning, to make it possible 

for web services to automatically process and integrate information available on the web. Semantic Web is 

now also called Web 3.0 (http://en.wikipedia.org/wiki/Web_3), as the name Web 2.0 has been used.  

Ontology. The word “ontology” comes from philosophy, where it means a systematic explanation of being. 

In computer science, ontology is defined to be the formal specification of the terms and objects in a domain 

and the relationships among them. One of the principal relationships is classification. Often an ontology 

system defines a vocabulary of terms (words), their meanings (semantics), their interconnections (e.g., 

synonym and antonym), and rules of inference (reasoning), which is used in the semantic web projects as 

the main means of implementation. 

Service-Oriented Databases (SODB). As SOC became popular, the database technologies also become 

relevant. SOC applications use XML-based data and message, which have tree-structures, whereas 

traditional databases consist of tables of rows and columns. There are several approaches to address the 

mismatch between data structures. 

The first approach is to use traditional databases and an adapter to convert the XML-based data and message 

to and from data of tables in the traditional databases. This is the current business practice in this area. 

The second approach is to encode data in the XML format and store the XML files as database. The main 

challenge is to design and implement efficient XML-based query language to retrieve data from, and store 

data into, the XML database. The XQuery language has been defined by W3C to serve this purpose.  

The third approach is to encapsulate the existing database management systems such as relational database 

systems as service and develop related services so that an SOA application can talk to the database system. 

Those related services are called information services.  

Ontology can also serve as a database for SOC applications. In fact, an XML database can be viewed as a 

simplified ontology system. 

1.3.2 Service-Oriented Computing 

In traditional software development paradigms, the developer takes the requirements, converts them into 

specification, and then translates the specification into an executable file that meets the requirements. 

Several approaches are available to translate the specification into an operational system, including the 

waterfall model, incremental development, object-oriented computing (OOC), and component-based 

computing. Each approach has its own engineering processes and techniques. 

SOC is a new paradigm that evolves from the OOC and component-based computing by splitting the 

developers into three independent but collaborative parties: the application builders (also called service 

requesters), the service brokers (or publishers), and the service developers (or providers). The 

responsibility of the service developers is to develop software services with standard interfaces. The service 

brokers publish or market the available services. The application builders find the available services through 

service brokers and use the services to develop new applications. The application development is done via 

discovery and composition rather than traditional design and coding. In other words, the application 

development is a collaborative effort from the three parties.  

Services are platform-independent and loosely coupled so that services developed by different providers 

can be used in a composite service. Many standards have been developed to ensure the interoperability 

among services. However, the competition is fierce. Only the best services can survive because, for a given 

known service requirement; for example, password encryption and “add-to-cart” services, many providers 

can implement and publish the same service for application builders to use in their applications. 
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In SOC, individual services are developed independently based on standard interfaces. They are submitted 

to service brokers. The application builders or service requesters search, find, bind, test, verify, and execute 

services in their applications dynamically at runtime. Such a service-oriented architecture gives the 

application builders the maximum flexibility to choose the best service brokers and the best services. Figure 

1.9 shows a typical service-oriented architecture, its components, and the process of registering and 

requesting a service. The components and steps shown in the diagram are explained as follows: 

 

Figure 1.9. A typical service-oriented architecture 

 

1. The services providers develop software components, corresponding to classes and objects in OOC to 

provide different services using programming languages, such as C++, C#, and Java, and service-

oriented software development environment, such as .Net, J2EE, and the Eclipse.  

2. The service providers register the services to a service broker and the services are published in the 

registry.  

3. Current service brokers use UDDI or ebXML standards that provide a set of standard service interfaces 

for registering and publishing web services. For UDDI, the information needed for registering a service 

includes: (1) White Pages information: Service provider’s name, identification; for example, the DUNS 

number, and contact information; (2) Yellow Pages information (business category): industry type, 

product type, service type, and geographical location; and (3) Green Pages information: technical detail 

on how other web services can access (invocate) the services, such as APIs (Application Programming 

Interfaces). UDDI’s White and Yellow Pages are an analogy to the telephone White and Yellow pages. 

The UDDI standard supports directory only, whereas ebXML supports both directory and repository. 

4. An application builder looks up, through the Internet, the broker’s service registry, seeking desired 

services and instructions on how to use the services. The ontology and standard taxonomy in the service 

broker can help automatic matching between the requested and registered services. 

5. Once the service broker finds a service in its registry, it returns the service’s details (service provider’s 

binding address and parameters for calling the service) to the application builder. 

6. The application builder uses the available services to compose the required application. This is higher 

level programming using service modules to construct larger applications. In this way, the application 

builders do not have to know low-level programming. With the help of an application development 

platform, the application code can be automatically generated based on the constituent services. The 
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current application development platforms include .Net, J2EE, SOA Suite, and WebSphere from IBM, 

which can support high-level composition of applications using existing services.  

7. The code of services found through a broker resides in a remote site, normally in the service provider’s 

site, or in the service broker if service repository is offered by the broker. SOAP invocation can be used 

to access the services remotely.  

8. The service in the service provider’s site directly communicates with the application and delivers 

service results.  

1.3.3 Object-Oriented Computing versus Service-Oriented Computing 

SOC is different from Object-Oriented Computing (OOC) in many ways, even though SOC evolves from 

OOC and they may look similar. In the past, some mistakenly thought that OOC is not much different from 

procedural computing, because traditional procedural languages already have the concept of data 

abstraction such as structure, which is similar to class, and procedures, which is similar to methods. Even 

though OOC may look similar to traditional computing, the fact that designers think in terms of classes and 

objects fundamentally change their way of thinking. As a result, many new concepts and methods emerge 

in OOC, such as design patterns, inheritance, dynamic binding, polymorphism, design hierarchy, and UML 

(Unified Modeling Language). 

Similarly, SOC is different from OOC, because now designers will think in terms of services, workflows, 

service publishing, discovery, application composition using reusable services, and policy governance. 

These concepts are indeed different from OOC. 

Furthermore, services can be available on the web or in a private repository, and an application can use 

runtime search to discover new services and bind the service into the application. The application builder 

may not need to buy and install the service component (the software that provides the service); instead, 

the application can access the service component remotely and pay for the service used. Software upgrade 

will become easier. Once the service components are upgraded, the new services will be immediately 

available to the applications, saving significant cost of uninstalling and reinstalling software on client 

computers. Software will be charged based on the extent of use. Thus, users will not have to pay for 

unnecessary software. In other words, SOC provides a new model of software application: instead of buy-

install-and-use, SOC provides a new model of pay as you go. 

The SOC also has a significant impact on the system structure, dependability attributes, and mechanisms, 

such as system reliability, security, system reconfiguration, and recomposition. These mechanisms will be 

drastically different from OOC; for example, instead of static composition (with dynamic creation of objects 

and dynamic binding) in OOC, SOC allows dynamic composition in real time and at runtime using services 

just discovered, and with knowledge of the service interface only. Because new services will be discovered 

at runtime, SOC also needs a runtime ranking and selection mechanism based on runtime interoperability 

evaluation, testing, and other criteria. In case of system failures or requirement changes, the SOC also needs 

a distributed reconfiguration and recomposition strategies. Such strategies will be rather different for OOC. 

In OOC, it is necessary to develop the code manually, even though some forms of dynamic binding can be 

used. The current OOC dynamic binding mechanism allows polymorphism, that is, methods that belong to 

a family of classes can replace each other at runtime. Yet SOC allows an unrelated service to replace an 

existing service as long as the new service has the same WSDL specification. 

In SOC, a faulty service can be easily replaced by another standby service by a DCS (Dynamic Composition 

Service). The DCS is also a service that can be monitored and replaced. The key is that each service is 

independent of other services, and thus, replacement is natural. Only the affected services will be shut down. 

This approach allows the mission-critical application to proceed with minimum interruption.  
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Although SOC shares certain concepts and technologies with OOC, such as component design and 

component reuse, the innovation in SOC is significant. Figure 1.10 contrasts the main technologies and the 

development methodologies between the two paradigms.  

  

Figure 1.10. OOC and SOC concepts and technologies 

 

Table 1.1 shows a more in-depth comparison between OOC paradigm and SOC paradigm in terms of major 

features in the software development process. 

1.3.4 Service-Oriented System Engineering  

Service-Oriented System Engineering (SOSE) is a combination of system engineering, software 

engineering, and service-oriented computing. It suggests developing service-oriented software and 

hardware under system engineering principles, including requirement, modeling, specification, verification, 

design, implementation, testing (validation), operation, and maintenance. Current research and practice on 

SOC are largely focused on functionality and protocols of SOC software. As SOC moves into mission-

critical applications, as well as the entire computing and communication infrastructure moves to SOC, 

SOSE issues need to be addressed.  

Table 1.2 lists typical SOSE techniques in each development phase. Many of the techniques are 

collaborative; for example, test cases may be contributed in a collaborative manner by all three parties. The 

service provider can provide sample unit test cases for the service broker and service requestors to reuse. 

The service broker can provide its own test cases via a specification-based test case generation tool, and the 

broker may even make the tool available for all the parties. The application builder can examine the sample 

test cases by the service broker, apply the test case generation tool provided by the service broker, and even 

contribute its own application test cases. 

Even though we mainly use software to illustrate SOSE, the same can be applied to hardware and networks. 

Major computer companies are developing SOI and SON (Service-Oriented Networks) to support SOC 

applications at this time. They will need to develop the related SOSE techniques. 
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While the basic engineering principles remain the same, the way they are applied will be different in the 

SOC paradigm. Specifically, most engineering tasks will be done on the fly at runtime in a collaborative 

manner. Because systems will be composed at runtime using existing services, many engineering tasks need 

to be performed without complete information and with significant information available just in time before 

application. In this way, SOSE in some way may be drastically different from traditional engineering where 

engineers have complete information about the system requirements and thorough analyses can be 

performed even before system design is started.  

Table 1.1. Object-oriented computing versus service-oriented computing 

Features Object-Oriented Computing Service-Oriented Computing 

Methodology Many methodologies are 

available to develop OO 

programs. 

In addition, SOC involve service discovery, 

architecture, application composition, and 

software monitoring.  

Cooperation 

among 

developers 

Development is by a single team 

responsible for entire life cycle. 

Cooperation is among software 

engineers working on require-

ment, designers, coding, and QoS.  

Development is delegated to three independent 

parties: application builder, service provider, and 

service broker. Cooperation is among these three 

parties. 

Abstraction Abstract data type (class) and 

encapsulation of data and 

methods within a program. 

Abstraction is at the service (including 

workflows) and architecture levels.  

Code reuse Inheritance allows code reuse 

within one application or within 

one platform. OO design patterns 

and application frameworks can 

be used to promote software 

reusability. 

Services can be shared to promote reusability. 

Service brokers with ontology information enable 

systematic sharing of services. 

Dynamic 

binding 

Associating names to variables 

and methods at runtime. 

Can dynamically allocate remote service required 

through the service directory. 

Re-

composition 

Often it is necessary to determine 

and import the components at 

design time. 

Can remove remote services and find and add 

newly available services through the service 

directory. 

Component 

communi-

cation and 

interface 

Importation of component code 

and integration at compilation 

time. Often this is platform and 

language dependent. 

Remote invocation without importing the code. 

Platform and language independent. Open 

standard protocols ensure interoperability from 

different vendors. 

System 

maintenance 

Users need to maintain and/or 

upgrade their hardware and 

software regularly. 

Hosting software needs to be maintained by 

provider, but services may be maintained by third 

parties.  

Reliability  Software reliability can be 

obtained via testing and reliability 

modeling. Fault-tolerant software 

can be designed with redundant 

components. 

Application reliability depends on the reliability 

of application, of services used, and of their 

execution environments. Software reliability can 

be obtained with collaboration and contributions 

from all parties. Fault-tolerant software can be 

designed with redundant services.  
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Table 1.2. Different SOSE techniques 

Development phase SOSE techniques 

Collaborative specification 

and modeling 

Service specification languages, model-driving architecture, ontology 

engineering, and policy specification. 

Collaborative verification Dynamic completeness and consistency checking, dynamic model 

checking, and dynamic simulation. 

Collaborative design Ontology engineering, dynamic reconfiguration, dynamic composition 

and recomposition, dynamic dependability (reliability, security, 

vulnerability, safety) design 

Collaborative 

implementation 

Automatic system composition and code generation 

Collaborative validation Dynamic specification-based test generation, group testing, remote 

testing, monitoring, and dynamic policy enforcement 

Collaborative run-time 

evaluation 

Dynamic data collection and profiling, data mining, reasoning, 

dependability (reliability, security, vulnerability, etc.) evaluation 

Collaborative operation and 

maintenance 

Dynamic reconfiguration and recomposition, dynamic reverification 

and revalidation 

SOC is a new paradigm for computing and thus, new engineering techniques need to be developed to make 

SOC software and hardware dependable, reliable, safe, and secure. SOSE techniques are different from 

traditional system engineering techniques even though the basic engineering principles such as mathematics 

remain the same. Due to the dynamic features such as runtime composition and recomposition, new 

applications may not be evaluated by traditional system engineering because many components may be 

dynamically discovered and composed, and their source code may not be available. Thus, dynamic runtime 

system engineering techniques need to be applied.  

1.4 Service-Oriented Software Development and Applications 

1.4.1 Traditional Software Development Processes 

Software development processes define the steps of development that lead to high-quality software. Several 

processes have been proposed and applied, including waterfall, iterative, object-oriented, and component-

based development processes. Object-oriented and component-based software development processes are 

similar; Figure 1.11 shows a possible process. Both development processes require decomposition of the 

system to be developed into components, to develop the code of the components first, and then to use the 

components to build the applications. The object-oriented development process is a more specific approach 

than the component-based approach, which is defined by a set of specific features, such as encapsulation, 

inheritance, polymorphism, and dynamic binding. Generally speaking, object-oriented development is 

certainly component-based. However, component-based development may or may not be object-oriented. 

1.4.2 Service-Oriented Software Development 

Traditional computing paradigms affect mainly the design (algorithms) and implementation (programming) 

phases in the software development process. SOC affects the entire software development process as well 

as the cycle of the software. To better understand the impacts, let us first examine the unique features of 

SOC software: 



21 

• Self-contained and self-describing: Services are published through service brokers, and the published 

services contain sufficient information for other services to discover, match, bind, and invoke remotely 

and at runtime. 

• Reconfigurable and recomposable: A newly discovered service can be composed into an existing 

service in two different ways: reconfiguration and recomposition.  

• Reconfiguration: An existing service can be replaced by a new service satisfying the same function 

specification. Reconfiguration is performed when a service is faulty or becomes unavailable.  

• Recomposition: In a SOC system, the user could change the specification of a service at runtime 

theoretically, result in a recomposition, during which, new services could be included in a composite 

service and existing services could be excluded. 

• Dynamic verification: The dynamically modified specification must be dynamically verified to assure 

the required properties of the specification. 

• Dynamic validation: The dynamically reconfigured or recomposed service must be dynamically 

validated (tested) to assure that it meets the specification. 

• Dynamic evaluation: The dynamic reconfiguration and recomposition may lead to structural change of 

a service, and the attributes (reliability, security, safety, and performance) must be dynamically 

evaluated. 

 

Figure 1.11. Object-oriented and component-based software development processes 

In traditional software development process, the entire process is often managed by the same organization 

of developers. The new service-oriented software development is divided into three parallel processes: 

service development, service publishing to the service brokers, and application building (composition).  

The services are of two kinds: atomic and composite. An atomic service is an object with standard interface. 

Thus, the development of atomic services is not much different from that of the object-oriented software 

development. The main difference is that an object normally needs to be integrated into the application 

written in the same programming language, whereas an atomic service can reside on a remote computer 

and can be invoked by applications written in different programming languages. Thus, the interface of an 

atomic service must be designed following certain predefined standards. The interface must contain the 
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description of the functions of the service and the technical detail of invoking the service, so that the service 

can be discovered and can be properly invoked by other programs. WSDL (Web Services Description 

Language) is a major language used to describe the interfaces of services and SOAP (Simple Object Access 

Protocol) is used to transport messages between services. An atomic service can either be developed from 

scratch or be a wrapped service from an existing software component.  

The development of composite services is different from that of the traditional software development 

process. Although traditional software development allows the construction of larger components from 

smaller components, the construction is static and manual. The construction of composite service can be 

static and manual. However, it can also be dynamic and automatic, that is, a service can be composed at 

runtime when a required service does not exist and needs to be composed from the existing services. 

Existing services include those services that are published through service brokers. Once a service is 

composed, the composite service can be published as a new service for future service or application 

composition. An SOC application is a little different from a composite service. The former has a GUI for 

human users to access, while the latter has programmatic interfaces exclusively for computer programs 

(applications or services) to access. 

The development processes in OOC and in SOC are elaborated in Figure 1.12. Typically, an OOC 

application is developed by the same team in the same language (as shown on the left part of the figure), 

whereas an SOC application is created by using predeveloped services developed from independent service 

providers. To find the required services, the application builder looks up the service directories and 

repositories. If a service cannot be found, the application can publish the requirement or develop the service 

in-house. Service providers can develop services based on their own requirement analysis or look up the 

requirement published in the directories. 

 

Figure 1.12. Object-oriented versus service-oriented software development process 
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Like traditional software development, the SOC software development process starts with the requirement 

analysis and definition. Figure 1.13 shows the steps of a typical requirement definition. At the end of the 

requirement, the system to be developed will be more formally modeled and specified in a modeling and 

specification language. 

 

Figure 1.13. Requirement development process 
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Figure 1.14. Service-oriented application development process 
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remote and over the Internet; for example, a travel agency has to remotely invoke the services offered from 

the airliners, hotels, and car rentals. It is not doable to import the code of the services into the local server 

of the travel agency. Similarly, building an online bookstore requires access to the services from multiple 

parties, including banks, publishers, and freighters. The other emerging application areas include banking, 

health care, and e-government, where the services from different divisions are loosely coupled to provide 

collaborative services to their customers. 

Robotics and embedded computing are traditional application fields where control programs are an integral 

part of the device. The introduction of SOC into this field makes it more flexible in accomplishing the 

mission of a robot or an embedded system. Instead of preloading the entire control program to the system, 

parts of the programs are implemented as remote services. The modification of the remote services can 

change the behavior and the course of the application without interrupting its execution. This feature is 
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principles, models, techniques, methods, tools, and frameworks have been developed to support the 

applications in a number of areas, including e-business, industrial process control, command and control, 

embedded systems, robotics, bio/medical information system, and ontology-based education systems. Most 

the research and practice have been incorporated into the cloud-computing environment.  

Many of the topics will be covered in this book, not only at the conceptual level, but also at the development 

and implementation levels. 

  

Figure 1.15. SOC research and applications at Arizona State University 

 

1.4.4 Web Application Composition 

A traditional desktop application has a unique entry point, the main method. It can be compiled into a 

standalone executable file. Although an application can consist of many executable and data files, a project 

file exists that organizes them into a well-defined application domain. 

A web application consists of a collection of web pages, each of which is associated with executable and 

data files. We can enter a web application from different pages, even though the designer has an “entry” 

page in mind. Web applications typically follow the event-driven computing model to deal with user 

interaction and data communication. However, a web application is considered an application in the same 

sense as a desktop application, if it has an application domain consisting of a coherent mission to accomplish 

and common resources in the web environment. The web application domain can be distributed, with 

remote web services and data as its functional and data units. Each web page in a web application is an 

active object. The pages communicate with each other in a loosely coupled manner. Shared memory and 

synchronous and asynchronous callbacks can be supported. 

Embedded computing

research and curriculum

e-business

Command

and

control

systems
Robotics

Recomposable

embedded 

systems

Ontology

in education

Manufacture

process 

control

Service-oriented

system engineering

Infrastructure

Modeling 

simulation

Testing

Reliability

evaluation

Service-oriented

software and

hardware

development

sol1 soln sol1 soln sol1 soln sol1 soln sol1 soln

class

ch1 ch2 ch3 ch4 ch5

sec1 secn sec1 secn sec1 secn sec1 secn

q1 qn q1 qn q1 qn q1 qn q1 qn

Cloud 

computing

Bio-

informatics

engineering

Edge 

computing

Service-

oriented

enterprise



26 

Web applications are rapidly expanding, as service-oriented computing and related technologies progress, 

such as Web 2.0, Web 3.0, and cloud computing. For almost every desktop application, one can find a web 

version, or will find a web version soon. Cloud computing, enabling program and data accesses anywhere 

and anytime, is the latest driving force to move computing from desktop applications to web-based 

applications. 

Big data is the term for a collection of data sets so large and complex that it becomes difficult to process 

using on-hand database management tools or traditional data processing applications 

(http://en.wikipedia.org/wiki/Big_data). The sources of big data are mainly from human through social 

networking and from devices in IoT. The challenges in big data processing lie not in the volume, but also 

in the types of data and the velocity of new data that are generated. Big data systems can be characterized 

by a number of aspects.  

• Value: Big data is the next big thing after Internet (communication) and Cloud Computing 

(computation). It has been applied in many areas. 

• Volume: A moving target from petabyte (1015 bytes), exabyte (1018), zettabyte (1021). The volume is 

increasing rapidly. 

• Variability in data structures: poly-structured data, including structured data, semi- structured data, and 

unstructured data. 

• Veracity: A large portion of the data may have no sense. Noise elimination and fault tolerance are 

required in bid data processing. 

• Velocity: In many situations, the data cannot be stored due to its volume, and in many other situations, 

the values of the data are time sensitive and require to be processed in real time. 

• Variety: Data from different sources have different semantics, and the data are integrated into different 

applications. 

• Volatile: Due the volume, velocity, and veracity, not all data need to be stored, and data will have to be 

permanently deleted, and big data processing systems are required to selectively store and organize the 

data to maximize its value. 

Cloud Computing. Cloud computing has a thin client and thick server architecture. The client could be as 

thin as a special purpose computer that runs a web browser only. The server is typically a virtual server, 

called cloud, which could consist of many physical servers that could be owned by different organizations. 

Computing is done by services in the cloud, and data are stored in the file systems or data centers in the 

cloud too. Cloud computing emphasizes a number of key concepts: 

• Software-as-a-Service (SaaS): Software that performs various tasks are not installed on the client 

machines. They are installed in the cloud as services. SaaS emphasizes that not only components of 

applications, such as web services, but also the entire web applications, should be considered to be 

services. 

• Platform-as-a-Service (PaaS): Software development environments such as Eclipse for Java-based 

software development and Visual Studio for C# are not installed on the client machine. They are 

installed in the cloud and developers use them remotely. 

• Infrastructure-as-a-Service (IaaS): The infrastructure supporting computing and information 

management is not in the client, including computing resources, storage, communication bandwidth, 

and databases. 

• Data centers, which store data as services to be used by other services. 
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For all the cloud resources, the cost model is pay-as-you-go. No need to purchase or to own the 

infrastructure, hardware, software, the programming environments, and the data. There are many cloud 

providers today, including Amazon Elastic Compute Cloud (Amazon EC2), Google’s App Engine, and 

Microsoft’s Azure, Oracle Exalogic Elastic Cloud, and Saleforce.com. 

Cloud computing is being extended to include many features, such as Device as a Service (DaaS), Robot 

as a Service (RaaS), Test as a Service (TaaS), and X as a Service (XaaS), where X can represent different 

resources. Cloud computing is often used to process big data systems. 

1.5 Enterprise Software Development 

Enterprise software or enterprise application software (EAS) is typically composed of multiple 

components that need to communicate with each other through data exchanges. Electronic business, or e-

business, is a typical EAS system. The enterprise software is more than all the systems within a business 

unit; rather it is the collection of all systems across multiple units or even multiple corporations; for example, 

a supply chain system for a major retail store, such as Wal-Mart or Target, is example of an enterprise 

system. Another enterprise system example is the US DoD (Department of Defense) system that controls 

and commands a major DoD function. The system for an army unit in a given location is not an enterprise 

system, but a part of an enterprise system. Thus, an enterprise system may consist of hundreds of systems 

residing in multiple states or nations. Service-oriented computing is widely used to develop enterprise 

software. 

A Service-Oriented Enterprise (SOE), proposed by Intel researchers and standardized by OASIS, is a 

stack of technologies that implement and expose the business processes through an SOA system. SOE 

provides a framework for managing the business processes across an SOA landscape. At its core, the SOE 

is a system structure that supports core enterprise computing. A SOE is a system that supports the enterprise-

wide operations.  

As an enterprise-wide system, the traditional elements of SOA, that is, searching, discovery, interfacing, 

and service invocation, are not the focus of SOE, even though they are the common elements shared by the 

participating systems. These elements describe how to construct services and how to use services. They do 

not describe how sets of services support enterprise business processes or how atomic services function 

within an enterprise.  

The central challenge facing the SOE is to design service-oriented business processes within an enterprise 

in such a way that the process is visible and manageable end-to-end. As the number of services available 

within the enterprise increases, the execution pattern becomes increasingly difficult to define and to track. 

An SOE is still a relatively young research area within SOC, which itself is a young discipline at this time.  

Figure 1.16 shows an example of the layers in an SOE with composite e-business applications and web 

services as its foundation. The top layer of SOE is the configurable business logic. The next layer is the 

ebSOA (SOA for electronic business), which is a standard for service broker, including both registration 

and repository. The next layer is the Service-Oriented Management (SOM), which implements the 

nonfunctional features such as fault-tolerant computing, reliability, security, and policies. Service-Oriented 

Infrastructure (SOI) provides virtual services that represent the services that can be provided by hardware 

components; for example, Intel is developing this layer to map its hardware layer resources, including 

computing resources, memory resources, networking resources, devices, sensors, and actuators, to the 

service-oriented architecture. The bottom layer comprises the hardware devices that perform the required 

tasks.  

The development of enterprise software and e-business systems evolve with the supporting technologies. 

On the other hand, their requirements have been the driven force of the technology advancement. Figure 

1.17 shows the interaction and development of e-business and supporting technologies. Enterprise 
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Application Integration (EAI) is a milestone in e-business development. It is an integration framework 

composed of a collection of technologies and services. It is a middleware to enable integration of systems 

and applications across the enterprise; for example: a supply chain management application (for managing 

inventory and shipping) and a customer relationship management application for managing current and 

potential customers. The requirements for EAI include (https://en.wikipedia.org/wiki/ 

Enterprise_application_integration):  

• Data (information) Integrity: Ensuring that information in multiple systems is kept consistent. 

• Vendor independence: If one of the business applications is replaced with a different vendor's 

application, the business rules do not have to be reimplemented. 

• Common Facade: An EAI system could be a cluster of different applications. However, it can 

provide a single consistent access interface to these applications and shielding users from having 

to learn to interact with different software packages. 

 

Figure 1.16. SOE framework 
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Figure 1.17. Interaction between business requirements and technologies 

Business Process Management (BPM) is the next milestone in e-business development. It is a 
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and need. BPM allows organizations to abstract business process from technology infrastructure, and it 

goes beyond automating business processes or solving business problems using software. Instead, BPM 

enables business to respond to changing consumer, market, and regulatory demands faster than 

competitors—creating competitive advantage. The BPM life cycle consists of: 

• Design: Process design encompasses both the identification of existing processes and the design 
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The latest business requirements include: 

• Business intelligence applications (for finding patterns from existing data from operations) 

• Dynamic Business Composition requirement deals with changing environment and changing 

partners; reconfiguring business without stopping operations; and manual reconfiguration 

• On Demand Business with Artificial Intelligence requirement deals with proactive discovery; 

responsive reconfiguration in real time; resilient around the world and around the clock; 
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1.6 Discussions 

While SOC/SOA has been under development for the last 10 years and has been adopted by all major 

computer and software companies such as BEA, HP, IBM, Microsoft, Intel, Oracle, Sun Microsystems, and 

SAP, as well as government agencies such as the US Department of Defense, the British healthcare system, 

multiple Canadian provincial governments, and the State of Arizona. Many believe that SOA is relatively 

young, and much work is needed to be done. Specifically, SOA critics have pointed out several issues for 

improvement; for example, one issue is that SOA lacks a commonly agreed-upon definition. Some people 

believe that SOA is not well defined and thus it is difficult to characterize SOA; for example, in an early 

version at Wikipedia, the following definition is stated for SOA: 

“Service-oriented Architecture (SOA) is an architectural design pattern that concerns itself with 

defining loosely-coupled relationships between producers and consumers. While it has no direct 

relationship with software, programming, or technology, it is often confused with an evolution of 

distributed computing and modular programming.” 

This definition is not good enough for SOA, because this description also fits OO computing. An OO 

program can also be loosely coupled. In fact, loose coupling is one of the principal attributes of OO software. 

Furthermore, OO computing can be distributed computing, and certainly it is one of the common modular 

programming techniques. Some key SOA attributes, such as separation of definition from implementation, 

have also been used in OO software, as a class interface definition has been separated from its 

implementation. In fact, the concept of separating definition from implementation has been attempted for 

over 30 years in computing history, including data abstraction and procedural abstraction. Thus, this 

concept is certainly not new or unique.  

Some SOA definitions are based the common SOA protocols used; for example, if a software program uses 

XML, WSDL, OWL, BPEL and/or other protocol or standards, then it is an SOA software. This definition 

is still not good enough, because these SOA protocols are constantly being updated and revised. It is even 

possible that later versions of these protocols will have little resemblance to previous versions, as the SOA 

history certainly can testify that several SOA protocols have been completely replaced by newer protocols. 

Specifically, BPEL has replaced several SOA composition languages before. 

Some SOA authors also use SOA properties as definitions. However, this is not good enough either, 

specifically because some often-touted SOA properties are actually not available at this time; for example, 

dynamic composition is often an important characteristic of SOA. However, this feature is not available in 

a practical SOA environment yet. In other words, it is still a research topic. Most of the SOA tools today 

actually use static composition, that is, selecting services at the design time rather than at runtime 

dynamically. Thus, defining SOA by dynamic composition is not appropriate at this time. Furthermore, as 

SOA progresses, other SOA characteristics will emerge, and defining SOA by current SOA properties will 

prove to be too restrictive. 

Some define SOA software as a collection of services. However, this definition is too loose. If so, what is 

the definition of a service? Does a service have a state? Is a service passive, autonomous, thin, or fat? Some 

people say that a service should be a fat service, that is, a service that has many supporting facilities and 

tools and can be even more autonomous like a software agent. This definition looks interesting and makes 

a software service more intelligent and probably more useful than a traditional “passive” service. However, 

this definition actually makes the current SOA infrastructure almost invalid, as it does not support 

“intelligent” services yet. The current SOA infrastructure does not support those common SOA operations 

such as composition, deployment, governance, modeling, and interoperability. Unless a new SOA 

infrastructure framework is developed, it is difficult to support those autonomous services using the current 

SOA infrastructure.  

We prefer the definition from OASIS. According to the SOA reference model specification, SOA is a 

paradigm for organizing and utilizing distributed capabilities that may be under the control of different 
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ownership domains. It provides a uniform means to offer, discover, interact with, and use capabilities to 

produce desired effects consistent with measurable preconditions and expectations. The SOA reference 

model specification bases its definition of SOA on the concept of “needs and capabilities,” where SOA 

provides a mechanism for matching the needs of service consumers with capabilities provided by service 

providers. 

OASIS also has a definition of service: A mechanism to enable access to one or more capabilities, where 

the access is provided using a prescribed interface and is exercised consistent with constraints and policies 

as specified by the service description. Moreover, a service has service description, visibility, interaction, 

real-world effect, execution context, and contract and policy. However, this definition is too loose, because 

it can fit a passive or thin service, as well as a fat and intelligent service. 

Using these definitions, the SOA approach essentially allows a person to publish software components 

following some standards and allows others to discover and reuse. Note carefully that the above definition 

does not say that only software services can be published and discovered. In fact, numerous things such as 

workflows, collaboration templates, application templates, data, data schema, policies, test scripts, and user 

interfaces can be published, discovered, and reused by others, as listed in Table 1.3. 

Table 1.3. SOA publishable items 

Reusable artifacts Description 

Methods (or services) 
Basic building blocks in SOA and allows software development by 

composition. 

Workflows 
Specify the execution sequence of a workflow with possibly multiple 

services. They allow rapid SOA application development. 

Application templates 
Specify entire applications with their workflows and services. They 

allow rapid SOA application development. 

Data, data schema, and 

data provenance 

Data and associated data schema such as messages produced during 

SOA execution can be published and discovered. 

Policies 
Policies are used to enforce SOA execution and can be published for 

reuse. 

Test scripts 
Consumers, producers, and brokers can publish test scripts to be used in 

verification by other parties.  

Interfaces 
GUI design can be used and linked at runtime to facilitate dynamic SOA 

application with changeable interfaces. 

 Thus, potentially, SOA can publish and reuse not only software services, but also other software artifacts 

such as workflow, policies, and data. Let us attempt a working definition of SOA: 

An SOA is an approach for software construction, verification, validation, maintenance, and evolution 

that involves specification, implementation, and publication of software artifacts such as services, 

workflows, collaboration patterns, and application templates following certain open interoperability 

standards. This approach develops software by composition with reusable software artifacts. 

This working definition excludes an agent to be a service, but allows centralized and distributed SOA, as 

well as code, to be mobile. This definition allows various web service protocols to be used as a part of open 

interoperability standards, but it does not mention any specific protocols. In this way, all kinds of protocols, 

including future protocols, can be included as a part of SOA. Thus, various open interoperability standards 

for service specification (such as WSDL), workflow language (such as BPEL), and collaboration 
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specifications (such as CPP/CPA) can be used. At the same time, these standards can be updated or even 

replaced in future, while the working definition does not need to be updated. Of course, the working 

definition of SOA can be updated and be changed from time to time, as we understand SOA more in the 

future. 

Many outstanding books and papers that cover SOA are now available. Most of them are more suitable for 

working professionals. The standard organizations OASIS and W3C have developed most SOA-related 

standards and reference models. Furthermore, as SOA has started mainly from the computer industry, 

instead of from academia, one should search and navigate the SOA websites from the major industry players, 

the most notable ones including BEA, HP, IBM, Microsoft, Oracle, SAP, and Sun Microsystems. Readers 

can also find a large amount of SOA materials at DoD sites and DoD conference proceedings, as DoD is 

one of the earliest adopters of SOA. Many DoD engineers and contractors have worked on SOA, and they 

have gained significant experience. Due to the relative youth of SOA, many concepts and ideas are 

expressed in white papers or web blogs. 

Many universities around the world (mainly in Asia, Australia, North America, and Europe) also offer SOA 

courses. However, as SOA is a wide area, different topics are actually covered in them. Most of these 

classes have offered their materials on the web, and readers can search their websites for information.  

US federal government agencies, including the Department of Defense (DoD), have been actively 

promoting cloud computing and service-oriented computing (SOC). The Federal CIO (Chief Information 

Officer) Vivek Kundra made the following comments (Kundra 2009):  

• “I’m all about the cloud computing notion. I look at my lifestyle, and I want access to information 

wherever I am. I am killing projects that don’t investigate software as a service first.” 

• “The cloud will do for government what the Internet did in the ’90s. We’re interested in consumer 

technology for the enterprise. It’s a fundamental change to the way our government operates by 

moving to the cloud. Rather than owning the infrastructure, we can save millions.” 

• “It’s definitely not hype…Any technology leader who thinks it’s hype is coming at it from the same 

place where technology leaders said the Internet is hype.”  

• The federal CIO office also noted the significant productivity gain by using this new approach, “In a 

traditional IT procurement environment, it would have taken us about 6 months to upgrade USA.gov 

to better meet the needs of our citizens. However, in the cloud environment we are now able to do 

upgrades in one day.”  

In February 2011, Vivek Kundra released his “Federal Cloud Computing Strategy.” In the report, he stated 

that an estimated $20 billion of the Federal Government’s $80 billion in IT spending could be used for 

migration to cloud computing solutions (https://www.dhs.gov/sites/default/files/publications/ digital-

strategy/federal-cloud-computing-strategy.pdf).  

Another important event is the network-based operating system (OS) by Google—Chrome OS—and it is a 

radical departure from the conventional desktop-based OS, because it does not install any software on the 

desktop computer, that is, all applications must be software services from the web. In other words, Chrome 

OS forces all of its users to adopt SOC. This shows the commitment of Google to cloud computing and 

SOC.  
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1.7 Exercises and Projects  

1. Multiple choice questions. Choose one answer in each question only, unless otherwise specified. 

1.1 Which of the following are fallacies of distributed systems? 

(A) Latency is zero.    (B) Bandwidth is infinite.  

(C) The network is secure.   (D) Topology does not change. 

(E) All of them are fallacies. 

1.2 Generally speaking, a service is an interface between the  

(A) service provider and the service broker. (B) service requester and the service broker. 

(C) Yellow Pages and the Green Pages. (D) producer and the consumer. 

1.3 Which architecture is always a tiered architecture?  

(A) Client-server architecture (B) CORBA 

(C) Service-oriented architecture (D) DCOM 

1.4 Which concept is least related to coding? 

(A) Service-oriented architecture (B) Service-oriented computing  

(C) Service-oriented software development (D) Object-oriented programming 

1.5 Which entity does not belong to the three-party model of SOC software development? 

(A) Service provider   (B) Service broker  

(C) Application builder   (D) End user of software 

1.6 What is the most significant difference between the Distributed Object Architecture (DOA) (e.g., 

CORBA and DCOM) and the Service-Oriented Architecture (SOA)? 

(A) SOA software has better modularity. 

(B) SOA software does not require code-level integration among the services.  

(C) DOA software has better reusability. 

(D) DOA software better supports cross-language integration. 

1.7 Which concept is least related to the application composition? 

(A) BPEL   (B) Choreography 

(C) Orchestration    (D) Code integration 

1.8 XML is  

(A) an object-oriented programming language.  

(B) a service-oriented programming language. 

(C) a database programming language. 

(D) a standard for data representation. 

Name: ________________________  

Date: ________________________ 
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1.9 Which protocol enables remote invocation of services across network and platforms? 

(A) XML (B) SOAP (C) WSDL (D) UDDI 

1.10 Which of the following is/are the proposed features of Web 2.0? 

(A) Software as operational services. 

(B) Users are treated as codevelopers.  

(C) Use loosely coupled and easy-to-use services to compose applications. 

(D) Use services and data from multiple external sources to create new services and applications. 

(E) All of the above. 

1.11 The main idea of cloud computing is to shift computing from 

(A) web to desktop.   (B) service orientation to object orientation.  

(C) desktop to web.   (D) Web 2.0 to Web 3.0.  

1.12 What are the key concepts in cloud computing? Select all that apply. 

[  ] Infrastructure as a service   [  ] Platform as a service  

[  ] Programming language as a service [  ] Software as a service  

2. What are SOA, SOC, SOD, SOE, SOI, and SOSE? Briefly state their definitions based on your 

understanding. 

3. What are the main differences between requirement analyses in the OOC paradigm and those in the 

SOC paradigm? 

4. What are the major benefits of separating an application builder from the service providers? 

5. What are the main techniques in SOSE (service-oriented system engineering)? For each technique, 

write one or two sentences to describe its purpose. 

6. Compare and contrast the traditional software development process and the service-oriented software 

development process. For each step of the development, write a paragraph to describe the purposes, 

responsibilities, and functions of the step. 

7. What is a service registry? What is a service repository? What are their differences? 

8. An electronic travel agency needs to be developed. What is your responsibility if you are:  

8.1 A service provider? 

8.2 A service broker? 

8.3 An application builder? 

9. You plan to invent a unique online game: 

9.1 Describe what you must do as an application builder and what you can expect the service providers 

to do for you. 
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9.2 Describe your invention idea and list everything you must do as an application builder. 

9.3 List everything that you can possibly find through service brokers. 

10. List a few application areas where you believe SOC is a better fit than OOC. State your reasons and 

justifications. 

11. What are the impacts of the SOC paradigm to the IT market and to computer science graduates? 

12. Search on the Internet to find the major tools that support the Mashup-based application development. 

13. Search on the Internet to find the major tools that enable the development and deployment of cloud 

computing applications. 

14. This is an open problem. Search on the Internet to find a web service testing tool. Download their 

reports and white papers, and write a half-page summary about the tool. 

 

Project 

A Service-Oriented Computing Workshop 

As SOC is a young discipline, students will learn a great deal by doing their own research on SOC. One 

way to facilitate the research is to organize a workshop within the class. Specifically, each student needs to 

submit a paper to the workshop organized by the instructor and the teaching assistants. A sample call for 

papers is given below. 

 

“CALL FOR PAPERS” 

Workshop on Introducing Service-Oriented Computing (WISOC) 
 

Scope – Workshop on Introducing Service-Oriented Computing (WISOC) serves as an initial meeting for 

participants of distributed service-oriented software development course at Arizona State University to 

exchange results and visions on all aspects of Service-Oriented Computing (SOC), Service-Oriented 

Architecture (SOA), and Service-Oriented System Engineering (SOSE). Starting with this new paradigm 

and their realization in Web Services (WS), WISOC covers all areas related to architecture, semantics, 

language, protocols, dependability, reliability, security, discovery, composition, publishing, testing and 

evaluation, interoperability, business process, as well as the deployment and experience of real service-

oriented systems.  

Topics of Interests – WISOC invites state-of-the-art survey submissions on all topics related to service-

oriented computing, including (but not limited) to the following: 

• Service Orientation Concepts and Definitions  

• Service Modeling and Specification  

• Service Requirements Engineering  

• Service Semantics and Ontology  

• Services and Business Processes  

• Services, Components, and Agents  

• Design Patterns and Service-Oriented Design Patterns  
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• Service-Oriented Development Processes and Methods  

• Service Publishing, Discovery, and Invocation  

• Service Composition, Interoperability, Coordination, Orchestration, and Chaining  

• Service Reputation and Trust  

• Intelligent Selection, Service Brokering, and Service Level Agreement and Negotiation  

• Services and Legacy Systems  

• Service-Oriented Enterprise Architecture  

• Service-Oriented System Implementation and Deployment  

• Service-Oriented Verification, Testing, and Evaluation 

• Service QoS, Dependability, Reliability, and Performance 

• Service Policy Management  

• State Management 

• Service-Oriented Database and Service-Oriented Information Management 

• Service Privacy, Confidentiality, and Security  

• Service Oriented Real-Time and Embedded Systems  

• Service-Oriented Robotics Computing 

• Service on Peer-to-Peer Network  

• Service-Oriented Embedded Systems 

• Service on Grid Network 

• Web 2.0 and Web 3.0 

• Linked Data 

• Cloud Computing, Software as a Service, Platform as a Service, and Infrastructure as a Service 

• Enterprise application software 

 

This project consists of the following activities. The total number of points each student can obtain is 100. 

Ten percent of the papers will receive 10 bonus points as the best paper award. 

1. The paper: 80 points 

The points will be awarded based on the instructor’s evaluation, as well as the peer evaluation, according 

to the following evaluation criteria, with 10 points for each criterion: 

1) The paper is relevant to one of the focus areas given in the call for papers. 

2) The paper has well-defined questions to address, and the materials are coherent and consistent. 

3) The paper clearly presents the ideas and is easy to read. 

4) The paper is technically sound and correct. 

5) The paper is interesting and informative, which makes the reviewers feel it is useful to read. 

6) The abstract and the summary, which summarize the paper well at the beginning and at the end, 

are concise. 

7) The paper effectively uses diagrams and/or tables to present the ideas. 

8) The paper closely follows the IEEE conference paper format and the given guidelines in the call 

for papers. 

9) If the paper is a team project, the workload must be divided equally among the team members. It 

must be made clear which sections are written by (are the responsibility of) which member. The 

reviewers may give different scores to different team members based on the sections and the 

paragraph each member responsible for. 

10) 2. Peer Evaluation: 10 points 

11) Each student will act as a reviewer and will review three papers and submit three review reports. 

The quality of the review reports will be evaluated by the instructor. Up to 10 points will be 

awarded. 

12) 3. Improvement of the paper based on the review reports: 10 points. 
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13) The authors of each paper must improve the paper based on the comments in the review reports. 

The changes made must be shown in “Track Changes” in MS Word. You can turn on the track 

changes in the Tool menu. Resubmit the paper after the revision. The instructor and the teaching 

assistants will determine if the improved paper addresses the comments given by the reviewers. A 

camera-ready copy must be submitted, and the papers will be published in an electronic form.  

14) Previous workshop proceedings are available at the website:  

http://www.public.asu.edu/~ychen10/teaching/cse445/index.html 

 

Typical Components of Technical Papers/Reports 

 

Title 

Author(s) 

 

Abstract 

Summary of important issues and results, assuming the readers have not read the full report. 

Introduction 

This section may cover background information, related work, the purposes of this writing this paper, 

outline of the paper, and so forth. 

The Main Sections 

They may contain several or all of the following components: 

• Overview, including the architecture of the system; 

• Model development: explore a few models—model refinements, include graphic, equations, and 

so forth; 

• Procedure (the steps are you going to use to complete this design, assumptions); 

• Design of experiment, simulation, implementation; 

• Discussion of results: the numerical and graphic results, and from models, upper and lower limits. 

Summary/Conclusions 

Summary of the work and the important results, assuming the readers have read the full report. 

Acknowledgments 

Who have helped the authors in preparing the research and on what issues?  

References 

List the all the references that you have based your work on, related to, referred to, and so on. Each reference 

you have listed must be cited in the paper. List the references in IEEE proceedings reference format. 

Appendices (if any) 

For example, Excel spreadsheet, diagrams, and extra explanations. 

Other issues: Include page numbers, cite the references the content is based on, related to, and referred to. 

Follow the required format. 
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Review Form 

Workshop on Service-Oriented Computing (WSOC) 

 

Paper ID:  

Paper Title:  

1. Numerical Evaluation  

Scale: (0−2) Strongly disagree, (3−-4)Weakly disagree, (5−6) Marginal, (7−8) Weakly agree, (9−10) 

Strongly agree  

Evaluation questions: 

1) The paper is relevant to one of the focus areas given in the call for papers (0−10). 

2) The paper has well defined questions to address, and the materials are coherent and consistent 

(0−10). 

3) The paper clearly presents the ideas and is easy to read (0−10). 

4) The paper is technically sound and correct (0−10). 

5) The paper is interesting and informative, which makes the reviewers feel it is useful to read 

(0−10). 

6) The abstract and the summary, which summarize the paper well at the beginning and at the end, 

are concise (0−10). 

7) The paper effectively uses diagrams and/or tables to present the ideas (0−10). 

8) The paper closely follows the IEEE conference paper format and the given guidelines in the call 

for papers (0−10). 

2. Detailed Comments 

Please supply detailed comments to support each of your scores. You may also indicate any errors you 

have found. The length of the comments must be between 15 and 30 lines.  


