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Abstract—Synchrophasor estimators are nowadays evaluated
with the Total Vector Error (TVE) using the synchrophasor rep-
resentations of the few benchmark signals. This synchrophasor
dependence prevents its application to power signals of real
events. A new method to obtain the synchrophasor of real
signals is proposed in this paper. A finite impulse response
(FIR) filter, designed with the nonic O-spline is proposed to
obtain phasor estimates asymptotically close to those of an
ideal bandpass filter. The phasor estimation accuracy of one or
several Phasor Measurement Units (PMUs) can be then assessed
using the standard. In addition, it is possible to design two
FIR differentiators to obtain frequency and ROCOF estimates
close enough to those of ideal differentiator filters, and largely
compliant with the standard. This new set of filters opens the
way to apply the synchrophasor standard to assess estimates of
PMUs of different brands when they process the same signals
of a power system event. In this paper, the erratic phasor and
frequency estimates produced by a SEL-351A PMU from a real
distributed generation system are assessed to corroborate that the
synchrophasor standard can be opened to this new application
based on real signals from the field, previously considered as
impossible.

Index Terms—Frequency, O-splines, phasor measurement unit,
rate of change of frequency, synchrophasors, total vector error.

I. INTRODUCTION

DYNAMIC synchrophasor estimation from power system
signals continues being an open problem and a challenge

to improve the performance of power systems in general,
and of modern grids with renewable energy resources in
particular. As the Wide-Area Monitoring System (WAMS) [1]
installations are growing, phasor data are taken into account to
support the decision process needed to increase the reliability
of power grids.

Recently, phasor measurement technology and synchropha-
sor networks have expanded significantly in many countries
[2]-[6]. In the meantime, a considerable effort is done to
regulate the required parameter accuracy [7]. However, there
are still cases in which erratic estimates or coarse parameters
are furnished by devices as the one disclosed in this paper. This
indicates that those earnest efforts to foster instrumentation are
failing in tailoring it to its high-fidelity demands.
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Despite the concept of dynamic phasor [8] is now adopted in
the recent International Standard of Synchrophasors for Power
Systems [9], its estimation error is still the Total Vector Error
(TVE) defined in [10]-[11]. TVE was conceived to combine
amplitude and phase errors into a single measure [12]. But its
definition assumes steady-state signals during the observation
window, which is valid only for static phasors, but clearly
insufficient for dynamic ones. In addition, TVE is useful only
for signals whose synchrophasors are known.

Algorithms based on the Discrete Fourier Transform (DFT)
[13]-[16] are designed under the TVE static assumption.
Presumption of signals with dynamic amplitude and phase
variations, leads to new methods such as those in [17]-[19],
and has impelled the successive amendments of the Standard
for Synchrophasor Measurements for Power Systems [10]-
[11].

Nowadays, the focus of the standard is placed on the noise
sensitivity of the PMUs [20], on frequency and Rate of Change
of Frequency (ROCOF) estimation problems [21]-[23]. But
evidence of this paper indicates that an effort is still needed
to improve the basic accuracy of PMU technology.

Synchrophasor standard [9]-[11] defines a dynamic syn-
chrophasor representation for power system signals and its
measurement requirements. It establishes static and dynamic
requests, including those for transient performance. Its bench-
mark signals are crucial since they constitute the only mea-
surands for TVE. Nonetheless, they establish also its main
weakness, since TVE and the synchrophasor standard itself is
useless to assess PMU estimates obtained from real signals,
for which their synchrophasors are not available.

Our research problem is an event captured by a SEL-351A
PMU. It was recorded in a small system with a distributed solar
and wind power generation. The PMU provided its own phasor
estimates and the oscillographic data of voltages and currents.
Under this circumstances, our problem consists in assessing
the rendered PMU phasor estimates, or those obtained with
any other phasor estimation algorithm. But TVE cannot be
applied in this case, since the ideal synchrophasors of the real
signals of the event are not available. This is a Kuhn’s anomaly
for the Standard. To solve it, we need a method to obtain the
ideal synchrophasors of the real signals.

At that time, FIR filters designed with O-splines were nu-
merically available [17], and we thought that synchrophasors
from the event could be obtained with one of those filters with
high order. The O-splines were found recently in closed-form
in [24], and disclosed as convergent to the ideal lowpass filter,
when the order K goes to ∞. In consequence, they provide a
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Cauchy sequence of filters that perform as ideal filters as the
order increases. This means that if the signal spectral density
about the fundamental frequency is contained under their ideal
gain, its phasor estimates also converge to the ideal one: i. e.,
the synchrophasor we need to obtain.

The contribution of this paper is to propose a convergent
series of bandpass FIR filters designed with O-splines to obtain
phasor estimates sufficiently closed to the ideal synchrophasors
of signals coming from the field. There is not a single
published paper attempting to assess the PMU performance
from real signals, most of them are done with test systems
[25] or real time digital simulators [26]. All of them are about
the Standard benchmark signals, whose main shortcoming is
precisely that it depends on known synchrophasors.

For the signals of the event, we observed that the Euclidean
distance between phasor estimates obtained with the nonic
and decimononic filters are already very small. For a Cauchy
sequence, this means that the nonic estimates are already very
close to the ideal ones. In consequence, in this paper a FIR
filter designed with the nonic O-spline [24] is proposed to
obtain the synchrophasor of the real signals. This method not
only opens the way to the use of TVE to assess the accuracy
of the PMU based on real signals, such as those available
in a control center; but also to the application of the whole
synchrophasor standard to real signals, which until now it is
confined to its benchmark signals. In addition, the provided
method provides a very accurate filter for phasor estimation,
with smaller errors than those of high-accuracy filters proposed
in the recent literature [27], [28], and [29].

Another advantage of the O-splines is that with its first
two derivatives it is possible to design FIR differentiators to
estimate frequency and ROCOF with high accuracy. They also
converge to ideal bandpass differentiators.

The remainder of the paper is organized as follows. Section
II compares the frequency response of the Cosine filter with
the nonic FIR filter, and presents its two first differentiators.
The rationale of the proposed method for obtaining the syn-
chrophasors from real signals is presented in Section III. In
Section IV, we show that the proposed filters are compliant
with the standard. Then, the topology of the system of the
recorded event, the oscillographic data, and the estimates
provided by the PMU are presented in Section V. Section
VI presents the obtained synchrophasors and the TVE of the
PMU estimates, as well as the PMU frequency estimates. It is
concluded that PMU estimates are awfully erratic, not only in
phase but also in amplitude.

II. COMPARED FILTERS

In this section, the formulation of the compared filters
is developed and their frequency responses illustrated. The
Cosine filter is implemented in the PMU that furnished the
analyzed data. And the nonic O-spline provide the high-
order FIR filter with which we obtain the best synchrophasor
estimates from the given signals.

A. Cosine filter
The formulation of the implemented Cosine filter, is taken

from [30]. It is a “mimic” version of the full-cycle Fourier

filter, whose phasor estimate at `, ξ`, is given by [31]:

ξ̂` = 〈x`,
1

N
ejθ1n〉 =

1

N

N
2 −1∑

n=−N
2

x(`+ n)e−jθ1n, (1)

where x` is a vector with last available signal segment of
one-cycle, 1

N e
jθ1n is another vector with that sequence, and

θ1 = 2π
N is the angular fundamental frequency.

The Cosine filter projects a complex signal x` + jx`−N/4
onto the real part of the complex exponential function. We
have:

ĉ` = Re{ξ̂c`} = 〈x`,
1

N
cos θ1n〉 (2)

ĉ`−N/4 = Im{ξ̂c`} = 〈x`−N/4,
1

N
cos θ1n〉 (3)

Its complex form illustrates the key idea of the Cosine filter:

ξ̂c` = ĉ` + jĉ`−N/4 = 〈x` + jx`−N/4,
1

N
cos(θ1n)〉. (4)

Notice that the anti-rotation of a quarter cycle in the sequence
x`−N/4 is compensated by the factor j of the imaginary part.

Of course, this construction assumes that the analyzed signal
frequency is equal to the fundamental and that amplitude and
phase must be constant during one and a quarter of a cycle.
This supposition constitutes the main weakness of this phasor
estimator, especially when the power signal is oscillating.

According to (1), from a signal of length L a sequence of
phasor estimates ξ̂c` , ` = N

2 ,
N
2 + 1, . . ., L − N

2 + 1, can be
obtained as follows:

ξ̂c` =
1

N

N
2 −1∑

n=−N
2

[x`+n + jx`−N
4 +n] cos θ1n, (5)

with the following z transform [31], [32]:

Ξc(z) = X(z)z`[1 + jz−N/4]
1

N

N−1∑
n=0

cos(θ1n)z−n, (6)

thus, after the anti-rotation (z−`), the transfer function of the
Cosine filter, is

Hc(z) = [1 + jz−N/4]Hc(z), (7)

and Hc(ejθ) is its frequency response in terms of the angular
frequency θ, for −π ≤ θ ≤ π. Fig. 1 shows the frequency
response of the Cosine filter. It is asymmetric, and with
high sidelobes that infiltrate the image (negative) fundamental
frequency when the signal is under oscillating conditions.

The Cosine filter implemented according to the available
literature of the seller [30] provided phasor estimates much
less erratic than those of the one implemented in the PMU. We
assume that this algorithm is compliant with the Synchropha-
sor Standard as a P class filter due to its applications in many
protection systems. Its compliance with the Standard is beyond
the scope of this paper.
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Fig. 1. Ten-cycle Nonic O-spline (top plot), and at the bottom the frequency
responses of the nonic bandpass filter used to extract the synchrophasor, and
of the Cosine filter used in the PMU.

B. Nonic O-spline FIR bandpass filter

In [8] the accuracy of DFT phasor estimates was improved
under oscillatory conditions, by adding Taylor terms modu-
lated at the fundamental frequency. Then, the DTTFT was
proposed in [17] to expand the dynamic phasor estimates
to the harmonics included in the sampling frequency band.
Finally, it was found that DTTFT bandpass digital filters are
simple modulated version of the O-splines, which were found
in closed-form in [24].

The polynomial cyclic pieces pc(u), c = 1, 2, . . . ,K + 1 of
any O-spline of order K can be obtained [24] by the following
equation:

pc(u) =
1

Dc

K+1∏
n=1
n6=c

(u+ n− c), c = 1, 2, . . . ,K + 1 (8)

where u is the cyclic time normalized with respect to the
fundamental period u = [0, 1), c is the index of the polynomial
pieces from left to right, and the common denominator Dc is
the product of the roots of each polynomial piece pc(u). Any
odd order K O-spline ϕ̃(K)

0 (u), u = [−(K+1)/2, (K+1)/2],
can be obtained as a simple consecutive concatenation of
the polynomial pieces in (8). This analytic formulation cir-
cumvents the numerical instability in the inversion of the
Taylor matrix found in the algorithm of its numerical solution
[17], due to the small determinants of the Taylor matrices
when the sampling time is small and K is large. The Matlab
function used to calculate O-splines of order K and its first
two derivatives can be found in Appendix A.

DTTFT bandpass filters are simply modulated versions of
the O-splines at a particular harmonic frequency. We have:

h(K)
m (u) = ϕ̃

(K)
0 (u)ej2πmu, m = 0, 1, . . . ,M − 1. (9)

In [24] it is demonstrated that O-splines tend to the ideal
lowpass filter as the order K →∞, and that their derivatives
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Fig. 2. Impulse Response of nonic Taylor-Fourier Lowpass Filter, and first
two derivatives.

tend to the corresponding ideal differentiator. Then the syn-
chrophasor of a real signal can be extracted with h(K)

1 (u) and
an order K sufficiently large.

The top plot of Fig. 1 shows the nonic O-spline ϕ̃
(9)
0 (t)

with a duration of ten cycles, and the bottom plot depicts
the frequency response of the nonic DTTFT bandpass filter
h
(K)
1 = ϕ̃

(9)
0 (t)ej2πf1t at the nominal fundamental frequency

f1, used in this paper to extract the synchrophasor of voltage
and current signals of the event. Despite its support of ten
cycles, the two polynomial pieces at its extremes are very
small. They can not be truncated since they are very important
to shape its spectrum, but the transient of its step response can
be considered of only 6 cycles, for practical purposes.

Fig. 2 displays the nonic O-spline and its first two deriva-
tives. By modulating these at the nominal fundamental fre-
quency, we obtain the impulse responses of the bandpass
differentiators that estimate the phasor derivatives, from which
frequency and rate of change of frequency (ROCOF) are
obtained.

The first differentiator modulated at the m-th harmonic is
given by:

f (K)
m (u) = f0 ˜̇ϕ(K)

0 (u)ej2πmu, m = 0, 1, . . . ,M − 1, (10)

and the second differentiator by:

r(K)
m (u) = f20 ˜̈ϕ(K)

0 (u)ej2πmu, m = 0, 1, . . . ,M − 1. (11)

where f0 is the central or fundamental frequency.
The discrete time versions of (9)-(11) is divided by N0, the

number of samples per fundamental cycle. See (7) in [24], and
Appendix B.

Amplitude and phase derivatives can be obtained from the
estimates of the phasor and its first derivatives, as follows [33]:

â` = 2|ξ̂`| ϕ̂` = ]ξ̂` (12)̂̇a = 2 Re{̂̇ξ`e−jϕ̂`} ̂̇ϕ` =
2

â`
Im{̂̇ξ`e−jϕ̂`} (13)

̂̈a` = 2 Re{̂̈ξ`e−jϕ̂`}+ â` ̂̇ϕ2

`

∣∣̂̈ϕ` =
2

â`
Im{̂̈ξ`e−jϕ̂`} − ̂̇a` ̂̇ϕ`

(14)
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Fig. 3. Frequency response of nonic and decimononic bandpass filters.

where â` and ϕ̂` are the estimated amplitude and phase,
respectively, and their derivatives are indicated with the cor-
responding number of dots. Notice that p̂` = â`e

jϕ̂` . In
Appendix B is the code in Matlab to obtain those derivatives
for K > 3.

Finally, Fig. 3 exhibits the frequency response in dB of the
bandpass filters built with nonic and decimononic O-splines.
Note they are very similar, with the first sidelobe at −33dB
and stopbands going down to −350dB about the harmonic
frequencies. The main difference of the decimononic filter is
a wider stopband. This explains why their phasor estimates
are very similar for the given signals. We use the nonic filter
because its shorter length.

III. OBTAINING THE SYNCHROPHASOR FROM REAL
SIGNALS

Fig. 4 illustrates the block diagram of the signal processing
proposed in this paper. The first three blocks enclose the
bandpass filters which obtain the phasor estimate ξ̂(t) and its
derivatives ̂̇ξ(t), and ̂̈ξ(t), from which amplitude and phase
derivatives are obtained by applying (12)-(14).

The key idea of this paper can be clearly seen in this
diagram. Since O-splines converge to the Sinc function as
the order K → ∞, their spectra converge to the rectangular
spectrum of the ideal lowpass filter. Since the O-spline se-
quence is convergent in a metric space, then it is also a Cauchy
sequence [34]. Therefore, it is sufficient to define any positive
real number ε > 0 to ensure that there is a positive integer
N such that the (Euclidian) distance between two O-splines
d(ϕ̃

(n)
0 (t), ϕ̃

(m)
0 (t)) < ε, whenever n,m > N . We claim

that with N = 9 the distance is already sufficiently small,
and so does the distance between the estimated phasors. In
consequence, by increasing the order K of the filters h(K)

1 (t),
f
(K)
1 (t), and r

(K)
1 (t), the estimates of amplitude and phase

(and derivatives), will converge to the ideal ones.
We do not recommend to modify this scheme with the dif-

ferentiators suggested by the Standard, since the differentiators
obtained by applying those short difference equations to the
discrete version of the O-spline ϕ̃(K)

0 (u) are not equal to those
of ˜̇ϕ(K)

0 (u) and ˜̈ϕ(K)

0 (u), especially the second one, which

s(t)

h
(K)
1 (−t) ξ̂(t)

(12) ϕ̂(t)

â(t)

f
(K)
1 (−t)

̂̇
ξ(t)

(13)

̂̇a(t)̂̇ϕ(t)

r
(K)
1 (−t) (14)

̂̈
ξ(t)

̂̈a(t)̂̈ϕ(t)

Fig. 4. Flowchart of the proposed method. First, the signal s(t) is filtered
by the bandpass filters h

(K)
1 (−t), f

(K)
1 (−t), and r

(K)
1 (−t) to produce

estimates of the complex phasor, and its first two derivatives. Then, equations
(12)-(14) are applied to obtain amplitude and phase derivatives at the output.

has sharp spikes at its knots, where samples of two different
polynomials are together.

IV. O-SPLINE COMPLIANCE WITH THE SYNCHROPHASOR
STANDARD

After knowing how to obtain the O-splines, and how to
design FIR filters, the first question we need to answer is if the
nonic DTTFT filter complies the Synchrophasor Standard [10]
and its first Amendment [11]. The answer is yes, its maximum
errors are well below the benchmarks of the standard, as it was
expected. In which follows, the error bounds achieved by the
filter are listed case by case and compared with the boundaries
of the standard [10]-[11] at the right. Since the support of the
nonic O-spline is ten cycles, the nonic DTTFT filter is Class
M.

A. Steady-State compliance

Measurements taken from steady-state signals with a fre-
quency range of ±5 Hz, and with harmonic distortion, are
shown in the first two rows of Table I. As can be seen, the
proposed filter is well below the limits in these cases.

The third row of Table I indicates the out-of-band test. The
passband of the lowpass filter at -20dB is of 37Hz, which
corresponds to a reporting rate of 74 frames per second. Since
this is not admitted in the Standard, we take the reporting rate
of 120. Thus, the frequency range of the input signal is 60±12
Hz, with an outband frequency of 120Hz. Within this range,
frequency and ROCOF are compliant, but TVE surpasses the
limit of 1.3 %. TVE is compliant within the range of 60± 10
Hz.

B. Dynamic complience - Measurement Bandwidth and Ramp
of System Frequency

The measurements for the amplitude and phase modulated
signals, as well as the signal with a ramp rate of 1 Hz/s, and
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in the ±5 Hz interval, are pointed out in Table II. The filter
performance is remarkable for these signals.

C. Dynamic complience - Step Changes in Amplitude and
Phase

Finally, the measurements of signals with amplitude or
phase steps are shown in Table III. It passes all the tests,
except the response time, which exceeds by 0.23 cycles the
limit of the Standard, which is measured under ±1 % of TVE.
However the transient (from the steady-state end to the next
steady-state start) is of 6 cycles for both steps.

TABLE I
STEADY STATE COMPLIENCE.

Case Measurement Standard Limit

f0 ± 5 Hz
TV E = 2.185× 10−5 % 1%
|FE| = 0 Hz 0.005 Hz
|RFE| = 5.128× 10−6 Hz/s 0.1 Hz/s

10 % Harmonic
distortion up to
50th

TV E = 2.5× 10−12 % 1 %
|FE| = 6× 10−15 Hz 0.025Hz
|RFE| = 1.5× 10−13 Hz/s Limit Suspended

Out-of-Band
TV E = 2.9933 % 1.3 %
|FE| = 1.166× 10−05 Hz 0.01 Hz
|RFE| = 6.9919× 10−05 Hz/s Limit Suspended

TABLE II
DYNAMIC COMPLIENCE - MEASUREMENT BANDWIDTH.

Case Measurement Standard Limit

Amplitude
Modulated

TV E ≤ 2.5× 10−6 % 3 %
|FE| ≤ 1.95× 10−7 Hz 0.3 Hz
|RFE| < 7.357× 10−6 Hz/s 14 Hz/s

Phase
Modulated

TV E ≤ 4.71× 10−5 % 3 %
|FE| ≤ 6.92× 10−6 Hz 0.3 Hz
|RFE| < 1.65× 10−3 Hz/s 14 Hz/s.

Frequency
Modulated

TV E ≤ 2× 10−5 % 1 %
|FE| ≤ 1.627× 10−6 Hz 0.01 Hz
|RFE| < 5× 10−4 Hz/s 0.2 Hz/s

TABLE III
DYNAMIC COMPLIENCE - STEP RESPONSES.

Case Measurement Standard Limit

Step

Response time = 7.23 cycles 7 cycles
Amplitude delay time = 0 cycles 1

4
cycle

Overshoot = 6.4 % 10 %
Frequency response time = 6 cycles 14 cycles
ROCOF response time = 6 cycles 14 cycles

Step

Response time = 7.37 cycles 7 cycles
Phase delay time = 0 cycles 1

4
cycle

Overshoot = 7.4 % 10 %
Frequency response time = 6 cycles 14 cycles
ROCOF response time = 8 cycles 14 cycles

Frequency

TV E ≤ 2× 10−5 % 1 %
Modulated |FE| ≤ 1.627× 10−6 Hz 0.01 Hz

|RFE| < 5× 10−4 Hz/s 0.2 Hz/s

V. STUDY CASE: EVENT IN SYSTEM WITH SOLAR AND
WIND POWER GENERATION

The topology of the low-voltage distributed generation
system analyzed in this paper is displayed in Fig. 5 and
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Fig. 5. Topology of the low-voltage distributed generation system considered
in this paper with two PVSs and one WPS interconnected to the grid.
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Fig. 6. Voltage waveforms with amplitude estimated by the PMU.

described in the following. Installed power of 8.1 KW with
two photovoltaic systems (PVS) and one wind power system
(WPS). Most of the time, the PVS is exposed to 12 sun
hours, which is sometimes affected by unclear sky associ-
ated with cloudy conditions, changing the generated power,
and causing abrupt current drops or variations on electrical
variables monitored in the point of interconnection (POI), or
point of common coupling toward the low-voltage power grid.
Similarly, generated power by the WPS depends on the total
power available in the wind (this is a function of air density,
wind speed, and the area swept by the blades) [35].

The system is monitored using a PMU equipped with the
Cosine filter phasor estimator, which carries out the estimation
process from voltage and current signals in the abc reference
frame, and in their symmetrical components. Three transform-
ers are employed to transduce the current inputs toward the
PMU. Signals are sampled at 128 samples per fundamental
cycle corresponding to 60 Hz.

A sudden change in the system frequency triggered the
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Fig. 7. Voltage spectra and frequency response of the (nonic DTTFT) filter.
At the bottom, voltage oscillography and the corresponding synchrophasors
(amplitude and phase). Phases are forced to start at zero.

recording of the event. The instantaneous measurements of
voltages, together with their PMU amplitude estimates are
illustrated in Fig. 6. Note that amplitude estimates have
a significant quivering behavior, especially in voltage. The
amplitude estimates of currents are similar than those of the
voltages. This erratic behavior in the PMU amplitude estimates
was not found in those obtained from the oscillographic
data with our implemented Cosine filter, which is supposedly
applied in the PMU. PMU phase estimates are even more
erratic than those of amplitude.

VI. DYNAMIC PHASOR OF OSCILLOGRAPHIC SIGNALS

In this section, the synchrophasors of voltage and currents
obtained with a nonic DTTFT are illustrated.

The top plot of Fig. 7 shows the spectra of voltage signals
with the frequency response of the nonic DTTFT filter (in dB).
For the given signals, it performs as an ideal filter, i. e., with
a flat top unit gain about the fundamental frequency, and zero
gain stopbands (going down to −350 dBs) about harmonic
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Fig. 8. Current spectra and frequency response of the (nonic DTTFT) filter.
At the bottom, current oscillography and the corresponding synchrophasors
(amplitude and phase).

frequencies, where the predominant non-fundamental energy
of the signals is found. This is important especially in the
currents which are shown in the top plot of Fig. 8. The
module and phase angle of the estimated synchrophasors
obtained from the oscillographic data are shown at the bottom.
Those plots are focused on the interval with the stronger
dynamic changes. By comparing the oscillographic data with
the reconstructed signal with the synchrophasor in Fig. 9, it
can be seen that the nonic DTTFT filter makes an excellent
rejection of the apparent harmonic components in the top plot
of Fig. 8, and preserving the fundamental component with high
fidelity due to its wide flat-top passband.

A. TVE of Voltages and Currents

Current phasor estimates are shown in Fig. 10. The left
column of those figures depicts the amplitude, and the right
one the phase angle. Nonic DTTFT estimates are superposed
of those of the PMU. Notice the PMU phase estimates are
worst than those of amplitude, for example, those of Ia have
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the full range from 0 to 2π. The same can be said about the
phase estimates of the voltage signals.

This erratic behavior in the PMU amplitude and phase
estimates is maybe due to a random variation in the sampling
time observed in the time variable reported by the PMU.

Fig. 11 shows the TVE of the PMU estimates. TVE is
calculated with the synchrophasor obtained with the nonic O-
spline filter from the voltage and current oscillographic data
of the PMU. As can be seen, the PMU performance is very
poor, since its estimates have a TVE range in the hundreds.

B. Frequency and ROCOF Estimates

Finally, the top plot of Fig. 12 depicts the frequencies
obtained from voltages with the nonic O-spline first differ-
entiator, and at the bottom the ROCOF obtained with the
second one. Both estimates are calculated according to (13)-
(14). Since voltage phase estimates are continuous and smooth
(see the bottom plot of Fig. 7), their derivative estimates
are valid measurements. Notice that they are very clean as
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Fig. 11. TVE of PMU Voltage (left), and current (right) estimates.

compared with the noisy frequency estimates provided by
most of the PMUs. Zero crossings of the ROCOF plots
coincide with the maxima and minima in the frequency plots.
Frequency estimates are compared with those rendered by the
PMU. There is no information available about the algorithm
employed by the PMU, but it can be seen that they correspond
to per-segment averages, and delayed versions of its original
frequency estimates. The average operator serves to clean
its erratic behavior. In consequence, the frequency O-spline
estimates are much less inexact than those provided by the
PMU.

VII. DISCUSSION

Nowadays, the estimation performance of PMUs can be
only known through the benchmark signals of the standard,
for which their synchrophasors are known. A ranked sequence
of FIR filters that converges to the ideal filter is proposed in
[24] . From that sequence, this paper chooses the lower rank
filter that provides synchrophasor estimates sufficiently close
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Fig. 12. Frequency and ROCOF estimates from voltage channels obtained
with the nonic O-spline first and second differentiators.
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to those obtained from real signals with the ideal filter. In this
way, it opens the way to assess the accuracy of PMU results
obtained with field signals. In our event, a nonic O-spline
reaches an approximation very close to that of the decimononic
one, but with a duration of only ten cycles. This duration
is not large compared with the sixty cycles available in the
oscillographic data, especially for the off-line comparative
evaluation. The performance of this filter is better than those
in [27], [28], and [29].

The applied method is done off-line. But the proposed filter
can also be applied on-line, in applications allowing its length.
This method must be accompanied by a spectral analysis to
check that input signals do not have energy under the filter
transition bands, as shown in the top plots of Figs. 7 and 8.

The computational complexity of the proposed method is
very low (O(3N0)), since it consists in the implementation
of three FIR filters, and Eqs. (12)-(14) that could be easily
implemented even in a real PMU. In fact, it has been already
implemented in its classical form in [36].

Finally, the proposed method could contribute to a more
universal approach than the one defined in the Standard, that
until now has limits defined by consensus that seem to endorse
the lower order algorithms.

VIII. CONCLUSION

The paper proposes a quantitative method to assess the
estimation performance of PMUs using signals from the field,
such as those produced in a substation, and available in a
control center, instead of employing only the few benchmark
signals of the Standard. Real signals contain realistic harmon-
ics and real noisy conditions as those shown in this paper.
The attained results in the analyzed case exhibit very poor
PMU estimates, since they are very erratic in both phase and
amplitude, with intolerable TVEs with hundreds of times the
tolerated ones. But the important contribution of this work is
that it opens up the possibility of employing the TVE to assess
and compare the estimation performance of different PMUs
at a control center, when they monitor the same disturbance,
today an unthinkable application.

APPENDIX A
MATLAB FUNCTION TO OBTAIN THE SAMPLES OF THE
KTH O-SPLINE AND ITS FIRST TWO DERIVATIVES WITH

N0 SAMPLES PER CYCLE.

function [phi,phip,phipp]=Osplinepp(K,N0)
%Order K>3
%N0 Number of samples per cycle
delt=1/N0;
unit=(0:delt:1-delt)’;
knots=[flip(-[1:K]) [1:K]];
P=ones(N0,K+1); Pp=ones(N0,K+1);
Ppp=ones(N0,K+1);
ir0=0;
for nint=1:K+1
u=-(K+1)/2-1+nint+unit;
coef= [1, -knots(ir0+1)]/(-knots(ir0+1));
for k=1:K

P(:,nint)=P(:,nint).*(u-knots(ir0+k))/...
(-knots(ir0+k));
if k>1 coef = conv(coef, [1, -knots(ir0+k)]/...
(-knots(ir0+k))); end;
end;
%Derivative Polynomial coefficients
C(:,nint)=coef’; Cp(:,nint)=polyder(coef)’;
Cpp(:,nint)=polyder(Cp(:,nint))’;
%First derivative by Horner scheme
Pp(:,nint)=Cp(1,nint)*Pp(:,nint);
for k=1:K-1
Pp(:,nint)=Pp(:,nint).*u + Cp(k+1,nint);
end;
%Second derivative by Horner scheme
Ppp(:,nint)=Cpp(1,nint)*Ppp(:,nint);
for k=1:K-2
Ppp(:,nint)=Ppp(:,nint).*u + Cpp(k+1,nint);
end;
ir0=ir0+1;
end;
N=(K+1)*N0;
phi=reshape(P,[N,1]); phip=reshape(Pp,[N,1]);
phipp=reshape(Ppp,[N,1]);

APPENDIX B
STATE ESTIMATOR

hm=phi/N0.*exp(j*2*pi/N0*n);
hpm=F0*phip/N0.*exp(j*2*pi/N0*n);;
hppm=F0ˆ2*phipp/N0.*exp(j*2*pi/N0*n);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [a,p,ap,pp,app,ppp]=...
statestimator(hm,hpm,hppm,s)
%hm,hpm,hppm impulse response of the
%FIR filter and first two derivatives
%sh samples of the filtered signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%a,p amplitude and phase
%ap,pp first derivatives of a and p
%app,ppp second derivvatives of a and p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Amplitude and Phase estimation
k=(0:Nc*N0-1)’; p=conv(s, hm,’same’);
ah=abs(p); ph=angle(p); % rotating phase
phc=angle(p.*exp(-2j*pi/N0*k));% antirotated
a=2*ah; p=phc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Frequency estimation
pp=conv(s,hpm,’same’);
ppc=pp.*exp(-j*ph);
ahp=real(ppc);
php=imag(ppc)./ah;
ap=ahp; pp=php/(2*pi); %frequency deviation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%ROCOF Estimation
ppp=conv(s,hppm,’same’);
pppc=ppp.*exp(-j*ph);
ahpp=real(pppc)+ah.*php.ˆ2;
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phpp=( imag(pppc)- 2*ahp.*php )./ah;
app=ahpp; ppp=phpp/(2*pi);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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