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Introduction3

The electric power grid provides roughly 4000 TWh of  power per year, delivering power to critical aspects of  
America’s economy, transportation, water, emergency services, telecommunications, manufacturing, defense 
facilities, and residences.

Transmission System (up to 500kV) transfers power throughout the U.S. 
◦ Real-time measurements (PMU, 1-3 second SCADA, etc.)

◦ State Estimation, Optimization, and Control

Distribution System (4kV – 35kV) connects to the customers
◦ Much less monitoring or control due to the size

◦ ~300,000 miles of  transmission lines vs. ~6,000,000 miles of  distribution lines

◦ ~20,000 substation transformers vs. ~200,000,000 service transformers

◦ Visibility into distribution system operations is limited, and models are prone to errors

http://www.ferc.gov/industries/electric/indus-act/reliability/blackout/ch1-3.pdf



Electric Power Distribution Systems4

Historically, distribution system model accuracy was of  little concern, 

rarely validated, and had limited measurements.

Many of  the recent advances in smart grid technologies, proliferation of  

distributed energy resources (DER), and new control strategies are on the 

distribution system – electric vehicles, rooftop PV, energy storage, 

microgrids, etc.

With new smart grid technologies, accurate models are critical

◦ Accurate PV interconnection analysis and screening

◦ Optimal operations and control

◦ Investment planning and decisions

◦ Improved reliability and resilience (fault location, isolation, and service 
restoration)

Modern distribution system algorithms and tools are continually 

improving, but their functionality is only as good as the utility’s 

model of  their grid.



Distribution System Models5

The distribution system has been built over many decades, historically recorded 
with paper schematics for installations, upgrades, and maintenance.

Distribution System Models

◦ Are based on manual data entry that is prone to error and often out of  date

◦ Contain additional complexity because they are multi-phase unbalanced with single-
phase customers.  Cannot use symmetrical component single-line models from 
transmission system modeling

Sources of  Error

◦ Unlogged or erroneous maintenance reports

◦ Information not initially recorded in the model

Recent additions of  Advanced Metering Infrastructure (AMI), or smart meters, 
provide measurements of  each customer’s power consumption, and possibly 
other quantities, such as voltage, that provide new insights and levels of  
accuracy in distribution system modeling



Common Distribution System Model Errors6
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Project Overview7

DOE EERE Solar Energy Technologies Office (SETO) funded project “Physics-Based Data-Driven Grid 
Modelling to Accelerate Accurate PV Integration”
◦ Physics-based – using known electrical equations and models that work with today’s power systems simulation software 

(not black box)

FY19 - FY21 project to efficiently process grid measurements and Big Data to provide a more granular 
understanding of  the distribution system and to substantially increase the precision and accuracy of  
distribution system models – creating a fundamental change from models based on manual entry to data-
driven modeling.

Project led by Sandia National Labs, partnering 
with Lawrence Livermore National Laboratory, 
Electric Power Research Institute, Georgia Tech, 
and CYME/Eaton

Physics-Based 

Models

Data-Driven 

Approach

AMI, SCADA, 

PMU, PV, ...

Field Measurements

&

High-Resolution 
Accurate 

Distribution 
System Models

Novel Algorithms



Comparison of Distribution Modeling Methods8

•Manual data entry – compiling records of  

installations, upgrades, and maintenance over 

decades

•Prone to errors – unlogged or erroneous 

maintenance reports or entry into the model

•Little validation with measurements

•Often out of  date with a list of  changes to 

add to the model

•Leveraging AMI data and other grid edge 

sensing to derive and validate system models

•High accuracy and fidelity – a reproduction 

faithful to the original

•Granular and high resolution, multi-phase 

model down to the low-voltage system

•Model dynamically adapts and automatically 

updates based on system conditions

Conventional Methods Physics-Based Data-Driven Modeling



Customer Transformers
Identify which transformer 
each meter is connected to

Parameter Estimation
Estimate cable length and 

topology of the low-
voltage system

Phase Identification
Identify the phase of laterals and 

phase of single-phase transformers

PV Detection
Detect PV configuration (size, 
ti lt, and azimuth) and settings

Setting and State Determination
Determine the controls and state of 
distribution automation equipment

Reconfiguration
Detect the state of 

switches, including load 
transfers to other feeders

?

PV Dynamic Modeling
Determine dynamic 

model parameters for PV

Detailed Load Modeling
Improved spatial and temporal 
resolution for phase-specific, 
voltage-sensitive load models
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Advantages of Different Data Sources10

•AMI (Real Power, Reactive Power, and Voltage) 
measurements from all customers (~3500) on feeders

•15-minute measurement interval for a year or more

•Physical validation of  the model is difficult and 
expensive. Results can be confirmed using Google 
StreetView, satellite images, and network topology.

•Actual measurements from customers of  real and 
reactive power are inserted into a distribution system 
model to simulate the voltages.

•Measurement noise is added to the simulation results 
of  power and voltage

•Known errors are injected into the distribution 
system model to measure the accuracy of  the 
algorithms to detect the model errors.

Demonstration with Utility Partners Testing with Synthetic Data



Practical Considerations for Real Data11

Real data has issues such as bad data or events that should be filtered

◦ Data cleaning, filtering, and denoising due to failing meters or anomalous readings around outages

◦ Changepoint detection to filter certain events such as load  transfers from other feeders, CVR events, etc..

◦ Handling missing data – imputation

It is important to replicate these issues in synthetic data for algorithm development

◦ Analysis of  utility data provides general range of  the amount of  frequency of  missing AMI data

◦ Experimental testing of  meters in Sandia’s AMI Lab provides expected accuracy and measurement noise

Data/metering considerations that are evaluated in synthetic data:

◦ Measurement Interval

◦ Data Resolution

◦ Meter Precision

◦ Meter Bias

◦ Time Synchronization

◦ Missing data

◦ Data Availability

AMI Requirement

Measurement Interval 15 - 30 minute intervals

Data Resolution At least 1 decimal on voltage and 

power measurements (0.1V, 0.1kW)

Meter Precision < 0.25% maximum noise

Data Availability > 4 months of AMI data

AMI Data Quality and Collection Recommendations.

Based on analysis of synthetic data with varying amount of error

L. Blakely, M. J. Reno, and K. Ashok, “AMI Data Quality and Collection 

Method Consideration for Improving the Accuracy of Distribution System 

Models,” IEEE Photovoltaic Specialists Conference (PVSC), 2019.
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PV System Identification13

Background: PV systems may vary from the interconnection 
plan - not interconnected, project delayed, changed size, 
shading issues, gradual soiling, or module/string failures

Problem: Keeping PV interconnection databases updated is a 
major challenge.  Many utilities do not record parameters for 
distributed PV such as their DC power rating, tilt, or azimuth. 
Residential solar PV systems are generally behind-the-meter 
(BTM), lacking direct measurements or observability.

For BTM PV, solar disaggregation methods can separate the 
PV from the load measurements. Deep Neural Network used 
to learn the signature of  BTM PV to detect if  there is PV, 
along with its size, tilt, and azimuth.

Parameter estimation of  behind-the-meter parameters that do 
not have direct measurement. Partial observability requires 
leveraging multiple data streams – nearby voltage 
measurements, weather data, irradiance measurements, etc.

PV System
Locations?

Size?

Tilt?

Azimuth?

Volt-var?



Voltage Regulator

Estimate the regulator control 
settings and tap position

Switching Capacitors

Estimate the capacitor control 
settings and position

Reconfiguration Detection

Detect the state of switches and 
when they changed, including 
load transfers to other feeders

Meter to Transformer 
Pairing

Identify which transformer each 
meter is connected to

Medium-Voltage Model Calibration14

Data-driven calibration of  the medium-voltage primary system distribution system:



Voltage Regulation Equipment Controls and State15

Background: On the distribution system, voltage regulators and 
switching capacitor banks control the voltage by switching taps or 
switching on/off  depending on their controls

Problem: 

◦ Most distribution voltage regulation equipment (VRE) do not have 
remote login capabilities, so verifying their settings in planning models 
requires sending a crew to the device.

◦ For state estimation or power flow results, knowing the state of  VRE 
is required, but this information is often not available in historical data

By combining distribution system state estimation (DSSE), machine 
learning, and Big Data from grid edge measurements, we can identify the 
1) VRE settings, and 2) the state of  the VRE at a given time

Determining the Settings of the Switching Capacitor

Determining the Capacitor State

Determining the Tap Position



Improved Spatial and Temporal Load Modeling16

Background: Distribution planning and operations 
uses a combination of  load measurements and load 
allocation methods, which have significant influence 
on the system performance

Problem: 1) It is challenging to fully leverage the 
increased visibility to loads provided by AMI and other 
emerging data streams. 2) Even with “100% 
penetration” of  AMI, there are many unmetered load 
in the system. 3) Reactive power measurements of  
loads are rare and typically very inaccurate.

Objective: Develop improved spatial and temporal 
load modeling methods leveraging AMI and other 
emerging data streams that are robust to incomplete 
data sets.
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Secondary System Parameter and Topology Estimation 18

Background: Multiple customers are generally connected to the 
distribution feeder through a service transformer and a low-
voltage secondary system

Motivation: A large portion of  the per-unit voltage drop/raise 
occurs over the secondaries. A large number of  DERs and 
sensors are connected to the secondary circuits

Problem: Secondary circuits are typically not modeled or 
modeled with limited detail.  Manual inspections require 
considerable man hours and extra resources => not cost 
effective, and may be hard to perform in urban areas with wiring 
underground and in buildings

Objective: Use customer meter (AMI) voltage and power 
measurement to resolve secondary system parameters and 
topology



Secondary System Parameter and Topology Estimation19

Inputs: AMI data (voltage, real and reactive power) at 
15-minute intervals for 6-months to 1-year, transformer 
connection

Procedure:

1. Resolve the parameters and topology for all 
transformers with 2+ customers. 

2. Resolve the parameters for transformers with only a 
single customer by pairing them with other single-
customer transformers. 

3. Pair transformers resolved in step 1 with one another to 
resolve any additional parameters between the virtual 
nodes where the customers meet and the transformers. 

Output: Models for each low-voltage secondary system. 
Compare to utility’s unverified, manually-entered 
secondary model



Step 120

For all customers on a transformer, find R1, R2, X1, X2

𝑽1 − 𝑽2 = 𝑰𝑅1𝑅1 + 𝑰𝑋1𝑋1 − 𝑰𝑅2𝑅2 − 𝑰𝑋2𝑋2 + 𝝐

Known Unknown
▪ Basic concept

▪ Fit R1, R2, X1, X2 values which best fit the V1-V2 fluctuations

▪ For comparison to utility model

▪ R values were used to compute a distance 
in feet of triplex cable for various types of cable (#2, 2/0, 4/0)

Primary
System

...

R,X

R,X

V,P,Q

V,P,Q

...

V
R,X

R,X

Service
Transformer



Secondary System Example21

 

 

 

 

 

 

 

 

 

1 3 

Virtual Node 

R1 = 0.043 
X1 = 0.018 

~172 ft. 

R1 = 0.043 
X1 = 0.018 

~172 ft. 

  

R1 = 0.043 
X1 = 0.014 

~172 ft. 

R1 = 0.043 
X1 = 0.014 

~172 ft. 

R2 = 0.018 
X1 = 0.006 

~72 ft. 

Meter # Estimated Actual % Error 

R X Length (ft) R X Length (ft) R Length

1 0.043 0.014 172 0.0425 0.0129 170 1.18% 1.18%

2 0.018 0.006 72 0.0175 0.0053 70 2.7% 2.7%

3 0.043 0.014 172 0.0425 0.0129 170 1.18% 1.18%

Step 1: 1 and 3 are paired

Step 2: Virtual Node and 2 are paired

Parameter Estimation Results

Example voltage and load for 24-hours for the 3 

customers on the transformer



Transformer 233 on Feeder 122

~120ft

~113ft

Distribution System 

Parameter Estimation
Imagery/Model DSPE vs. Model

DSPE results match utility model well, consistent with #2 wire.



Transformer 301 on Feeder 223

~141ft

~22ft

Distribution System 

Parameter Estimation
Imagery/Model DSPE vs. Model

Model 

correction

DSPE results indicate error in utility model: customer 595’s meter is 

actually at the bottom of the utility pole, not at the house.



Transformer 322 on Feeder 124

DSPE results consistent with utility 

model for several customers with 

complicated topology.



Step 225

Pair customers on transformers with only one customer with other solo customers

The upstream virtual node is now on the primary system, but due to the voltage change, 
the per unit impedance of  the medium-voltage conductor is very small



Step 326

Pair transformers with one another, run parameter estimation on virtual nodes created in 
step 1

◦ Most likely scenario is that virtual node from step 1 is at transformer low side and any 
found impedance will be due to transformer impedance

◦ In some cases, step 1 virtual node will be away from transformer 
◦ Serial connection between customers

◦ Parallel connection that meets before the transformer

◦ It is important to derive the additional impedance to fully resolve the secondary circuit

Transformer size 

(kVA)

3 5 10 15 25 37.5 50 75

Assumed resistance 1.5% 1.5% 1.2% 1.3% 1.16% 0.96% 1% 0.87%



Transformers 415 and 41627

Customers 325 and 883 (on transformer 416) had a virtual node away from 

the transformer, which is accounted for by pairing transformer 415 with 

416.

Distribution System 

Parameter Estimation
Imagery/Model DSPE vs. Model



Results for Entire Feeders28

Customers often vary significantly from a simple 100ft of #2 assumption: 

up to three times this value was common. 



Synthetic Feeder Results29

The results for the synthetic test circuit (1209 residential customers): 

◦ Error is defined as Estimated_Value – Actual_Value
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Sensitivity Analysis30

Amount of Data
Data Resolution

Random Errors

• Over all customers, found that ~8,000 data points (<3 months of 15-

min data) was sufficient to accurately derive parameters and topology. 

• Need about 2V and 0.25kW or better resolution; low kVAr sensitivity

• Random errors in measurements => random errors in DSPE



Unknown AMI Power Factor31

Utilities may not record reactive power measurements from 
AMI

Parameter estimation can still be performed without reactive 
power, if  the X/R ratio of  the conductors is known (based 
on cable type)

◦ As a side note, using the correct X/R of  the cable improves the 
parameter estimation results – 1.0% MAE vs. 1.5% MAE

◦ Accuracy is very sensitive to having the correct X/R ratio

It also only works if  the X/R is low and power factor is 
high.  Errors are large for parameter estimation across 
transformers if  we do not have reactive power 
measurements.
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Phase Identification - Introduction33

Is the customer 

connected to A, 

B, or C?

- Phase Identification methods generally fall into 

three categories, hardware-based, power-based, 

or voltage-based methodologies

- ~40 publications on phase identification methods

Percentage of Total Publications by Method Type

Problem Statement:  Given a set of customers, identify the correct phasing for each customer



Phase Identification - Introduction34

Hardware Methods:
(𝝁𝑷𝑴𝑼 devices, Signal injection)

- Advantages: 

- Highly accurate and well-established

- Disadvantages: 

- Expensive equipment 

- Large numbers of man-hours are required

Power-Based Methods:
(Load summing methods, Salient features)

- Advantages: 

- Most utilities record this data

- Do not require extensive man-hours

- Disadvantages: 

- Often sensitive to less than 100% AMI coverage

- Recent work shows these methods to be less 

accurate in general than hardware-based or 

voltage-based methods

Voltage-Based Methods:
(Correlations between customers)

- Advantages: 

- Robust to less than 100% AMI coverage

- Shown to be more accurate in general than power-

based methods

- Do not require extensive man-hours

- Disadvantages:

- Fewer utilities are currently recording this data



Phase Identification - Methodology35

Conceptually we understand from experience and the physical design of  the system, that 
customers connected to the same wire (Phase A, Phase B, or Phase C) probably vary together.

Objective: Use artificial intelligence and big data from grid edge measurements to identify the phase of  
each customer
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Advanced Metering Infrastructure (AMI) meters provide timeseries voltage measurements at each residence



Phase Identification - Methodology36

Option #1
Use Utility 

Labels

Option #2
Use Substation 

Voltages

Assignment of 

predicted phases to 

each customer

5

Testing with Differing Percentages of Mislabeled Customers

5

Choose how to assign final predicted phases based on 

the availability (and trust) in existing utility phase 

labels

An ensemble algorithm using spectral clustering 

is used to create a co-association matrix which 

is used to group customers by phase



Phase Identification - Methodology37



Phase Identification - Results38

Testing Circuits - Sandia:

- Synthetic Data:

- EPRI Ckt 5 – 1379 Residential Meters

- Achieved 100% accuracy under rigorous testing scenarios

- Utility Data:

- 1055 Residential Meters from a utility in the Northeastern 

US.

- Predicted 143 customers (~13%) to be on a different phase 

from the original utility model

Testing Circuits - CYME:

- Synthetic Data:

- Achieved >99% accuracy on all systems

- Utility Data:

- 209 Residential Meters from a utility in the Northeastern US.

- Predicted 35 customers to be on a different phase from the 

original utility model, 29 from one lateral and 6 from 

individual transformers

Network Nodes AMI 

Meters

Substation 

Regulators

Inline 

Regulators

EPRI’s CKT5 3003 1373 0 0

North #1 2369 615 1 3

North #2 4065 963 1 6

South 1778 447 0 1

Figure Credit:  Francis Therrien – CYME | Eaton 

1:  Figure Citation:  J. Fuller, W. Kersting, R. Dugan, and S. C. Jr., “Distribution Test Feeders,” IEEE PES AMPS DSAS Test Feeder Working Group, 2013. [Online]. Available: http://sites.ieee.org/pes-testfeeders/.

𝑬𝑷𝑹𝑰 𝑪𝒌𝒕 𝟓𝟏



Phase Identification - Results39

39

Purple and Orange marked meters are 

incorrectly labeled in the original 

utility model



Phase Identification - Results40

Left-hand transformer labeled in the 

utility model as Phase A, but predicted 

to be Phase C by our phase identification 

algorithm

Right-hand transformer is the next 

Phase C transformer to the North 

(labeled and predicted to be C) is 

clearly connected to the same wire as 

the left-hand transformer

Not shown, the next Phase C 

transformer to the south is also 

connected to the same wire



Phase Identification - Results41

The utility reported that they had planned to move the lateral to Phase B from Phase C and 

changed the labeling in the model but did not physically move the lateral.  Thus the 29 

customers on that lateral remain on Phase C as predicted by the phase identification 

algorithm and shown in the figure.  

Figure Credit:  Francis Therrien – CYME | Eaton 

Note the group of Phase B (green) 

customers clustered with the majority 

Phase C (red) customers in the right-hand 

cluster

This lateral was identified by the phase 

identification algorithm as incorrect and 

the predicted labeling of Phase C was 

verified by the utility.



Meter to Transformer Task - Introduction42

Problem Statement: Given AMI data from a set of customers, group the customers by transformer

Which 

transformer is 

this meter 

connected to?



Meter to Transformer Task – Error Flagging Methodology43

Correlation Coefficient analysis is used to flag 

transformer with customer connection labeling 

errors



Meter to Transformer Task – Error Flagging Results44

Synthetic Data Testing

Actual labeling verified using Google Earth imagery

Original Utility Labeling

Utility Data TestingA significant concern with distribution system model 

validation is the false positive case, where a 

methodology injects new errors into a model



Meter to Transformer Task - Pairing Methodology45

A pairwise linear regression model is fit 

between customers to estimate the 

goodness of fit, reactance distance, and 

resistance distance for the customers



46

(𝑹𝟐 𝒐𝒓 𝑴𝑺𝑬)
> 0.95

This method works well in the base case (unmanipulated data) 

however an ongoing research challenge is adapting this method to 

work in the under the various data issues mentioned in previous 

slides

Meter to Transformer Task - Pairing Methodology and Results
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Integration of  Physics-based Constraints into AI
- Leverage existing knowledge (physical laws, power flow, etc) in AI-based 

algorithms

- Achieve more accurate results and faster training

- SNL Project – “REDLY: Resilience Enhancements through Deep Learning Yields”

- loss = ‘model-based’ loss  + ‘physics-based’ loss
- 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑑𝑎𝑡𝑎 𝑋𝑏, 𝑦𝑐 + ( 𝜇𝑙𝑜𝑠𝑠𝐾𝐶𝐿 𝑋𝑐 + 𝛼𝑙𝑜𝑠𝑠𝐾𝑉𝐿 𝑋𝑐 )

Explainable AI and Uncertainty Quantification
- Understand why a particular prediction/decision was given

- Understand the error bounds on predictions/decisions

- SNL Project - “Opening the ‘Black Box’: An Experimentally-Validated 

Explainable Machine Learning Framework”

Many innovations in AI and machine learning have not yet been applied to the power systems domain
As improvements and breakthroughs happen in other domains, those concepts can be adjusted and applied to solve power 

systems problems

Similarly, lessons learned from other domains can be used to avoid similar situations

(Kirchoff’s Current Law) (Kirchoff’s Voltage Law)
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Distributed, AI-based Controls using Fog Computing
- Create resilient systems in the event of  communication loss

- Accelerate systems with low latency because processing happens 

physically close to sensors 

- SNL Project – “HEDGES: High-Security Edge Computing for Smart Sensor 

Systems”

Semi-Supervised, Few-Shot Learning, or 

Synthetically-Generated Training Data
- Learn with few or no examples of  critical events

- Generate realistic new data from existing samples

- SNL Project – “Semi-Supervised Bayesian Low-Shot 

Learning for Explosive Device Characterization”
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o There are many promising applications of  Big Data and Machine Learning in power 
systems.
◦ It is an exciting time to be at this intersection – new algorithms, large datasets, computing power

o There are many challenging problems yet to be solved with some fascinating future 
research directions in big data and machine learning:
◦ Integration of  Physics-based Constraints into machine learning algorithms

◦ Explainable AI and Uncertainty Quantification

◦ Distributed AI-based Controls using Fog Computing

◦ Semi-supervised, Few-shot learning, or Synthetically Generated Training Data

o Best results require integration between Big Data experts and power system experts
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