Tracking Faults and Network Model Changes Using Phasor Measurements

Ali Abur
Department of Electrical and Computer Engineering Northeastern University, Boston abur@ece.neu.edu

IEEE PES Big Data Tutorial Series
March 29, 2021

Acknowledgements

National Science Foundation

 NSF/DOE ERC CURENT

- Guangyu Feng, M.S.
- Arthur Mouco, Ph.D.
- Bilgehan Dönmez, Ph.D.
- Pengxiang Ren, Ph.D.
- Prof. Hanoch Lev-Ari

Outline

Phasor Measurements
Sparse Estimation Problems

- Fault Location
- Line Outage Identification

Transmission Line Parameter Tracking
Closing remarks

Ali Abur © 2021
Northeastern University

Phasor Measurement Units (PMU) Phasor Data Concentrators (PDC) ${ }^{* *}$

[*] IEEE PSRC Working Group C37 Report
Ali Abur © 2021
Northeastern University

Measurements provided by PMUs

ALL 3-PHASES ARE TYPICALLY MEASURED, BUT ONLY POSITIVE SEQUENCE COMPONENTS ARE REPORTED

$$
\left[\begin{array}{l}
V_{A} \\
V_{B} \\
V_{C}
\end{array}\right]=[T]\left[\begin{array}{l}
V_{0} \\
V_{+} \\
V_{-}
\end{array}\right] \Rightarrow \begin{gathered}
V_{+}=\frac{1}{3}\left[V_{A}+a V_{B}+a^{2} V_{C}\right] \\
a=e^{j \frac{2 \pi}{3}}
\end{gathered}
$$

Ali Abur © 2021

Sparse Estimation Problems

Underdetermined set of equations:

$$
[X][\beta]=[y]
$$

It is known that β is " k " sparse, that is:
" k " out of " p " entries are known to be significantly larger than the remaining ($p-k$) entries,
However, it is NOT known which ones they are.

Least Angle Regression and Shrinkage (LARS) ${ }^{* *}$

$\hat{\beta} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \beta\|_{2}^{2}+\lambda\|\beta\|_{1} \quad \lambda \geq 0$

$$
\mathbf{y} \in \mathbb{R}^{n} \quad \mathbf{X} \in \mathbb{R}^{n \times p}(p>n)
$$

[*] R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society. Series B (Methodological), Vol.58,No.1, pp. 267-288, 1996.
B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., "Least angle regression," The Annals of statistics, vol. 32, no. 2, pp. 407-499, 2004.

LASSO: Least Absolute Shrinkage and Selection Operator
Ali Abur © 2021
Northeastern University

Dantzig Selector

George Dantzig 1914-2005

THE DANTZIG SELECTOR: STATISTICAL ESTIMATION WHEN \boldsymbol{p} IS MUCH LARGER THAN \boldsymbol{n}

By Emmanuel Candes and Terence Tao
Cal Tech UCLA
The Annals of Statistics, 2007, Vol. 35, No. 6, 2313-2351
$\min _{\tilde{\beta} \in \mathbf{R}^{p}}\|\tilde{\beta}\|_{\ell_{1}} \quad$ subject to $\quad X \tilde{\beta}=y, X \in \mathbf{R}^{n \times p}$
LP Formulation
$\min \sum_{i} u_{i} \quad$ subject to $\quad-u \leq \tilde{\beta} \leq u \quad$ and

$$
-\lambda_{p} \sigma \mathbf{1} \leq X^{*}(y-X \tilde{\beta}) \leq \lambda_{p} \sigma \mathbf{1},
$$

Two Applications in Power Systems

Fault Location

Large number of candidate branches, one of which is faulted, which one?
Further complication: unknown fault location along the suspect branch.

External Network Line Outage Detection

Large number of candidate lines, one of which is disconnected, which one?

Fault Location Using Few PMUs

Northeastern University

External Network Line Outage

Northeastern University

Fault location problem

Fault occurs, typically along a transmission line, less frequently right at a bus / substation. Need to find:

- the faulted line or line segment,
- the distance between one of the line terminals and the point of fault.

Ali Abur © 2021
Northeastern University

Fault location methods

- Power frequency / impedance-based methods
- Record fault transients at line terminals
- Filter HF signals, estimate impedance to fault
- Traveling wave-based methods
- High frequency sampling (> 20KHz)
- Capture wave front arrival instants using synchronized sensors
- AI / pattern recognition / machine learning based methods

Feng, G. and Abur, A., "Fault Location Using Wide-Area Measurements and Sparse Estimation," IEEE Transactions on Power Systems, Vol. 31, No: 4, pp.2938-2945, (2016).

Ali Abur © 2021

Equivalent Current Injections

Ali Abur © 2021
Northeastern University

Fault Location Using PMUs

Ali Abur © 2021
Northeastern University

Fault Location Using PMUs

Ali Abur © 2021
Northeastern University

Fault Location Using PMUs

N-Bus

System

Ali Abur © 2021
Northeastern University

Fault Location Using PMUs

After Kron Reduction:

Northeastern University

Fault Location Using PMUs

N-Bus

System

$$
\begin{aligned}
& \text { Fault Location }(m)=\frac{I_{f k}}{I_{f k}+I_{f m}} * 100 \% \\
& \text { Fault Location }(k)=\frac{I_{f m}}{I_{f k}+I_{f m}} * 100 \%
\end{aligned}
$$

Locating Faults Using PMU Measurements

$$
[\boldsymbol{Y}][\Delta V]=[\Delta I]
$$

Measure $\Delta V=$ (Post fault - Pre fault) Voltage
Compute ΔI
Determine distance to fault

10-bus Example

AB-G Fault on Line 2-5 at $1 / 4$ line length

Implementation Challenges

- $[\Delta \mathrm{V}]=\mathrm{V}^{\text {post }}-\mathrm{V}^{\text {pre }}$

Post-Fault voltage $\mathrm{V}^{\text {post }}$ may not be accurately measured by PMUs due to the fast clearing of the fault by protective relays

- Not all entries of [$\Delta \mathrm{V}$] may be measured! There are a limited number of PMUs, not every bus is equipped with a PMU.

Addressing Challenges

- Use Prony Analysis to estimate the post-fault steady state voltage based on the limited transient samples captured by the PMU.
- Use sparse estimation to determine the virtual current injections at the faulted branch terminal buses and determine fault location based on these currents.

Ali Abur © 2021

Prony Analysis

Mouco, A. and Abur, A., "Improvement of Fault Location Method Based on Sparse PMU Measurements," 2017 North American Power Symposium (NAPS), Morgantown, WV, 2017, pp. 1-5.

Ali Abur © 2021

Prony Analysis

Ali Abur © 2021
Northeastern University

Sparse Estimation

$$
\left[Z_{r}\right] \cdot\left[I_{f}\right]=\left[\Delta V_{r}\right]
$$

Ali Abur © 2021
Northeastern University

Sparse Estimation

Ali Abur © 2021
Northeastern University

Sparse Estimation

LASSO - least absolute shrinkage and selection operator

$$
\begin{gathered}
\hat{x}(\lambda)=\arg \min _{x} \frac{1}{2}\|y-A x\|_{2}^{2}+\lambda\|x\|_{1} \text { s.t. } \lambda>0 \\
{\left[Z_{r}\right] \cdot\left[I_{f}\right]=\left[\Delta V_{r}\right]} \\
{\left[\begin{array}{cc}
\Re\left(Z_{\text {node }}\right) & -\Im\left(Z_{\text {node }}\right) \\
\Im\left(Z_{\text {node }}\right) & \Re\left(Z_{\text {node }}\right)
\end{array}\right] *\left[\begin{array}{c}
\Delta \Re\left(I_{\text {node }}\right) \\
\Delta \Im\left(I_{\text {node }}\right)
\end{array}\right]=\left[\begin{array}{c}
\Delta \Re\left(V_{\text {node }}\right) \\
\Delta \Im\left(V_{\text {node }}\right)
\end{array}\right]}
\end{gathered}
$$

Ali Abur © 2021

Test System

3-Phase Model for the IEEE 118 Bus test System
$>$ Only 31 measured buses
>3 cycles of fault transient data
$>$ Several fault types tested

Ali Abur © 2021
Northeastern University

Simulation Results

$\mathbf{3} \phi$ to ground Fault at 20\% of Transmission Line 50-57

Bus	Phase	Est. Current	Est. Fault Location
50	A	$5.5416-4.2220 i$	20.74%
50	B	$-6.4571-2.7499 i$	20.52%
50	C	$0.8004+7.0102 i$	19.58%
57	A	$1.5136-1.0149 i$	79.29%
57	B	$-1.6724-0.6971 i$	79.48%
57	C	$0.2637+1.6973 i$	80.43%

Ali Abur © 2021

Simulation Results

ϕ to ϕ Fault at 5\% of Transmission Line 101-102

Bus	Phase	Est. Current	Est. Fault Location
101	A	$5.8731-1.6913 i$	4.80%
101	B	$-6.1302-2.0764 i$	3.93%
102	A	$0.2956-0.0875 i$	95.20%
102	B	$-0.2402-0.1105 i$	96.10%

Ali Abur © 2021

Limitations

Ali Abur © 2021
Northeastern University

LARS + OLS

Mouco A. and Abur, A., "Improving the wide-area PMU-based fault location method using ordinary least squares estimation," Electric Power Systems Research, vol. 189, pp. 1-7, Dec. 2020.

OLS Solution

Faulted Buses

Ali Abur © 2021

LARS + OLS Estimator Results

LASSO Est. Result - Fault at 5% of Line 101-102-3 ϕ to ground

Type		Bus	
Phase	Est. Current		
Real	6	A	0.0917
Real	78	B	-0.1265
Real	101	A	5.8978
Real	101	B	-5.7855
Real	101	C	-0.1386
Real	102	A	0.4063
Real	102	B	-0.3320
Imaginary	78	A	0.0989
Imaginary	101	A	-3.3033
Imaginary	101	B	-3.5980
Imaginary	101	C	6.8924
Imaginary	102	A	-0.1467
Imaginary	102	B	-0.1721
Imaginary	102	C	0.3244

OLS Est. Result - Fault at 5\% of Line 101-102-3ф to ground

Bus	Phase	Est. Current	Est. Fault Location
101	A	$6.1822-3.2711 i$	4.08%
101	B	$-5.9551-3.6761 i$	4.20%
101	C	$-0.2138+6.9854 i$	4.29%
102	A	$0.2385-0.1780 i$	95.96%
102	B	$-0.2606-0.1621 i$	95.80%
102	C	$0.0121+0.3129 i$	95.72%

LARS + OLS Estimator Results

LASSO Est. Result - Fault at 10% of Line 50-57-3中 to ground

Type	Bus	Phase	Est. Current
Real	50	A	6.6690
Real	50	B	-7.6427
Real	50	C	0.9032
Real	57	A	0.8495
Real	57	B	-0.8322
Imaginary	50	A	-4.7212
Imaginary	50	B	-3.4832
Imaginary	50	C	7.6721
Imaginary	51	C	1.5850
Imaginary	57	A	-0.6394

OLS Est. Result - Fault at 10\% of Line 50-57-3ф to ground

Bus	Phase	Est. Current	Est. Fault Location
50	A	7.0160-4.7574i	8.71\%
50	B	-7.6005-3.6256i	9.21\%
50	C	$0.6838+8.4229 \mathrm{i}$	9.24\%
57	A	$0.5537-0.5877 \mathrm{i}$	91.48\%
57	B	-0.8150-0.2547i	90.87\%
57	C	$0.1908+0.8378 \mathrm{i}$	90.85\%

Ali Abur © 2021

Tracking External Network Model

 New England ICCP Connections

External Area Line Outage Detection

Can we detect outages in the external system

- using PMU measurements at area boundary buses and
- without receiving any SCADA measurement updates from the external system ?

Dönmez, B. and Abur, A., "Sparse Estimation Based External System Line Outage Detection," Proceedings of the Power System Computations Conference (PSCC), Genoa, Italy, June 20-24, 2016.

Ali Abur © 2021

Line Switching Modeled by Bus Injections

$$
\begin{gathered}
B \theta_{0}=P_{0} \\
(B+\Delta B) \theta_{1}=P_{0}
\end{gathered}
$$

Pre-outage topology
Post-outage state of the system

$$
\Delta P=[0 \ldots 0 p 0 \ldots 0-p 0 \ldots 0]^{T}
$$

Ali Abur © 2021

Problem Formulation

Ali Abur © 2021
Northeastern University

Problem Formulation for Line Outages

$$
\begin{align*}
{\left[\begin{array}{c}
\Delta P_{1} \\
\Delta P_{2} \\
\vdots \\
\Delta P_{n}
\end{array}\right]=\boldsymbol{B}\left[\begin{array}{c}
\Delta \theta_{1} \\
\Delta \theta_{2} \\
\vdots \\
\Delta \theta_{n}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right] } \tag{1}\\
\boldsymbol{B}_{\boldsymbol{s t}}=\left\{\begin{aligned}
-\frac{1}{x_{s t}}, & \text { for }(s, t) \in L \text { and } s \neq t \\
\sum_{t \in N_{s}} \frac{1}{x_{s t}}, & \text { if } s=t \\
0, & \text { otherwise }
\end{aligned}\right. \tag{2}
\end{align*}
$$

\boldsymbol{B} is the DC jacobian, $x_{s t}$ is the reactance of branch $s-t$.

Problem Formulation for Line Outages

Partition the system w.r to internal and external buses:

$$
\left[\begin{array}{l}
\Delta P_{i} \tag{3}\\
\Delta P_{e}
\end{array}\right]=\left[\begin{array}{ll}
B_{i i} & B_{i e} \\
B_{e i} & B_{e e}
\end{array}\right]\left[\begin{array}{l}
\Delta \theta_{i} \\
\Delta \theta_{e}
\end{array}\right]+\left[\begin{array}{l}
e_{i} \\
e_{e}
\end{array}\right]
$$

An external line outage will lead to changes in \boldsymbol{B} matrix and the bus angle vector $\boldsymbol{\theta}$.

Ali Abur © 2021

Problem Formulation for Line Outages ${ }^{[*]}$

Representing the outage by equivalent injections

$$
\begin{equation*}
\Delta P_{s}=-\Delta P_{t}=\tilde{P}_{s t} \tag{4}
\end{equation*}
$$

Pre-contingency flow on branch s-t
$\tilde{P}_{s}=\left[\frac{1}{1-\frac{1}{x_{s t}}\left(B_{s s}+B_{t t}-2 B_{s t}\right)}\right] P_{s t} \quad$ (5)

Post-contingency flow on branch s-t
[*] Allen J. Wood, Bruce F. Wollenberg, Gerald B. Sheble, "Power Generation, Operation and Control," 3rd Edition, Wiley (Book)

Problem Formulation for Line Outages

Post-contingency $\boldsymbol{\Delta} \boldsymbol{P}_{\boldsymbol{e}}$ will have the form:

$$
\boldsymbol{\Delta} \boldsymbol{P}_{\boldsymbol{e}}=\left[\begin{array}{c}
0 \tag{6}\\
\vdots \\
0 \\
\Delta P_{s} \\
0 \\
\vdots \\
0 \\
\Delta P_{t} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where the two non-zeros will correspond to the outaged line.

Problem Formulation for Line Outages

 Eliminating $\boldsymbol{\Delta} \boldsymbol{\theta}_{\boldsymbol{e}}$ in (3):$$
\begin{equation*}
J=M \Delta P_{e}+e \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
J=\left(B_{i e} B_{e e}^{-1} B_{e i}-B_{i i}\right) \Delta \theta_{i}+\Delta P_{i} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
M=B_{i e} B_{e e}^{-1} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
e=e_{i}-B_{i e} B_{e e}^{-1} e_{e} \tag{10}
\end{equation*}
$$

Ali Abur © 2021

Sparse Estimation

$$
\boldsymbol{\Delta} \boldsymbol{P}_{\boldsymbol{e}}:=\underset{\boldsymbol{\Delta} \boldsymbol{P}_{\boldsymbol{e}}}{\operatorname{argmin}}\left\|\boldsymbol{J}-\boldsymbol{M} \boldsymbol{\Delta} \boldsymbol{P}_{\boldsymbol{e}}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{\Delta} \boldsymbol{P}_{\boldsymbol{e}}\right\|_{1}
$$

Note about the choice of λ :
The algorithm starts with a large λ and reduces it exponentially in each subsequent iteration.

Example: IEEE 14-bus case

Ali Abur © 2021
Ali Abur, BDA Tutorial 2021 Northeastern University

Example: IEEE 14-bus case

Actual Outage Branch $/ \tilde{P}_{s t}$ (MW)	Detected Outage Iteration No. $/$ Branch $/ \tilde{P}_{s t}(\mathrm{MW})$		
$\mathbf{7 - 9} /-103.2$	$1 / 7 \mathbf{- 9} /-109.9$		
$\mathbf{9 - 1 0} / 101.4$	$1 / \mathbf{9 - 1 0} / 95.8$		
$\mathbf{1 0 - 1 1} /-24.1$	$1 / \mathbf{9 - 1 0} /-22.4$	$2 / \mathbf{1 0 - 1 1} /-23.1$	
$\mathbf{6 - 1 1} / 144.0$	$1 / \mathbf{9 - 1 0} / 162.7$	$2 / \mathbf{1 0 - 1 1} /-167.5$	$3 / \mathbf{6 - 1 1} / 139.0$
$\mathbf{6 - 1 2} /-87.5$	$1 / \mathbf{6 - 1 2} /-90.3$		
$\mathbf{6 - 1 3} /-211.3$	$1 / \mathbf{6 - 1 2} /-630.0$	$2 / \mathbf{6 - 1 3} /-212.2$	
$\mathbf{1 2 - 1 3} /-56.8$	$1 / \mathbf{6 - 1 2} /-114.5$	$2 / \mathbf{6 - 1 3} /-38.6$	$3 / \mathbf{1 2 - 1 3} /-51.3$

Ali Abur © 2021

Example: IEEE 118-bus case

System Configuration

- Internal buses: $\{1-45,113,114,115,117\}$
- External buses: $\{46-112,116,118\}$
- Detection is tested for 98 branch outages in the external system

Simulated Cases

- Case 1: No PMUs in the external system
- Case 2: PMUs installed at buses 93 and 109
- Case 3: PMUs installed at buses 93, 109 and 50

Example: IEEE 118-bus case

Case 1: No PMUs in external system

- 79 out of 98 outages are detected
- 19 undetected outages are electrically far from the internal system boundary

Case 2: PMUs at 93 and 109

- 5 undetected outages

Branch No.	From Bus	To Bus
54	49	50
60	54	56
67	63	64
165	62	67
177	68	81

Case 3: PMUs at 93, 109, 50

- 3 undetected outages

Branch No.	From Bus	To Bus
67	63	64
130	101	102
177	68	81

Ali Abur © 2021
Northeastern University

Online Tracking Transmission Line Parameters Using PMU Measurements

Ren, Pengxiang, Lev-Ari H., and Abur, A., "Tracking Three Phase Un-transposed Transmission Line Parameters Using Synchronized Measurements" IEEE Transactions on Power Systems, vo. 33, no. 4, pp.4155-4163, July 2018.

Ali Abur © 2021

Line Model

PMU measurements at both ends of the line

Ali Abur © 2021
Ali Abur, BDA Tutorial 2021 Northeastern University

Line Model

For the equivalent pi-model

$$
\begin{array}{rlrl}
V_{s} & =\left[\begin{array}{l}
V_{s a} \\
V_{s b} \\
V_{s c}
\end{array}\right], & I_{s}=\left[\begin{array}{c}
I_{s a} \\
I_{s b} \\
I_{s c}
\end{array}\right], \\
V_{m} & =\left[\begin{array}{c}
V_{m a} \\
V_{m b} \\
V_{m c}
\end{array}\right], & I_{m}=\left[\begin{array}{c}
I_{m a} \\
I_{m b} \\
I_{m c}
\end{array}\right], \\
\tilde{V}=\left[\begin{array}{c}
V_{s} \\
V_{m}
\end{array}\right], & \widetilde{I}=\left[\begin{array}{c}
I_{s} \\
I_{m}
\end{array}\right] .
\end{array}
$$

The nodal equations will be:

$$
I=Y V
$$

$$
Y=\left[\begin{array}{cc}
Y_{\text {shunt }} / 2+Z_{\text {series }}^{-1} & -Z_{\text {series }}^{-1} \\
-Z_{\text {series }}^{-1} & Y_{\text {shunt }} / 2+Z_{\text {series }}^{-1}
\end{array}\right]
$$

Un-transposed Line

with Terminal PMU Measurements

Number of independent parameters:
6 in $Z_{\text {series }}, 6$ (only imaginary) in $Y_{\text {shunt }}$
\rightarrow Total: 2 * $6+6=18$ real unknowns, hence the dimension of the parameter vector p will be 18 .

$$
Z_{\text {series }}=\left[\begin{array}{ccc}
Z_{a a} & Z_{a b} & Z_{a c} \\
Z_{a b} & Z_{b b} & Z_{b c} \\
Z_{a c} & Z_{b c} & Z_{c c}
\end{array}\right] \quad Y_{\text {shunt }}=\left[\begin{array}{ccc}
Y_{a a} & Y_{a b} & Y_{a c} \\
Y_{a b} & Y_{b b} & Y_{b c} \\
Y_{a c} & Y_{b c} & Y_{c c}
\end{array}\right]
$$

Ali Abur © 2021
Ali Abur, BDA Tutorial 2021 Northeastern University

Measurement Equations

> Using rectangular coordinates:

$$
\begin{aligned}
& I_{\text {(6-by-1 complex vector) }}=Y_{\text {(6-by-6 complex matrix) }} V_{\text {(6-by-1 complex vector) })} \\
& I_{(12 \text {-by- } 1 \text { real vector })}=H_{p(12 \text {-by- } 12 \text { real matrix })} V_{(12 \text {-by } 1 \text { real vector })}
\end{aligned}
$$

$>I=H_{p} V$ can also be rearranged as $I=H_{V} p$ where
$\square I$ is a 12 -by- 1 vector that contains the current measurements in rectangular coordinates from both terminals of the line.
$\square p$ is the 18 -by-1 unknown parameter vector.
$\square H_{V}$ is the 12-by-18 rearranged coefficient matrix consisting of measured voltages at the line terminals.
> More unknowns p (18) than measurements I (12)!
Ali Abur © 2021

Parameter Tracking

Multiple measurement snapshots CANNOT be effectively used since H_{V} will still have low rank! (voltages do not vary much between scans)

Cond no $=\sigma_{\text {max }} / \sigma_{\text {min }}$ ~ 10^{4} Large !

Ali Abur © 2021

Parameter Tracking
 Alternative solution:

Use a Kalman filter to track parameter variations

Discrete-time model for parameters

$$
p_{k+1}=p_{k}+w_{p, k}
$$

Discrete-time measurement equations:

$$
z_{p, k}=I_{k}=H_{V, k} p_{k}+v_{k}
$$

Voltage Estimation

Measurement (PMU) equations:

$$
\left[\begin{array}{c}
V \\
I
\end{array}\right]=\left[\begin{array}{c}
\text { Identity matrix } \\
H_{p}
\end{array}\right] x+e
$$

$x: 12 \times 1$ voltage vector in rectangular form, $H_{p}: 12 \times 12$ coefficient matrix dependent on parameters e : measurement noise.

- Solve the estimation problem by WLS method
- Parameters used in H_{p} come from the parameter tracking algorithm.

Ali Abur © 2021

Voltage - Parameter Interdependency

- Voltages are estimated using parameters and current measurements
- Parameters are estimated using voltages and current measurements

Iterative Solution

- For each scan, iterate between state estimation and parameter tracking
- voltage estimation, which relies on the most recent parameter estimates and suppresses voltage and current measurement noise, and
- parameter tracking, which relies on most recent voltage estimates and further suppresses current measurement noise.
- Terminate iterations when two successive parameter estimates are close enough or reach the allowable limits on iteration.

Ali Abur © 2021

Flowchart

By iteratively processing voltage estimation and parameter tracking, and controlling the convergence criteria, the mismatch between actual and estimated parameters can be reduced.

Ali Abur © 2021

Simulation Results

Algorithm is verified on simulated data

Constant parameters

Varying parameters

Ali Abur © 2021

Simulation Results

Parameters with abrupt changes

Recorded Measurements from ISO

9000+ measurement snapshots

Parameter	R	X	B
Database value (p.u.)	0.000481	0.006223	0.11114
Estimated value mean	0.000498	0.006475	0.11440

Ali Abur © 2021

Tracking Parameters with Limited Number of PMUs

How to track parameters of a line even when the line is not measured from both ends by PMUs?

How to track parameters of any line by using sparsely placed PMUs in the system?

Ali Abur © 2021

TTL Grid Parameter - Model of the Entire Grid

- Assume a power grid with PMUs installed strategically
- System observability is satisfied
- Each branch has at least one incident current measurement
- Each line parameters can be tracked
- using one or two current measurements
- State estimation can be carried out for the whole system
- incorporating zero injections to improve redundancy

Single Phase Transmission Line Model (Positive Sequence Only)

Ali Abur © 2021

Single Phase Transmission Line Model

A linear estimation problem in three parameters for each line: series conductance g, series susceptance b and shunt susceptance B :

$$
\begin{aligned}
{\left[\begin{array}{l}
I_{s} \\
I_{m}
\end{array}\right] } & =Y_{s-m}\left[\begin{array}{l}
V_{S} \\
V_{m}
\end{array}\right]=\left[\begin{array}{cc}
g+j b+j B & -g-j b \\
-g-j b & g+j b+j B
\end{array}\right]\left[\begin{array}{l}
V_{s} \\
V_{m}
\end{array}\right] \\
& =\left[\begin{array}{lll}
V_{s}-V_{m} & j V_{s}-j V_{m} & j V_{s} \\
V_{m}-V_{s} & j V_{m}-j V_{s} & j V_{m}
\end{array}\right]\left[\begin{array}{l}
g \\
b \\
B
\end{array}\right]
\end{aligned}
$$

Parameter Tracking Formulation

Consider the measured current phasors at k :

$$
z_{I, k}=H_{V, k} p_{k}+v_{I, k}
$$

$z_{l, k}$: measured line current; p_{k} : line parameters;
$v_{I, k}$: measurement noise

- Using the assumed parameter dynamics:

$$
p_{k+1}=p_{k}+w_{p, k}
$$

- Develop a Kalman filter to track the parameters

PMU Placement

Measured voltages may not be directly used to form $H_{V, k}$:
A system-wide state estimator needs to be implemented in order to estimate bus voltages.
Given the limited number of PMUs, not all voltages are measured:

Best locations for PMUs in order to estimate the states and track the parameters of all lines must be determined.

Phasor only State Estimation

Consider a system observable by PMUs and its measurement model for state estimation:

$$
z_{k}=\left[\begin{array}{l}
Z_{I, k} \\
z_{V, k} \\
z_{0, k}
\end{array}\right]=H_{p, k} x_{k}+v_{k}
$$

$z_{I, k}, z_{V, k}$:current, voltage measurements
$z_{0, k}$: zero injections
Note that, vector " p " in H_{p} is unknown!

PMU Placement

- Identified the following requirements
- at least one current measurement / line;
- all current measurements must be redundant (in the state estimation sense);
- install a minimum number of PMUs.
- An integer programming optimization problem can then be formulated and solved.

$$
\begin{aligned}
\min & \sum_{i=1}^{N_{b}} q_{i} \\
\text { subject to } & \left|\tilde{A}_{1}\right| q \geq \mathbf{1} \\
& q_{j}=1, \text { for all } j \in T B \\
& q_{i} \in\{0,1\}
\end{aligned}
$$

Ali Abur © 2021

PMU Placement Example

The given PMU locations ensure not only state observability but also parameter tracking for all lines

Ali Abur © 2021
Ali Abur, BDA Tutorial 2021 Northeastern University

Optimal PMU Placement Results

OPPTP: optimal PMU placement for tracking parameters OPP : optimal PMU placement for observability.

Nearly twice as many PMUs are required!

System	OPPTP	OPP
IEEE 14 bus system	8	4
IEEE 30 bus system	17	10
IEEE 118 bus system	64	32
IEEE 300 bus system	187	87
2071 bus system	1207	634

Ali Abur © 2021

Simulation Case $1 \& 2$

- 1) Constant parameter 2) Varying parameter

Simulation Case 3 3) Parameters with abrupt changes

JSEPTS: IEEE 14 Bus system Branch 1-2	
Initialization of PT : Random	
CPU time 4.535 second	
x-axis label: (second)	0

Ali Abur © 2021

Final Remarks

- Sparse estimation methods can be exploited to solve various power system problems. A couple of illustrative examples are shown.
- Complete set of model parameters for non-transposed transmission lines can be dynamically tracked using PMUs at each line terminal.
- Given enough PMUs, a three-phase state estimator combined with a dynamic parameter estimator can track all transmission line parameters in a system.
- Network model / parameter errors ought to receive equal attention as other sources of errors due to their significant impact on various network applications.

Questions?

