

Rte

Antoine Marot – Lead AI Scientist @ RTE

Thursday 23rd of July 2020

Learning to Run a Power Network in a sustainable world

A NeurIPS 2020 Competition <u>https://l2rpn.chalearn.org/</u>

Introduction

AI is BOOMing

IM & GENET

ImageNet (2012) & NLP (2018) moments

Keys of success:

- Large Benchmarks & leverage big data
- Leverage computation
- Open-source platform & papers
- Deep Learning revival

NB: not much new algorithms & theory

Growing Use of Deep Learning at Google

Al based on Deep Learning started to impact many fields & layers of society at a fast pace

AI & Electricity

<u>« Artificial Intelligence is the new Electricity », Andrew Ng</u>

Are blackouts a story of the past?

AI & Electricity

<u>« Artificial Intelligence is the new Electricity », Andrew Ng</u>

Are blackouts a story of the past?

NOT REALLY!

A control room today

Quite a complex work environment !

Yet, Another system to consider : Earth!

 \rightarrow Sustainability is the key, future smart grids have to do better with less

AI & Electricity

Yet power grids are one of the most complex artificial systems

« Artificial Intelligence is the new Electricity », Andrew Ng

How AI can be of any help here ?

« Learning To run a power network » L2RPN Challenge

1) Test the potential of AI to robustly operate a power grid in real-time given operational constraints.

Different kind of flexibilities

On Grid Flexibilities

Motivations for a challenge

Exhibit important real-world problems to the research community

Large Benchmark for Reproducible Science:

• Decouple the modeler (problem design) & the solver

Attract new communities, especially AI community, through an easy-to-use platform & a gameified problem

Machine Learning & power systems

Mainly Today

Power System Community

AI Community

Artificial Intelligence & Power Grids

Rte

One small step for Electricity, one giant leap for Sustainability !

Challenge overview

2019 Challenge overview (adal ab

Competitions (My	(Codalab)	\prec		$\langle \langle \rangle$			
Competitions I'm In	Competitions I'm Running	My Datasets					
Corganized Train contravoiding in	g to Run a Power Network by luvf trolers to conduct a power grid f incidents.	C	ssible while	М	ay 15, 2019-Jur 102 particip	n 24, 2019 ants	

- 6-week challenge
- Participants from both power system & ML communities all around the world
- To get the prize, winning teams had to open-source their code
- Travel expanse Award for the best 2 teams (IJCNN conference or Paris at RTE)

« Learning to run » inspiration How to build a smart controller ?

NIPS

GridAlive ecosystem

Grid2Op: **testbed platform** to model real-time operations, run & benchmark control algorithms <u>https://github.com/rte-france/Grid2Op</u>

Modeling of power system operation world

Fig. 1 - Reinforcement Learning interaction loop

Observation: flows, productions, consumptions, power grid topology, month, day, hour, etc

Action: connect/disconnect **one** transmission line **or** change the electrical configuration within a substation

Reward: penalize overflowed lines, distance to reference grid topology, number of disconnected loads/prods, etc.

Fig. 2 - *Step-by-step evolution of the RL environment*

Agent evaluation – score function

Control the power flows to **optimize the cost of operations** on the power grid while being **robust** to blackouts.

We can hence define our overall operational cost $c_{\text{operations}}(t)$:

 $c_{\text{operations}}(t) = c_{\text{loss}}(t) + c_{\text{redispatching}}(t)$ & $c_{\text{blackout}}(t) = \text{Load}(t) * \beta * p(t), \ \beta \ge 1$

Now we can define our cost \boldsymbol{c} for an episode:

$$c(\boldsymbol{e}) = \sum_{t=1}^{t_{\text{end}}} c_{\text{operations}}(t) + \sum_{t=t_{\text{end}}}^{T_{\boldsymbol{e}}} c_{\text{blackout}}(t)$$

Under N episodes, the final score to minimize is:

$$Score = \sum_{i=1}^{N} c(e_i)$$

=> Participants are tested over 10-20 scenarios of different difficulties, with duration between 3-7 days.

Environment design

Game requirements

Criteria to Design and calibrate an environement:

• Be Realistic (represent real world caracteristics)

• Be Interesting (Diverse actions in diverse context to control the game)

• Be Feasible (existance of solutions to avoid game overs)

Line Capacities were the main design parameters to make a trade-off between feasible and interesting.

БÖ

Realistic: Production energy mix

Realistic: Line Capacity Calibration

When building a line, its capacity should be properly sized according to the expected flows over a year.

The **line capacity** should be:

- 1) Close to the **max flow** we can observe.
- 2) Sometimes below
 - Because the line has been built few years ago, the system has changed • and will not be replaced soon.
 - This is when **congestions** can appear and needs to be controlled few % of ٠ the time. 27

Realistic & Interesting: Operational Constraints

The game should represent operational constraints:

1) A limited time to react to a congestion (2 ts)

Rte

- 2) A limited number of simultaneous action (1/ts)
- 3) A cooldown time before reusing an asset (3 ts)

There is hence a **budget** associated to the actions you take: they should be picked up carefully !

Interesting & Feasible: existence of solutions

Minimal Grid: IEEE14 is the minimal grid to play with the topology because it is sufficiently meshed

Strutural feasability: Existence of Multiple electrical path to reroute power flows and avoid overloads.

- Easier with larger meshed grids
- But choice of the grid for a minimalist problem and facilitate challenge analysis

Contextual feasability:

Re

Found an ensemble of simple baselines that solve a high percentage of overloads (85%)

2 electrical corridors cannot be overloaded at the same time

Interesting - Selecting test scenarios

Our goal was to pick up 10 scenarios of different length (1 to 3 days) over different days of the week and with varying difficulties:

- Easy: 2 scenarios in which Do Nothing agent finishes the scenarios
- Medium: 6 scenarios were Overloads exists & Do Nothing fails, but which are solved by our baselines.
 - Overloads could happen around peak consumption or under high renewable production.
- Hard: 2 scenarios our expert baselines could not solve

L2RPN: competition series

Rte

Ongoing L2RPN serie competitions

Sponsors & Collaborators

Principal coordinators:

- Antoine Marot (RTE, France)
- Isabelle Guyon (U. Paris-Saclay; UPSud/INRIA, France and ChaLearn, USA)

Protocol and task design:

- Gabriel Dulac-Arnold (Google Research, France)
- Olivier Pietquin (Google Research, France)
- Isabelle Guyon (U. Paris-Saclay; UPSud/INRIA, France and ChaLearn, USA)
- Patrick Panciatici (RTE, France)
- Antoine Marot (RTE, France)
- Benjamin Donnot (RTE, France)
- Camilo Romero (RTE, France)
- Jan Viebahn (TenneT, Netherlands)
- Adrian Kelly (EPRI, Ireland)
- Mariette Awad (American University of Beirut, Lebanon)
- Yang Weng (Arizo State Univ., USA)

Data format, software interfaces, and metrics:

- Benjamin Donnot (RTE, France)
- Mario Jothy (Artelys, France)
- Gabriel Dulac-Arnold (Google Research, France)
- Aidan O'Sullivan (UCL/Turing Institute, UK)
- Zigfried Hampel-Arias (Lab 41, USA)
- Jean Grizet (EPITECH & RTE, France)

Environment preparation and formatting:

- Carlo Brancucci (Encoord, USA)
- Vincent Renault (Artelys, France)
- Camilo Romero (RTE, France)
- Bri-Mathias Hodge (NREL, USA)
- Florian Schäfer (Univ. Kassel/pandapower, Germany)
- Antoine Marot (RTE, France)
- Benjamin Donnot (RTE, France)

Baseline methods and beta-testing:

- Kishan Prudhvi Guddanti (Arizo State Univ., USA)
- Loïc Omnes (ENSAE & RTE, France)
- Jan Viebahn (TenneT, Netherlands)
- Medha Subramanian (TenneT & TU Delft, Netherlands)
- Benjamin Donnot (RTE, France)
- Jean Grizet (EPITECH & RTE, France)
- Patrick de Mars (UCL, UK)
- Lucas Tindall (Lab 41 & UCSD, USA)

Materials available

- Visit our website https://l2rpn.chalearn.org/ for an interactive introduction to power grid operations
- Reading the companion white paper as well as the description of the competition, and also our L2RPN 2019 paper should help you understand the problem deeper.
- Visit the Instructions subsection to get started with the competition
- Understand the rules of the game and the evaluation of your submission in the related subsection
- Review the terms and conditions that you will have to accept to make your first submission.
- Dive into the **starting kit** for a guided tour and tutorial to get all set for the competition and start make submissions. It helps you **TROUBLESHOOT** your submission if you are having troubles
- Take a look at the Grid2op documentation

2019 Results

Final Leaderboard

Results							
#	User	A REAL PARTY	Entries	Date of Last Entry	Score 🔺	Duration 🔺	
1	LebronJames	E CORPORATION	6	06/24/19	83375.59 (1)	348.37 (13)	
2	learning_RL	IOWA STATE UNIVERSITY	1	06/24/19	83273.99 (2)	116.13 (7)	
3	Stephen_Curry		1	06/20/19	82812.91 (3)	297.33 (11)	
4	Kamikaze		6	06/24/19	73737.75 (4)	124.13 (8)	
5	smart_dispatcher	Rie	5	06/07/19	72375.45 (5)	955.03 (16)	
6	menardprr		3	06/24/19	70104.65 (6)	1161.25 (18)	
7	learning_rate		6	06/24/19	67913.35 (7)	488.53 (14)	

A mix of Machine Learning agents, expert systems and power system controllers were submitted

Explanatory videos of the winning teams describing their approach are available here: <u>https://l2rpn.chalearn.org/competitions#h.p_6EGPeZwih5BD</u>

Agent behavior over time

Re

Agent behavior over validation scenario 3 showing the depth of agent actions at time-step

Expert system tries a lot more instantaneous actions while Leaning agent take less actions but with more anticipation. Overall, Learning agents showed to be more robust.

Performance comparison

Room for improvements

Assessing how good agents did given an oracle

Oracle actions over time

Oracle to find the best topology actions **aposteriori**:

- Run many topology in parallel
- Create edges between topologies you can transition to
- Find the best scoring path (longest path)

Normalized Agent scores (Oracle=100)

Scenario	ES	DQN
1	72,5	61,5
2	-10,5	90,2
3	53	82,5
4	49,5	81,5
5	47,5	70,0
6	48	47
7	19,5	63
8	39,5	77,5
9	52,5	93
10	56,5	56,5

Beside overcomming overloads, not yet learning to optimize the flows continuously

Ļ

Best models are now open-source

https://github.tom/rte-france//2ran_baselines

rte-fra	nce / I2rpn-	baselines							⊙ Watch ▼
<> Code	() Issues	Pull requests	Actions	Projects	🗇 Wiki !	Security	🗠 Insights 🛛 🔞 Settings		
			운 master ▾	l2rpn-baselines	/ I2rpn_base	lines /		Go to file	Add file -
			bwithersp	oon D3QN / RDQN:	Do not enable r	memory gr	rowth with no GPU	3387495 6 days ago	🕚 History
			Asynchron	ousActorCritic @ 67	75a559		adding the AsynchronousActorCritic contribution		last month
			DeepQSim	ple			fixing some imports, make the function runnable in the wcci competition		24 days ago
			DoNothing				finishing dirty implementation of SAC, D3QN (dirty) and DQN	2	months ago
			DoubleDue	elingDQN			D3QN / RDQN: Do not enable memory growth with no GPU		6 days ago
			DoubleDue	elingRDQN			D3QN / RDQN: Do not enable memory growth with no GPU		6 days ago
			📄 DuelQLeap	Net			fixing some imports, make the function runnable in the wcci competition		24 days ago
			DuelQSimp	ble			improving reloading of the agents		17 days ago
			📴 🛛 Geirina @	6b926ed			adding geirina and fixing pandapower baseliens	2	months ago
			Pandapow	erOPFAgent @ aaeb	f61		adding geirina and fixing pandapower baseliens	2	months ago
			SAC				improving reloading of the agents		17 days ago
			SliceRDQN	l.			Adds verbosity control and test for D3QN, SRDQN & RDQN		last month
			📄 Template				fixing some imports, make the function runnable in the wcci competition		24 days ago
			📄 test				adding support for multi mix env in the baselines		16 days ago
			🖿 utils				adding support for multi mix env in the baselines		16 days ago
			C README.m	nd			modifying the readme and adding for now not working pandapoweropf agent	2	months ago
			🗅initpy				Release v0.4.4		16 days ago

2020 WCCI first results

WCCI competition is over

	Score						
	User	Entries	Date of Last Entry	score 🔺	Computation time		
1	shhong	39	06/30/20	75.72 (1)	812.49		
2	zenghsh3	3	06/30/20	66.21 (2)	1406.45		
3	yzm_test	5	06/30/20	48.62 (3)	1233.08		
4	CHWYT	1	06/30/20	27.78 (4)	1.76		
5	ArtificialStupid	1	06/30/20	27.47 (5)	1.61		
6	xinzhixu	11	06/27/20	26.60 (6)	1322.02		
7	djmax008	23	06/27/20	26.19 (7)	495.12		
8	mod-jid2020	1	06/27/20	26.05 (8)	483.91		
9	anonymity	4	06/30/20	25.76 (9)	0.25		
10	НЈХ	3	06/29/20	25.76 (9)	10.69		
11	Echo-Huang	4	06/30/20	20.39 (10)	227.54		
12	UESTC	1	06/29/20	20.39 (10)	228.58		
13	charliedhw_s	5	06/11/20	17.98 (11)	116.43		
14	KUMA	1	06/30/20	13.85 (12)	1.76		
15	SEU_PSA	1	06/27/20	13.75 (13)	9.70		

Strong scores for top 3 participants:

- 1) South Corean working at Naver
- 2) Chinese working at Baidu
- 3) PHD at Singapour (Data Science et Power system)
- 4) Chinese Researcher (working in cyber physical power systems) but double account
- => We check the leaderboard and give prizes to those who share₄₂ their code and complied with the

Detailed winner results on test set

Smart but risky strategy

- When a line is overloaded, the agent disconnects its extremity before it gets disconnected automatically (=> it remains available)
- To avoid cooldown time, it uses the multiple ways to connect and disconnect lines

It learns interesting Topologies

Changing the topologies (in green) of 3 substations (16,23,26) leads to a robust grid topology 45

Challenges

- Exploration is difficult
 - Random agent can survive 5 steps on average.

- Initial topology is safe suboptimal
 - DoNothing agent can survive 500 steps on average.

- Too many possible actions per step
 - Agent has to decide one of 134,199 possible actions.

Naïve approach yields an agent that do only one or two specific actions.

Approach

- State (177 × 6 × F)
 - We define a state as a graph.
 - Powerlines, loads, and prods are nodes of graph (177).
 - Each node contains active power, bus and so on (6).
 - We stack multiple frames (F).
 - We aim to keep graph structure as long as possible.

- Action (127)
 - We define a goal action as desirable topology (108) and execution order (19).
 - Due to the symmetry, we fix the bus for the first node of each substation to 1.
 - The action which isolates the generator and load is not allowed.

Approach

Overview

GNN + Transformer + SAC

More at : <u>https://l2rpn.chalearn.org/competitions#h.p_X7vG2_haclL_</u>

Join us now!

L2RPN NEURIPS 2020 - Robustness Track

Develop your agent to be robust to unexpected events and keep delivering reliable electricity everywhere even in difficult circumstances.

You will have to overcome an opponent attacks and keep operating the grid safely.

L2RPN NEURIPS 2020 - Adaptability Track

In this track, develop your agent to adapt to new energy productions in the grid with an increasing share of less controllable renewable energies over years. You are given a multi-mix environment, that is a set of environments with varying amount of **renewables (varying from 1x to 3x)**.

Conclusions

- 1. Machine Learning approaches are promising for control problems and here showed to **generalize** better than Expert Systems
- 2. It is **now** possible to **learn topology controllers**, opening a new field for research and smart grid flexibilities.
- 3. Challenge helps develop benchmarks and enforce reproducibility to make faster and stronger progress as a community
- 4. We should keep working on **attracting AI researchers** and collaborating with them on power system related problems

Ongoing L2RPN serie competitions

