

College of Engineering and Architecture

The Increasing Data Streams in Power Grid Operation

Anjan Bose Washington State University Pullman, WA, USA

IEEE BDA Tutorial Series: Big Data & Analytics for Power Systems January 24, 2022

Thoughts I want to leave you with

The data landscape for the power grid

Static data, real-time data, historical data

The system operation data

- Markets: Energy, Capacity
- Transmission: EMS-SCADA, PMU
- Distribution: DMS-SCADA, OMS, AMI

The operation challenges for transforming grid

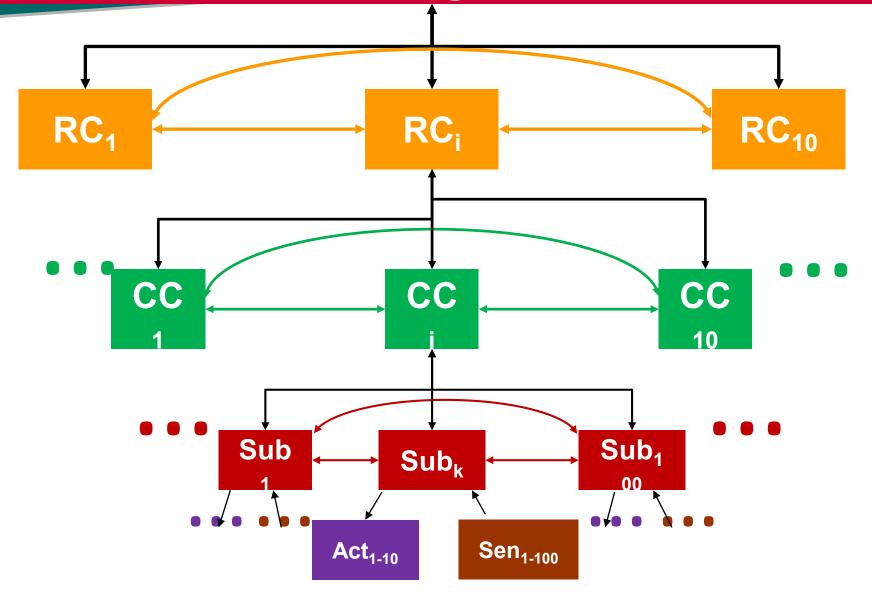
- Monitoring, operating distributed generation
- Resiliency (including recovery)

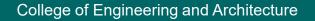
Data communication, management, application

Power Systems Data

- Fixed Data (Assets)
- 7,500 generation plants
- 75,000 transmission substations
- 300,000 miles transmission (100,000 lines and transformers)
- 2.2 million miles distribution (1 million distribution feeders)
- 300 million customers
- Power Flow data for transmission system ~ 2GB Data for all equipment in PB

Applications for System Data


- System data for assets is fixed (changes slowly)
- Each engineering application requires a (small) subset of systems data
- Are there applications that require all data?
 - Asset Management
 - Inventory Control
 - Maintenance Records
 - Automated Mapping/Facilities Management
 - Etc.


Measurement Data (Variables)

- Power, Var, Voltage, Current, Frequency, etc.
- SCADA (EMS, DMS)
- PMU data (transmission)
- AMI data (customers)
- Substation, Generation, Microgrid (stored local)
- Measured at various frequencies
 - EMS SCADA at 2-10 seconds
 - DMS SCADA at 10-60 seconds
 - PMU 30-120 times per second
 - AMI 5-15 minutes
 - Substation/Plant data stored at various rates

Eastern Interconnection Control Monitoring Center

Average EMS Data Flows Today

- Average Reliability Coordinator has 10 Balancing Authorities (control centers)
- Average Control Center has 100 high voltage substations
- Average substation has 100 measurement points
- Average polling rate for real time data is 5 seconds
 So
- Average data rate from each substation is 20/sec
- Average data rate to a control center is 2K/sec
- Average data rate to a RC is 20K/sec

Data Collection by PMUs

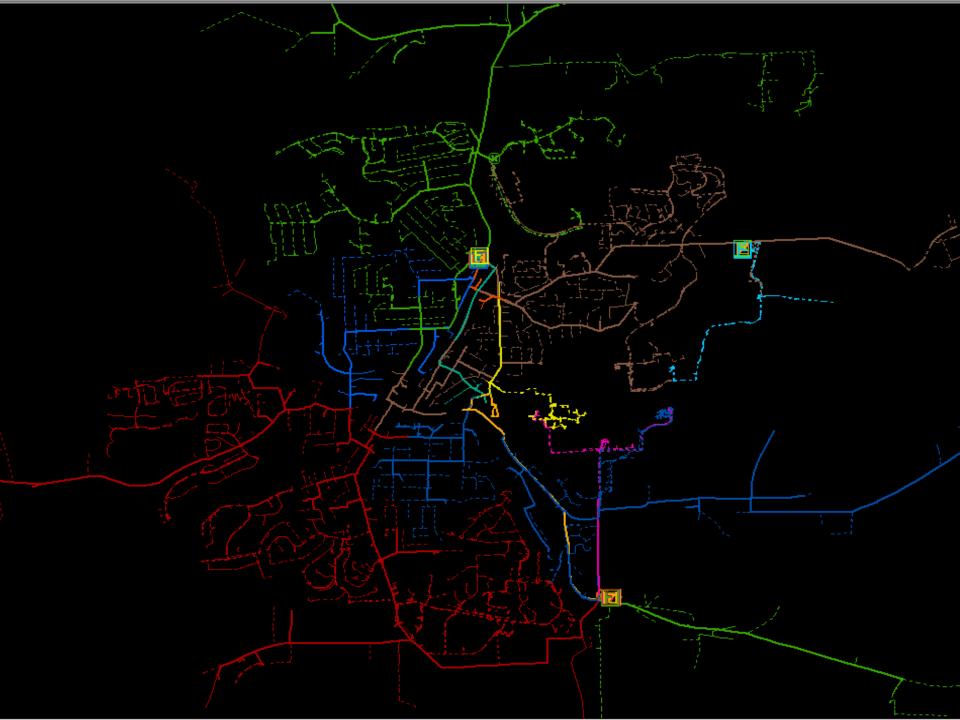
- PMU sampling rates: 30-120 per second
- Assume 100 values per second

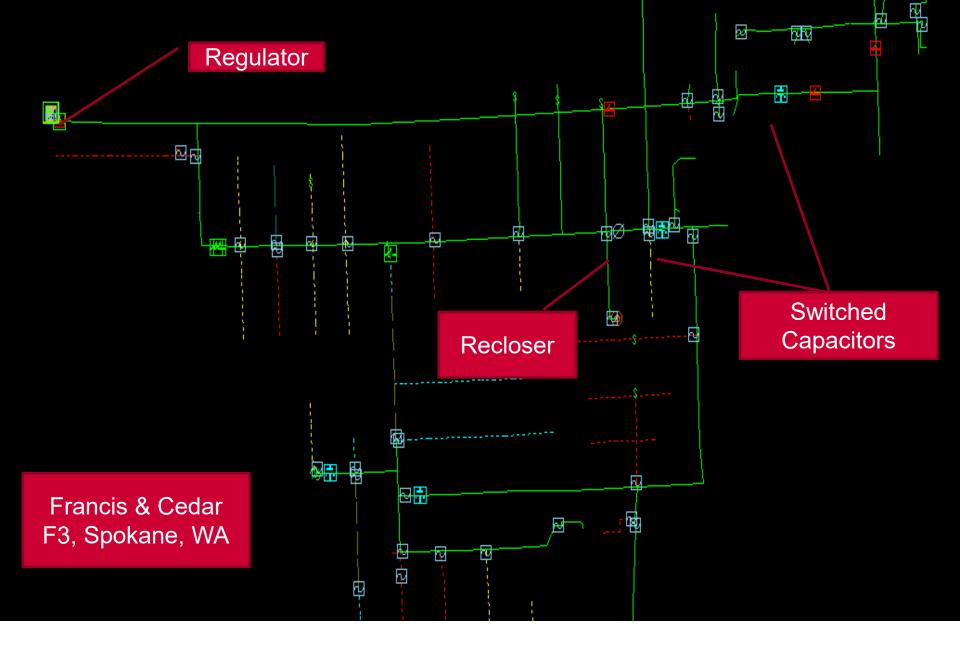
If we assume all 100 points in a sub are PMUs

- Average data rate per sub is 10K/sec
- Average data rate for the total of 100 subs in a BA is 1M/sec
- Average data rate for the RC is then 10M/sec

Simulated Bus Voltages by Powertech TSAT Generated PMU Measurements 33 msecs time steps

College of Engineering and Architecture

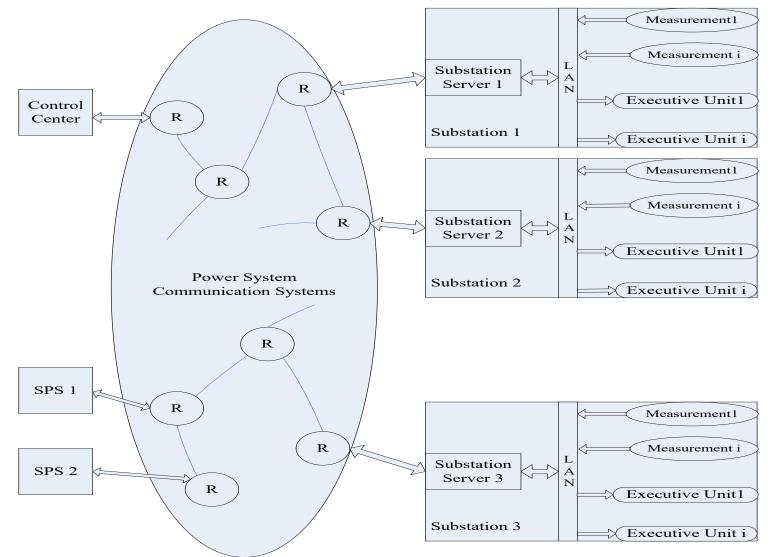

ADMS Data


- DMS SCADA data
 - P, Q, regulator at substation
 - P, Q, status at intelligent breakers (few)
- Outage Management System (OMS)
 - Customer status
 - Estimated status of breakers/sectionalizers
- AMI (customer) data
 - P, Q
 - Usually not available in real time
- No data from primary, secondary transformers

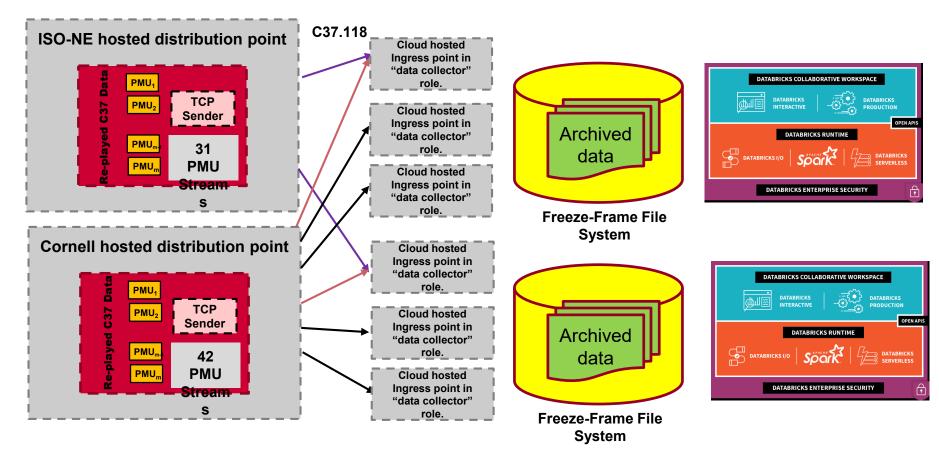
Distributed Generation & Microgrids

- Generation connected to distribution feeders
- Storage connected to distribution feeders
- Generation on secondary transformers (customer side like rooftop solar)
- Storage on secondary transformers (customer side like EV or HVAC)
- Microgrids: grid side or customer side

Data Exchange Issues

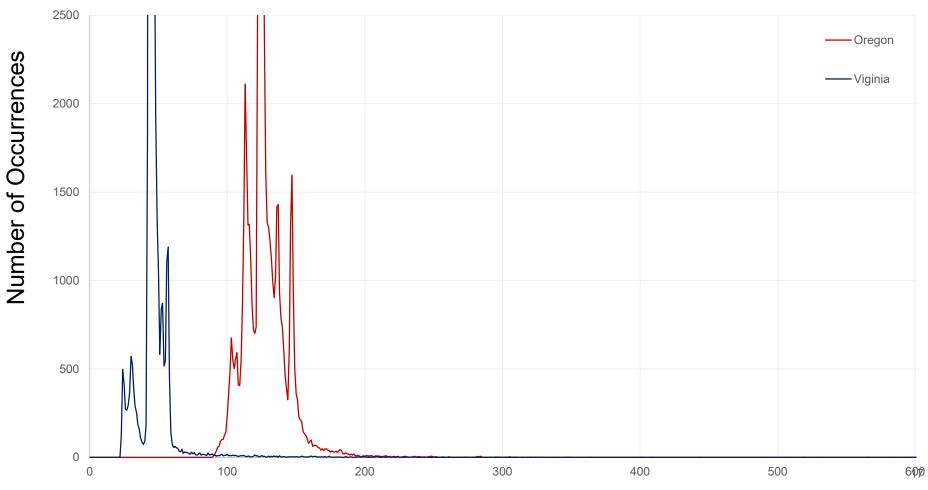

- Within one organization
 - Data movement between EMS, BMS, DMS, OMS, AMI, etc. is non-trivial
- Within one hierarchy
 - Several TOs to ISO
 - Several BAs to RC
- Laterally between neighbors
 - Bilateral agreements too many to be manageable
- Bandwidth, volume, latency

Standardization is the key


Networked Communications

College of Engineering and Architecture

Cloud WAMS Deployment: Data Archive + Analytics



College of Engineering and Architecture

Histogram: L3 Raw Data Round Trip Latencies

ISO-NE Data Source

TSO-DSO Data Exchange

Today there is no EMS-DMS data exchange

- EMS and DMS get the same SCADA data from the substation step-down transformer
- There is voice communication between TSO-DSO
 When large fraction of generation is on distribution
- More DMS data will be needed in the EMS
- Generation, storage, active loads, microgrids
 Data exchange depends on generation mix

Data Base Issues

- Real time data base must be distributed
 - Large amounts of calculated data must be part of this data base
- Static data base must be distributed
- Historical data base will require still another design
- Substation data bases and system level data bases have to be coordinated
- All data bases in the same interconnection will have to be coordinated
- Standards will be key (CIM IEC61970)

Applications

There are dozens of applications needed in the control centers for system operations

- New technologies promise new applications
- Some apps may be distributed (not centralized)
- Data must be stored/moved to support apps
- Let us choose three apps to illustrate
- Volt-VAr control
- Power balance/frequency control
- Resiliency/restoration

Volt-VAr Control

- Voltage control requires controlling VAr resources
- VAr resources should be nearby
- For Transmission Lines
- VAr sources at same sub (gens, shunts, trans)
 For Distribution Feeders
- Main control at source sub
- Boost control with switch caps
- If Distribution has gen, microgrid, active load
- More controllability but need coordination
- Transmission & Distribution can interchange VArs

Power Balance (AGC)

- Balancing Authority (BA) calculates ACE for Area
- BA EMS apportions ACE to trans owners (TO)
- Each TO EMS apportions their ACE to their gens
- As higher fraction of generation becomes distributed to lower distribution voltages
- Those gen measures come to DMS
- The AGC signals have to be apportioned by DMS
- The DMS-EMS data exchange becomes crucial

College of Engineering and Architecture

Restoration

Restoration of customer service falls mainly on Distribution Operators

- Assessment of damage
- Availability of replacement inventory
- Crew dispatch

Resiliency will depend more on distributed generators/customers/microgrids

- Data availability and communications
- Imitate black start protocols

Control Centers

- The next generation of control centers will have a more flexible (decentralized) architecture
- The boundaries between various XMS functions (including protection and local controls) will fade
- The automatic coordination between entities that are interconnected will increase
- This will require large movement of data both hierarchically and laterally
- This cannot be done without wide adoption of standards across the interconnection

Large Data Applications

Historical Data (Measurement Data Only)

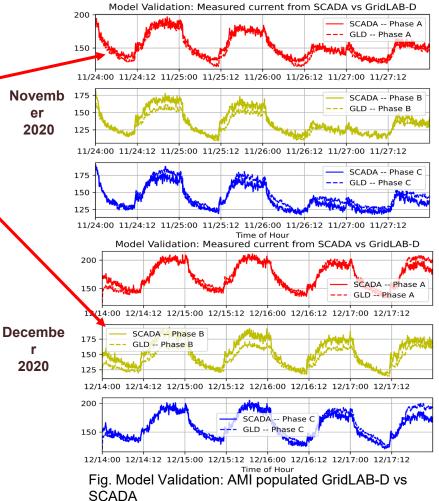
- Data Science has many usable tools
- Identify measurement anomalies (model-free)
- Identify trends (loads, renewable generation, outages – equipment failures, control operations)
- Identify patterns (correlations between loads, solar, wind, maintenance, external events)

Historical Data (Measurement + Model)

- Event analysis
- Identify measurement anomaly (SE bad data)
- Simulation management
- Planning scenario development
- Training scenario development
- Cross infrastructure analysis
- Controller design

WASHINGTON STATE

World Class. Face to Face.


College of Engineering and Architecture

Model Validation using CIM Tool

Fig. Dashboard for the CIM-based Framework

- □ Simulation: The tool populates all the customers (~500) in the GridLAB-D model with appropriate AMI data from PI server.
- □ **Comparison**: Simulation results are compared with actual SCADA measurements for the corresponding day.
- Deviation: Mainly due to inconsistent AMI data
- □ Functionality : Facilitates emulating real-network scenarios

Concluding Remarks

- Data science is the use of big data in NEW ways (NOT the use of existing power applications with bigger data)
- Are there uses of data that does not require physical models?
- Are there new applications that take advantage of both big data and physical models?
- Are there on-line applications that can use big data to help operators make decisions?