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 Corruption resilience in absence of complete system observability

 RPCA basics for anomaly detection and correction in PMU data

 Guarantees for exact signal recovery

 Corruption-resilient signal selection: propositions and lemmas

 Case studies: simulated and field PMU data
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 In 2017: over 2,500 
networked PMUs in North 
America

 Most Reliability Coordinators 
receiving and sharing PMU 
data for wide-area monitoring

 More time needed before 
complete observability is 
achieved 

Abundance of PMUs in North America

We have some distance to cover before full observability through PMUs is achieved
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 Example applications requiring full observability:

 ‘Dynamic’ state estimation

 Voltage stability assessment in a meshed network

 Example applications not requiring full observability:

 ‘Dynamic state’ estimation

 Oscillation monitoring through ‘mode meters’

 Mode meters already operational in control centers

 California ISO, PG&E, BPA, and TVA

 Web-based version deployed in 7 operations centers and 11 reliability 
coordinators

Application of Wide Area Monitoring

Mode meters estimate damping ratios and frequencies of oscillations
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 Data anomaly detection/correction:

 State estimation-based: needs full observability (examples)

 Measurement-driven data preprocessing: neither require full observability with 
PMUs, nor need network topology information (examples)

Literature Review

We focus on second approach: exploit the spatiotemporal correlation

[A] Y. Gu et-al , “Bad Data Detection  Method for Smart Grids based on Distributed State Estimation,” in 2013 IEEE International Conference on Communications (ICC), Jun. 
2013, pp. 4483–4487.
[B] A. S. Dobakhshari and A. M. Ranjbar, “A Wide-Area Scheme for Power System Fault Location Incorporating Bad Data Detection,” IEEE Trans. Power Del., vol. 30, no. 2,
pp. 800–808, 2015.
[C] S. Cui, Z. Han, S. Kar, T. T. Kim, H. V. Poor, and A. Tajer, “Coordinated data-injection attack and detection in the smart grid: A detailed look at enriching detection 
solutions,” IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 106–115, Sep. 2012.
[D] T. A, S. Sihag et-al “Non-linear state recovery in power system under bad data and cyber attacks,” Journal of Modern Power Systems and Clean Energy, vol. 7, no. 5, pp. 
1071–1080, 2019.
[E] A. Ashok et-al “Online Detection of Stealthy False Data Injection Attacks in Power System State Estimation,” IEEE Trans. Smart Grid, vol. 9, no. 3, pp. 1636–1646, May 
2018.

[A] Y. Hao et-al, “Modelless Data Quality Improvement of Streaming Synchrophasor Measurements by Exploiting the Low-Rank Hankel Structure,” IEEE Trans. Power Syst., 
vol. 33, no. 6, pp. 6966–6977, Nov. 2018.
[B] P. Gao, R. Wang, M. Wang, and J. H. Chow, “Low-Rank Matrix Recovery From Noisy, Quantized, and Erroneous Measurements,” IEEE Trans. Signal Process., vol. 66, pp. 
2918–2932, 2018.
[C] P. Gao et-al “Missing Data Recovery for High-Dimensional Signals With Nonlinear Low-Dimensional Structures,” IEEE Trans. Signal Process., vol. 65, no. 20, pp. 5421–
5436, Oct. 2017.
[D] M. Liao et-al “An Alternating Direction Method of Multipliers Based Approach for PMU Data Recovery,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4554–4565, 2019.
[E] K. Mahapatra et-al “Malicious Corruption-Resilient Wide-Area Oscillation Monitoring Using Principal Component Pursuit,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1813–
1825, 2019.
[F] ——, “Malicious Corruption-Resilient Wide-Area Oscillation Monitoring using Online Robust PCA,” in 2018 IEEE Power Energy Society General Meeting (PESGM), Aug. 
2018, pp. 1–5.
[G] ——, “Online Robust PCA for Malicious Attack-Resilience in Wide-Area Mode Metering Application,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 2598–2610, Jul. 2019.
[H] K. Chatterjee et-al “Robust Recovery of PMU Signals with Outlier Characterization and Stochastic Subspace Selection,” IEEE Trans. Smart Grid, pp. 1–1, 2019.
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 Signal selection for mode metering: (A) Modal observability-based, (B) Participation 
ratio, (C) Power spectral density

Literature Review

Can we intelligently
locate the PMUs and/or group signals from installed PMUs

such that the resulting combinations guarantee data recovery
from corruption while capturing every information necessary

to estimate the critical modes?

[A] D. J. Trudnowski, “Estimating Electromechanical Mode Shape From Synchrophasor Measurements,” IEEE Trans. Power Syst., 
vol. 23 no. 3, pp. 1188–1195, 2008.
[B] T. Huang, M. Wu, and L. Xie, “Prioritization of PMU Location and Signal Selection for Monitoring Critical Power System 
Oscillations,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3919–3929, 2018.
[C] V. S. Peri´c, X. Bombois, and L. Vanfretti, “Optimal Signal Selection for Power System Ambient Mode Estimation Using a 
Prediction Error Criterion,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2621–2633, Jul. 2016.
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 Anomaly example:

 So-called ‘bad data’ stemming from problems in communication infrastructure

 False data injection (FDI) attacks like: (1) Parameter manipulation, (2) Fault-
resembling, (3) Missing data, (4) Data repetition

 Corruption model: z(t)= y(t)+e(t); z(t): corrupted, y(t): actual, e(t): corruption

 Assumption:

 Corruption is ‘sparse’: a fraction of  channels attacked/affected at any point in time

 Communication layer security can be breached, control center is secure

 Note: s-sparse vector  vector with at most s nonzero entries

 Objective: detect the anomaly and predict e(t) – posed as Sparse Recovery 
Problem

PMU data Anomaly Detection & Correction Problem

Low-rank property of PMU data & sparse corruption vector are important
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Robust PCA (RPCA) Basics: Sparse Recovery Problem 

Low-rank property of PMU data & sparse corruption vector are important

 z(t) =  y(t) + e(t), Objective: detect the anomaly and predict e(t) 

 Robust PCA (R-PCA) as a tool from Compressed Sensing literature

 Consider a window of PMU data samples:

Columns of �𝑼𝑼 and �𝑉𝑉: left and right singular vectors for r dominant modes

 Y: Low rank for a large power grid – only r dominant directions considered in �𝑈𝑈. 

 Basic idea: Decompose z(t) into estimates �𝑦𝑦 𝑡𝑡 and �̂�𝑒(𝑡𝑡), such that 

 �𝑦𝑦 𝑡𝑡 is in low-rank subspace spanned by �𝑈𝑈 and 

 �̂�𝑒(𝑡𝑡) is sparse corruption vector



11

 z(t) projected onto space orthogonal to span of �𝑈𝑈: 

 Ideally, y(t)∈ span �𝑈𝑈 implying 𝚽𝚽𝚽𝚽(t) nullified. 

 Actually, because of (1) measurement noise, (2) limiting �𝑈𝑈 dimension to r 
columns  𝚽𝚽𝚽𝚽 t = 𝝂𝝂(𝑡𝑡): negligibly small 

 Estimation of e(t) from z(t): optimization problem ensuring maximum sparsity:

nonconvex problem

 Convex relaxation leads to so-called LASSO problem [1]:

 Thresholding term: 

Robust PCA (RPCA) Basics: Sparse Recovery Problem 

An efficient ℓ1 solver can solve this optimization problem
[1] H. Guo, C. Qiu, and N. Vaswani, “An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum,” IEEE Trans. 
Signal Process., vol. 62, no. 16, pp. 4284–4297, Aug. 2014.
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Proposed Architecture 

Data pre-processor takes two inputs: (1) PMU data, (2) Subspace from Library 

Subspace library: 

 Offline simulation of  planning 
models: self-clearing faults under 
different loading conditions

 Daily and seasonal variation to be 
considered: planner’s experience is 
critical 

 Perform SVD and store the 
dominant singular vectors from �𝑈𝑈
to create each subspace

 Subspace selection: can be 
automated [2]

[2] K. Chatterjee, K. Mahapatra, and N. R. Chaudhuri,  “Robust Recovery of PMU Signals with Outlier Characterization and Stochastic Subspace 
Selection,” IEEE Transactions on Smart Grid, IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3346 – 3358.
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IEEE 68 Bus New England- New York Test System
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Ambient: Parameter Manipulation Attack
Injection of  signals with altered modal characteristics in 20% of signals

‘Δ’ : Corrupted, ‘*’: Ground truth,               
‘o’: Corrected
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Ambient: Fault Resembling Injection Attack
‘Playback’ of  fault data in 20% of signals

‘Δ’ : Corrupted, ‘*’: Ground truth,               
‘o’: Corrected
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Transient: Missing Data & Data Repetition Attacks
Self-explanatory
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 Convex relaxation leads to so-called LASSO problem [3]:

 Exact recovery guaranteed (ℓ0 − ℓ1 equivalence) and a s-sparse solution is 
returned if  s-restricted isometry constant 𝛿𝛿𝑠𝑠 Φ < 0.307 [4]: Sufficiency condition

𝜿𝜿𝒔𝒔 𝒀𝒀 is the denseness coefficient: 

𝑰𝑰𝑻𝑻: submatrix of identity matrix I containing columns with indices in set T

 Note: (a) 𝜅𝜅𝑠𝑠 ≤ 1 (b) Lower the value of κs, higher the denseness of the range
space. (c) For r-rank Y, 𝜅𝜅1 𝒀𝒀 ≥ √(𝑟𝑟

𝑛𝑛
). (d) 𝜅𝜅1 𝒀𝒀 = √𝑟𝑟

𝑛𝑛
, if Y is spanned by basis

vectors whose entries all have magnitude √1
𝑛𝑛

.

Guarantees for Exact Recovery 

Our research question: How to guarantee 𝜅𝜅𝑠𝑠 𝑌𝑌 < 𝜅𝜅∗ through signal selection?
[3] H. Guo, C. Qiu, and N. Vaswani, “An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum,” IEEE Trans. 
Signal Process., vol. 62, no. 16, pp. 4284–4297, Aug. 2014.
[4] T. T. Cai, L. Wang, and G. Xu, “New bounds for restricted isometry constants,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4388–4394, Sep. 2010.
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 Linearized model of  power system:

Λ: diagonal matrix with eigenvalues of A, Ψ: modal observability matrix

 Lemma I:

 Corollary: For k poorly-damped modes (others sufficiently damped/unobservable)

 Remark: With k poorly-damped modes (others sufficiently damped/unobservable) 
numerical-rank(𝐘𝐘) ≤ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝚿𝚿 ≤ 2𝑟𝑟

Corruption-Resilient Signal Selection: Propositions and Lemmas

Connection established between system theoretic notions of modal observability 
and indices guaranteeing robust recovery – denseness & restricted isometry



19

 Lemma II: For a unimodal case, if  the entries in 𝜓𝜓1 have same phase angles, then 
rank �Ψ is 1.

 Corollary: κ1 �Ψ = 𝜅𝜅1 𝜓𝜓1

 Lemma III: For a unimodal case, the minimum value of 𝜅𝜅1 �Ψ is attained when 
signals are selected from a coherent group with minimum variance in the 
magnitudes of relative modal observabilities.

 Effect of  large magnitude outlier in observability matrix: (n-1) signals with mean 𝜇𝜇
and standard deviation 𝜎𝜎 of observability magnitudes 𝜓𝜓1𝑖𝑖 , and 1 outlier 
𝜓𝜓1𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇 + 𝜌𝜌𝜎𝜎

κ1 �Ψ = 𝜅𝜅1 𝜓𝜓1 =
1

1 + 𝑟𝑟 − 1 𝜇𝜇2 + 𝜎𝜎2
𝜇𝜇 + 𝜌𝜌𝜎𝜎 2

Signal selection with same phase relationship

κ1 �Ψ increasing function of 𝜌𝜌 and decreasing function of 𝑟𝑟
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Example 1

Sacrificing signal with highest observability defies conventional wisdom!!

1 poorly-damped inter-area mode with frequency 
0.628 Hz and damping ratio 0.012

Observations:

 κ1 �Ψ = 0.6053 from our expression, κ1(𝑌𝑌) = 0.6051 using Y from nonlinear time-
domain simulations still above κ1∗

 Add 1 more signal P10-9    with a high |𝝍𝝍𝟏𝟏𝟏𝟏| relative to the rest (and thus, ideal for modal 
estimation)  κ1 �Ψ = 0.7405, κ1(𝑌𝑌) = 0.7404  worsens

Conclusions:

 Not enough to increase the number of  signals – need to minimize variance in |𝝍𝝍𝟏𝟏𝟏𝟏|
 Might need to sacrifice the ‘Best’ signal: signal with highest observability
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Example 2

For sufficiently dense vectors, κ1 increases linearly with 𝜌𝜌 and 𝜎𝜎

1 poorly-damped inter-area mode with frequency 
0.628 Hz and damping ratio 0.012

Observations:

 ∠𝝍𝝍𝟏𝟏𝟏𝟏 are close  rank(Y)≈ 1, largest singular value: 24.04, second largest: 0.65

 𝜃𝜃7 − 𝜃𝜃9: an outlier w.r.t. |𝝍𝝍𝟏𝟏𝟏𝟏|  κ1 �Ψ = 0.9580

 Replace 𝜃𝜃7 − 𝜃𝜃9 by 𝜃𝜃4 − 𝜃𝜃11 and P9-10 by P10-4  𝜎𝜎 = 0.025,𝜇𝜇 = 0.447,𝜌𝜌 = 4.51,
κ1 �Ψ = 0.5262  LESS THAN 𝜿𝜿∗ GUARANTEES 1-sparse recovery!!

 If  signals are selected such that the variation in observability magnitudes is small 
𝜇𝜇
𝜎𝜎
≫ 1,𝜌𝜌 ≈ 1 ; κ1 �Ψ = 𝜅𝜅1 𝜓𝜓1 ≈ 1

𝑛𝑛
1 + 𝜌𝜌𝜎𝜎

𝜇𝜇


𝜇𝜇
𝜎𝜎

= 18.83 ≫ 𝜌𝜌, κ1 �Ψ ≈ 0.554 
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Example 2 (Contd…): Parameter Manipulation Attack

Damping and frequency plots using multichannel Prony [5]

1 poorly-damped inter-area mode with frequency 
0.628 Hz and damping ratio 0.012

[5] D. J. Trudnowski, J. M. Johnson, and J. F. Hauer, “Making Prony Analysis More Accurate using Multiple Signals,” IEEE Trans. Power Syst., vol. 14, 
no. 1, pp. 226–231, Feb. 1999.
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Example 2 (Contd…): Missing Data Attack

Incorrect recovery leads to appearance of  well-damped system

1 poorly-damped inter-area mode with 
frequency 0.628 Hz and damping ratio 0.012
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 Generic Signal Selection for Unimodal Case: Rank �Ψ = 2, min 𝜅𝜅1 = 2
𝑛𝑛

 Lemma IV: If  the entries in 𝜓𝜓1 are such that 𝜓𝜓1, �𝜓𝜓1 = 0, then κ1 �Ψ =
√2𝜅𝜅1 𝜓𝜓1

 Lemma V: If  signals are selected such that the variation in observability magnitudes 

is small 
𝜇𝜇
𝜎𝜎
≫ 𝜌𝜌 and the absolute value of the inner product 𝜓𝜓1, �𝜓𝜓1 ≤ 𝜖𝜖 for 

some 𝜖𝜖, then 

κ1 �Ψ ≤
2
𝑟𝑟

1 +
𝜌𝜌𝜎𝜎
𝜇𝜇

1 +
𝜖𝜖

2 𝜓𝜓1 2
2

Generic Signal Selection for Unimodal Case

𝜓𝜓1, �𝜓𝜓1 = 0 is hard to achieve, so Lemma V is formulated
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Example 3

Validates proposition on upper bound on denseness due to a small non-zero perturbation in
inner product

1 poorly-damped inter-area mode with frequency 
0.628 Hz and damping ratio 0.012

Observations:

 ∠𝝍𝝍𝟏𝟏𝟏𝟏 are significantly different  rank(Y)≈ 2

 κ1 �Ψ = 0.7385, κ1 𝑌𝑌 = 0.7377

 In this case, 𝜓𝜓1, �𝜓𝜓1 = 𝜖𝜖 = 0.138 and 𝜖𝜖2/ 𝜓𝜓1 2
4

= 0.0028<< 1,             

𝜎𝜎 = 0.041, 𝜇𝜇 = 0.693,𝜌𝜌 = 3.19

 κ1 �Ψ < 0.7711 FROM LEMMA V

1. Signals in two groups almost in quadrature
2. Relative magnitudes are close by
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Signal Selection for Multiple Modes

Incorrect recovery with parameter manipulation attack

 Minimal variation in observability phase angle and magnitudes for each mode
 Basis vector corresponding to the largest singular value captures most of  the variance 
numerical-rank (Y) ≈1
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Signal Selection for Multiple Modes

|V1|, |V8| replaced by |V4|, |V5|: Correct recovery with parameter manipulation attack

 Overall denseness κ1 �Ψ = 0.5359 < 𝜿𝜿∗

 Note: Ideally, κ1 �Ψ ≥ κ1 �Ψ𝑖𝑖 ,∀𝑖𝑖 ≤ 𝑟𝑟 Here, truncation is applied since largest singular 
vector captures 97% variance
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Signal Selection from NYPA Data

Goal: Group signals such that at least 1-sparse recovery is guaranteed in each

 Detrended voltage magnitudes |V1|-|V40|: κ1 𝑌𝑌 = 0.549  guarantees 1-
sparse recovery in 40 signals – Awfully inadequate

 No linear model: Purely data-driven approach for signal selection

 Spectral decomposition gives 2 modes: 0.06 Hz and 0.25 Hz

 Output-to-output TF approach [6] used to calculate relative modeshapes ---
equivalent to relative observabilities

 Group signals to attain minimum variance in magnitudes and angles of 
observabilities for each mode: clustering algorithms can be used

[6] L. Dosiek, N. Zhou, J. W. Pierre, Z. Huang, and D. J. Trudnowski, “Mode Shape Estimation Algorithms under Ambient Conditions: A Comparative 
Review,” IEEE Trans. on Power Syst., vol. 28, no. 2, pp. 779–787, May 2013.



29

Signal Selection from NYPA Data

Denseness coefficients satisfy analytical bounds: Sets I and II meet 𝜅𝜅𝑠𝑠 < 0.554 –
guaranteed reconstruction for corruption in 2 out of 8 signals!  
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Mode Meter Result from NYPA Data

Corruption resilience of mode meter is evident  
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Signal Selection from NYPA Data (Contd.)

Set III does not meet 𝜅𝜅𝑠𝑠 < 0.554

𝜅𝜅1 𝑌𝑌 = 0.709, 𝜅𝜅2 𝑌𝑌 = 0.995
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Conclusion

 Insights into PMU signal grouping was developed to enhance denseness of a set

 Grouping can be model based or data driven

 Link between denseness and modal observability was established 

 Denseness increases when signals were grouped with observabilities in same 
phase and variance in magnitude is minimized

 Conventionally preferred (high observability) signals might have to be sacrificed for 
guaranteed recovery from corruption
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