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Transmission Grid



Distribution Grid

• Final Tier in electricity transfer

• Voltage: High Medium                          Low



Distribution Grid

• Final Tier in electricity transfer

Traditional direction of flow



Distribution Grid

• Final Tier in electricity transfer

Current direction of flow → Issues



Grid Issues

Challenges
• Greater Variability/intermittent
• Lesser inertia/stability
• Needs real-time observability, 

control



Grid Issues

Challenges
• Greater Variability/intermittent
• Lesser inertia/stability
• Needs real-time observability, 

control

Squirrel or 
cyber attack?

Electricity 
markets:

Use
• Estimation
• Optimization
• Resilience

Forest 
fires
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Grid Issues

Challenges
• Greater Variability/intermittent
• Lesser inertia/stability
• Needs real-time observability, 

control

Solution
• Smart meters: PMUs, micro-PMUs, IoT
• Big Data: High fidelity measurements 
• Over 2500 networked PMUs
• Sparse: Not everywhere in low voltage grids

Use
• Estimation
• Optimization
• Resilience
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Speed

Physics 

(Power-Systems) 

Informed Tuning 
(Power System interpretable 

but repetitive & off-line, 

hand-controlled)

Physics-Free

Machine Learning
(automatic, training & execution efficient,

but lacking Power System interpretability)

Physics-informed

Machine Learning

➢ Advantage:  Provable results, Missing data extensions



Learning Problems in Distribution Grids

Substation

Load Nodes

• Structure Learning

• Learning Line Impedances 

• Incomplete observations

Missing Node

R, X

Theoretical guarantees:
what length of observations? 
how much noise?
how much observability?



Data-driven problems

Learning:
Topology & 
Parameter 

Beyond radial 
grids: Graphical 

Models

Learning using 
Dynamics

Neural Networks:

when, why



Physics-informed: 

• Restrictions due to domain knowledge

1. Structure of the grid: radial or large loops if meshed 



Physics-informed: 

b

a

c

dSlack Bus

•

wt. Laplacian matrix

• Restrictions due to domain knowledge

1. Structure of the grid: radial or large loops if meshed 

2. Flow Physics (Static regime)

• First order expansion: LinDist Flow



Physics-informed:

b

a

c

dSlack Bus

• Static Regime: 

• LinDist Flow: 

• Dynamic Regime: Swing Equations 

• Frequency:

• Inertia (M) and Damping (D)

Net disturbance 
imbalance

Dynamics of state 
variables



Physics-informed:

1. Structure of the grid: 

• radial or large loops

2. Flow Physics: 

• Static Regime (>1 m)

• Dynamic Regime (<1 sec)

Statistical Learning:

• Properties of large/finite data

1. Sufficient statistics:

• Means, covariances

2. Concentration bounds:

• How far are empirical 
estimates from true values?

Chernoff, Hoeffding, Markov bounds
Dvorkin et al., Uncertainty Sets For Wind Power 
Generation, PES Letters 2016



Physics-informed:

1. Structure of the grid

2. Flow Physics

Statistical Learning:

1. Sufficient statistics:

2. Concentration bounds:

Provable Learning solutions
1.  Estimation algorithm consistent at infinite   

samples.

2. Correct with high probability at finite 
samples/noise etc.



• Data: Time-series Nodal voltages at all nodes (static regime)

• Unobserved: all lines

• Estimate: Operational Topology

Learning with nodal voltages

• Deka et al., Structure Learning in Distribution 
Networks, IEEE Trans. Control of Networks, 2017  



Voltages in Radial Network

• Variance of voltage diff.:

• Minimum along any direction reached at nearest neighbor

𝑐

𝑏

a

𝑎

𝑐

𝑏

𝑎

𝑐

𝑏



Topology Learning (No missing nodes) 

Greedy Topology Learning:

1. Spanning Tree with  edge weights given by  

𝑐

𝑏

a

• NO additional information needed 

• Works for monotonic flows (gas,water, heating)

• Computational complexity: O(|V|^2 log |V|)

Sample Complexity :

For a grid with constant depth 
and sub-Gaussian complex power 
injections,  𝑂( 𝑉 2 log 𝑉 /𝜂 )
samples recovers the true 
topology with probability 1 − 𝜂.



Topology Learning (No missing nodes)

33-bus test system, Matpower

Reference: 12 KV substation voltage

Effect of Noise



Topology Learning with Missing Data

• Missing nodes that are greater than 1 hop away (not adjacent)

𝑎

𝑐3

𝑏2

𝑐5
𝑐4 𝑐6

𝑝

𝑐1
𝑏1𝑐2

𝑑

Unobserved node

𝑎

𝑐3 𝑐5
𝑐4 𝑐6

𝑐1
𝑐2

𝑑Spanning tree

4 hop nodes become 2 hop neighbors



Topology Learning with Missing Data

• Missing nodes that are greater than 1 hop away (not adjacent)

• Deka et al., Joint Estimation of Topology and Injection Statistics with 
Missing Nodes, IEEE Trans. Control of Networks, 2020

𝑎

𝑐3 𝑐5
𝑐4 𝑐6

𝑐1
𝑐2

𝑑

Node triplets:



Topology Learning with Missing Data

• Missing nodes that are greater than 1 hop away (not adjacent)

• Learning Algo: 

1. Construct spanning tree

2. Cluster matrix

3. Find missing parents and iterate.

𝑎

𝑐3 𝑐5𝑐4 𝑐6

𝑐1
𝑐2

𝑑

𝑎

𝑐3

𝑏2

𝑐5𝑐4 𝑐6

𝑝

𝑐1
𝑏1𝑐2

𝑑

• Deka et al., Joint Estimation of Topology and Injection Statistics with 
Missing Nodes, IEEE Trans. Control of Networks, 2020



• Data: Time-series Nodal voltages and injection samples at leaves

• Unobserved: all intermediate nodes & lines

• Estimate: Operational Topology + Line Impedance 

Learning with end-users



• Time-stamped voltage magnitudes (V)

• Time-stamped nodal active & reactive injections (P &Q)

End-user data 

• Cross-covariances: 



Learning with end-users

• Data: Time-series Nodal voltages and injection samples at leaves

• Algorithm:

➢ Compute effective impedances between leaf pairs 

➢ Recursive Grouping Algo (Anandkumar’11) to learn topology & 
distances from known effective impedances

a

b



Recursive Grouping Algo

2. Introduce parents 

3. Update  distance   

1. 𝑎, 𝑏 are leaf nodes with common parent iff
𝑑 𝑎, 𝑐 − 𝑑 𝑏, 𝑐 = 𝑑 𝑎, 𝑐′ − 𝑑(𝑏, 𝑐′) for all 𝑐, 𝑐′ ≠ 𝑎, 𝑏

2. 𝑎 is a leaf node and 𝑏 is its parent iff

𝑑 𝑎, 𝑐 − 𝑑(𝑏, 𝑐) = 𝑑 𝑎, 𝑏 for all 𝑐 ≠ 𝑎, 𝑏

a

b



Recursive Grouping Algo

2. Introduce parents 

3. Update  distance   



Recursive Grouping Algo

After Iterations



Estimating effective impedances

• Algorithm:

➢ Compute effective impedances between leaves

➢ Power Flow equations:

➢ Uncorrelated Injections

– Two equations with 2 unknowns



Effect of Correlated Injection 

• Algorithm:

➢ Compute effective impedances between leaves

➢ Power Flow equations:

DiSc data set, 
Aalborg Univ,



Effect of Correlated Injection 

• Algorithm:

➢ Compute effective impedances between leaves

➢ Correlated Injections

➢ Computing inverse

➢ ML estimate (SPICE) for inverse: 



Sample Complexity

Uncorrelated :

For a grid with constant depth 
and sub-Gaussian complex power 
injections,  𝑂( 𝑉 log 𝑉 /𝜂 )
samples recovers the true 
topology with probability 1 − 𝜂.

Correlated :

𝑂( 𝑉 2 log 𝑉 /𝜂 ) samples
recovers the true topology with 
probability 1 − 𝜂.

• Park et al., Learning with End-Users in Distribution Grids: Topology and 
Parameter Estimation, IEEE Trans. Control of Networks, 2020



Simulations: IEEE 33 bus graphs (Matpower samples)

500      600       700       800     900     1000



1. Loopy grids

2. Time-correlated voltages and injections

Beyond radial 
grids: Graphical 

Models

What about



Probabilistic Distribution  → Graphical Model

Correlation Conditional Dependence

𝑇𝑒𝑚𝑝

𝑃𝑟𝑖𝑐𝑒

𝑙𝑜𝑎𝑑

𝑇𝑒𝑚𝑝

𝑃𝑟𝑖𝑐𝑒

𝑙𝑜𝑎𝑑



• Graphical Model: Graphical Factorization of Distribution

• Think Inverse Correlation instead of Correlation

Correlation of stock prices Graphical Model of stock prices

Probabilistic Distribution  → Graphical Model



Probabilistic Distribution of Nodal Voltages

• Distribution of injections:

Jacobian

voltages Injections• Distribution of voltages:



• Distribution                     with  

• Graphical Model: between voltage, phase

Graphical Model of Voltages



• Distribution

• Graphical Model: Topology Edges + 2-hop neighbors 

Graphical Model of Voltages



• Variables:

• Gaussian voltage fluctuations

• Inverse covariance             gives graphical model

• Graphical Lasso: 

• Neighborhood Lasso: 

Graphical Model Estimation

(Yuan & Lin, 2007)

(Meinshausen, 2006)



• How to distinguish true edges??

• Two schemes:

• Neighborhood Counting 

• Thresholding 

• Exact for radial networks 

• Restrictions for loopy/meshed grids

Graphical Model  → Topology estimation

• Deka et al., Graphical Models in Meshed Distribution Grids: Topology estimation, 
change detection & limitations, IEEE Trans. Power Systems, 2020



• Neighborhood Counting:

Graphical Model  → Topology estimation

Identify non-leaf 
neighborsIdentify edges to 

leaf nodes

Remove edges



• Neighborhood Counting: topological separability 

• Loopy Grid:

• Recovers exact topology if cycle length greater than 6

Graphical Model  → Topology estimation

• Deka et al., Graphical Models in Meshed Distribution Grids: Topology estimation, 
change detection & limitations, IEEE Trans. Smart Grid, 2020



• Thresholding:

• True edges have

• Loopy Grid:

• Recovers topology if cycle length greater than 3 (no triangles)

Graphical Model  → Topology estimation

• Deka et al., Graphical Models in Meshed Distribution Grids: Topology estimation, 
change detection & limitations, IEEE Trans. Smart Grid, 2020



• Alg1: counting

• Alg2: thresholding

• 56 bus system

Graphical Model  → Topology estimation

• Deka et al., Graphical Models in Meshed Distribution Grids: Topology estimation, 
change detection & limitations, IEEE Trans. Smart Grid, 2020



• Extends to 3-phase unbalanced system
• Deka et al., Topology estimation using graphical models 

in multi-phase power distribution grids, IEEE Trans. 
Power Systems, 2020

Graphical Model  → Topology estimation

𝒂𝜶

𝒂𝜷

𝒂𝜸

𝒃𝜷

𝒃𝜶

𝒃𝜸

𝒂 𝒃



• General Grids with triangles??

• Temporal Correlations??

What about

IEEE 14 bus

Does not vanish



• General Grids with triangles??

• Temporal Correlations??

What about

Learning using 
Dynamics



Dynamic Regime: Swing Equations

• Frequency

• Inertia (M) and Damping (D) from synchronous 

machines.

• Stochastic noise

Net power imbalanceDynamics of phase angles

b

a

c

d

~

~ ~

~

• Fluctuations due to ambient noise in injections:



• General Form:

• Graphical Model: 

Inverse Correlation Matrix Inverse Power Spectral Density

Fourier Transform of delayed correlation 

Invert

Invert

Swing equationPower Flow



• General Form:

• Graphical Model: 

Inverse Correlation Matrix Inverse Power Spectral Density

Neighborhood Lasso 
(Meinshausen, 2006)

Swing equationPower Flow

• Finite samples: 

Wiener Filter (non-causal)
(Wiener, Kolmogorov 1950)



𝛀il

𝛀ij

𝛀ik

• Graphical Model of voltages: Topology Edges + 2-hop neighbors

Learning in dynamic regime: 

Graphical ModelTopology

• Dynamic regime (inverse power spectral density):

• Neighborhood counting (cycle length > 6) 

• Inverse PSD: (                   is function of frequency) 

❑ Phase remains constant for spurious edges at all frequency



• Graphical Model of voltages: Topology Edges + 2-hop neighbors

Learning in dynamic regime: 

Graphical ModelTopology

• Dynamic regime (inverse power spectral density):

• Neighborhood counting (cycle length > 6) 

• Phase based edge detection (all graphs)

• Holds for colored (WSS or cyclo-stationary) inputs
• S. Talukdar et al., Physics-informed learning in linear dynamical systems, 

Automatica, 2020. 

Pruned model



• Graphical Model of voltages: Topology Edges + 2-hop neighbors

Learning in dynamic regime: 

• Dynamic regime (inverse power spectral density):

• Phase based edge detection (all graphs)

• Any linear dynamical system: Eg. Buildings
• S. Talukdar et al., Physics-informed learning in linear dynamical systems, 

Automatica, 2020. 



• Graphical Model of voltages: Topology Edges + 2-hop neighbors

Learning in dynamic regime: 

• Dynamic regime (inverse power spectral density):

• Phase based edge detection (all graphs)

• Any linear dynamical system: Eg. Buildings
• S. Talukdar et al., Physics-informed learning in linear dynamical systems, 

Automatica, 2020. 

Graph lasso

Graph laso with regularization

Algo (no regularization)

Algo with regularization

1- step regression



• Graphical Model of voltages: static or dynamic

– Uses inverse voltage covariance or power spectral density

– Needs fluctuations at all nodes (                                to be defined)

– What if zero-injection buses exist?

Learning in under-excited grids: 

• Learning when 0-injection buses not adjacent

• Deka et al, Tractable learning in under-excited power grids, arxiv pre-print, 2020.

Identify zero-injection and neighbors 
using regression-test

Non- zero injection

zero- injection
Estimate non-zero neighborhood using 
graphical model in Kron-reduced graph



Learning in under-excited grids: 

• Deka et al, Tractable learning in under-excited power grids, arxiv pre-print, 2020.

Identify zero-injection and neighbors 
using regression-test

Estimate non-zero neighborhood using 
graphical model in Kron-reduced graph

33 bus system

Non- zero injection

zero- injection     



Practical Applications:

Identify zero-injection and neighbors 
using regression-test

Estimate non-zero neighborhood using 
graphical model in Kron-reduced graph

• Use tractable/provable algorithms as a starting point

• Additional constraints from real data: 

– Prior structures /impedance values (monitor change instead)

– Use threshold selection based on historical data

– Learn noise levels 

• Data-driven guided by real-data: 
– Matt Reno, Yang Wang, Ram Rajagopal, Reza Arghandeh, Sascha von Meier, 

Vijay Arya 

• Direct Samples not statistics: (regression or active probing based) 
– Steven Low, Vassilis Kekatos, Guido Cavraro

• Statistical change detection:
– Anuradha Annaswamy, Alejandro Garcia 



When such methods do not work well? 

Identify zero-injection and neighbors 
using regression-test

Estimate non-zero neighborhood using 
graphical model in Kron-reduced graph

• Non-linearity makes linear approximations inadequate

– Kernel based methods (George Giannakis)

– Koopman operators 

– Neural networks- physics-informed 

(Yue Zhang)

• Use case where NN works well:

– Fault detection/ localization

Neural 
Network
with 
caution• Wenting Li et al., Real-time Faulted Line Localization and 

PMU Placement in Power Systems through Convolutional 
Neural Networks, IEEE Trans. Power Systems, 2019.
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Thank You. Questions!

Ans: 


