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Los Alamos National Lab

e Oldest DOE-NNSA Lab

« ~10,000 staff

e 7200 feet above sea level

e Ski-hill is 10 mins away

* Near Santa Fe, New Mexico
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Overview

The Los Alamos National Laboratory’'s Advanced Network
Science Initiative (ANSI) is an interdisciplinary initiative that
enables fundamental and applied research to address long-term
challenges in critical infrastructure design, operation, and
security. The primary philosophy of ANSI is that combining
insights from Theoretical Physics, Applied Mathematics,
Computer Science, and Applied Engineering can result in novel
computational methods that address a variety of emerging
challenges in infrastructure networks.

Application Areas

To help motivate and inspire novel computational methods,
ANSI studies a variety of challenging problems in critical
infrastructure networks, such as Analysis of Extrermne Events,
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Transmission Grid

United States
transmission grid | /v
Source: FEMA %g




Distribution Grid

e Final Tier in electricity transfer

POWER TRANSMISSION DISTRIBUTION

STATION NETWORKS LINES

Generates electncity. Transports electricity Transports electncity to
over long distances. its final destination.

~N
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SUBSTATION SUBSTATION HOMES AND
TRANSFORMER TRANSFORMER BUSINESSES

e \oltage: High ——> Medium —— Llow



Distribution Grid

e Final Tier in electricity transfer

POWER TRANSMISSION DISTRIBUTION
STATION NETWORKS LINES
Generates electnicity. Transports electricity Transports electncity to
over long distances. its final destination.
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Traditional direction of flow



Distribution Grid

e Final Tier in electricity transfer

POWER TRANSMISSION DISTRIBUTION

STATION NETWORKS LINES

Generates electncity. Transports electncity Transports electncity to
over long distances. its final destination.

SUBSTATION SUBSTATION HOMES AND
TRANSFORMER TRANSFORMER BUSINESSES

Current direction of flow =2 Issues



Grid Issues

Challenges

e Greater Variability/intermittent

* Lesser inertia/stability

* Needs real-time observability,
control




Grid Issues

Challenges

e Greater Variability/intermittent

* Lesser inertia/stability

* Needs real-time observability,
control

Use

* Estimation

* Optimization
e Resilience

Squirrel or
cyber attack?
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Grid Issues D@ EWS

Challenges

e Greater Variability/intermittent

e Lesser inertia/stability

* Needs real-time observability,
control

Use

e Estimation
* Optimization
 Resilience

H 50 MILLION LOSE POWER
m CITY SWELTERS TO A HALT
® RUSH-HOUR CHAOS TODAY




Networked PMUs and Synchrophasor
Data Flows in the North American Power Grid

Grid Issues

Challenges

e Greater Variability/intermittent

* Lesser inertia/stability

* Needs real-time observability,
control

Use |
* Estimation o o 4,
* Optimization
* Resilience

Solution

* Smart meters: PMUs, micro-PMUs, loT

* Big Data: High fidelity measurements
 QOver 2500 networked PMUs

e Sparse: Not everywhere in low voltage grids




Physics
(Power-Systems)
Informed Tuning

(Power System interpretable
but repetitive & off-line,
hand-controlled)

Physics-informed
» Machine Learning

]

Interpretability

Physics-Free
Machine Learning

(automatic, training & execution efficient,
but lacking Power System interpretability)

Speed

» Advantage: Provable results, Missing data extensions




Learning Problems in Distribution Grids

® >tructure Learning Theoretical guarantees:

what length of observations?

e |ncomplete observations how much noise?
how much observability?

e Learning Line Impedances

E|P]

/. E[Py — tta)?

. Substation
@ Load Nodes
i+ Missing Node




Data-driven problems

Learning using

Dynamics

Beyond radial
grids: Graphical
Models

Learning:
Topology &
Parameter

Neural Networks:
when, why




Physics-informed:

e Restrictions due to domain knowledge
1. Structure of the grid: radial or large loops if meshed

®




Physics-informed:

e Restrictions due to domain knowledge
1. Structure of the grid: radial or large loops if meshed

2. Flow Physics (Static regime)

A “ Va —%Ga_v —%Qb
Py +1iQq = E(a,b) Vaezé'a Wae = )
lPa, @a

(Rab_%Xab)
e First order expansion: LinDist Flow
—1 — ]
0 = Hl/XP - Hl/RQ’
—1 —1
V = Hl/RP + Hl/XQ
e Hyr=M'R'M

\/
wt. Laplacian matrix




Physics-informed:

e Static Regime:
e LinDist Flow: 0 = Hl/XP Hl/RQ,
l V:H1/3P+H1/XQ

e Dynamic Regime: Swing Equations

Maéa + Daéa — Z Bab _|_ Pa
(a,b) is edge
\ } \ }
| |
Dynamics of state Net disturbance
variables imbalance

* Frequency: W, = Qa

e Inertia (M) and Damping (D)




Physics-informed: Statistical Learning:

=)

1. Structure of the grid: e Properties of large/finite data

1. Sufficient statistics:

e radial or large loops

2. Flow Physics: e Means, covariances
e Static Regime (>1 m) 2. Concentration bounds:
e Dynamic Regime (<1 sec) e How far are empirical

estimates from true values?

04 a) Wind speed forecast error distribution (&) If X3 are l'l'd
—rc0 n
. s o - ?g}gl)v Gaussian P” E : X § : E | > t
= 0.2 / /‘Hrﬂ ,
S i
0 ,—,“QVF . _2t2
6 4 -2 0 2 4 6 < 2exp
Wind forecast error (e;) for AT =1 h, m/s nC2

Dvorkin et al., Uncertainty Sets For Wind Power

_ Chernoff, Hoeffding, Markov bounds
Generation, PES Letters 2016



Physics-informed: Statistical Learning:

1. Structure of the grid 1. Sufficient statistics:
2. Flow Physics 2. Concentration bounds:

\ "4

Provable Learning solutions

1. Estimation algorithm consistent at infinite
samples.

2. Correct with high probability at finite
samples/noise etc.




Learning with nodal voltages

e Data: Time-series Nodal voltages at all nodes (static regime)
130

=E|V
120% [ ] . S 105 MWWWMW
Qv =E[V — w ][V — pv] 7 ‘
130 T
* Unobserved: all lines 2128 N g ot N

e Estimate: Operational Topology 120

¢ O
® o
PR O o
 Deka et al., Structure Learning in Distribution O O O ®
Networks, IEEE Trans. Control of Networks, 2017 ' ‘



Voltages in Radial Network

e Variance of voltage diff.: E[(Va — uva) — (Vk — ka)]z

e Minimum along any direction reached at nearest neighbor




Topology Learning (No missing nodes)

Greedy Topology Learning:
1. Spanning Tree with edge weights given by

bap = E[(Va — pv,,) — (Vs — py)]? |

e NO additional information needed
e Works for monotonic flows (gas,water, heating)
e Computational complexity: O(|V|[*2 log |V])

Sample Complexity :

For a grid with constant depth
and sub-Gaussian complex power
injections, O(|V|*log(|V|/n))
samples recovers the true
topology with probability 1 — 7.




Topology Learning (No missing nodes)

o o

o

o

Average number of topology errors
o o

Effect of Noise

0 100 200 300
Voltage samples at each bus of 33 bus system
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33-bus test system, Matpower
Reference: 12 KV substation voltage



Topology Learning with Missing Data

e Missing nodes that are greater than 1 hop away (not adjacent)

|
|
’ Spanning tree
p.t. I

C1 / )
.n o '0‘
(85) :‘ "- b1 . . b2
C
3 /‘ ‘s ‘ c& 3 Cs
.w,y C4 6 C4 C6
P

Unobserved node 4 hop nodes become 2 hop neighbors




Topology Learning with Missing Data

e Missing nodes that are greater than 1 hop away (not adjacent)

Gus = E[(Va — ) — (Vs — s )

. B |
Node trlplets: _Qbac%- _|_ ¢G,Cj o gbCiCj} |

C, Gy Cp
+ + 006006 G
+ 000600 0
-+ + 00

1 2

ol o+ +0 0
-0 0+ +
Cp,
-0 0+ +

* Deka et al., Joint Estimation of Topology and Injection Statistics with
Missing Nodes, IEEE Trans. Control of Networks, 2020



Topology Learning with Missing Data

e Missing nodes that are greater than 1 hop away (not adjacent)
e Learning Algo:
1. Construct spanning tree

2. Cluster matrix [fbac@- + Cbacj — Cbcicj}
3. Find missing parents and iterate.

| d

-{/7\‘_
i dh

* Deka et al., Joint Estimation of Topology and Injection Statistics with
Missing Nodes, IEEE Trans. Control of Networks, 2020




Learning with end-users

* Data: Time-series Nodal voltages and injection samples at leaves
* Unobserved: all intermediate nodes & lines
e Estimate: Operational Topology + Line Impedance

.
an®




End-user data

130
° Time—stamped VOItage magnitUdeS (V) 2. 125 mww‘wm
WY
py = E[V] Eg
QV = E[V — MV] [V - NV]T 2125 WM\'\."W W’“Www”‘wm

120 -

e Time-stamped nodal active & reactive injections (P &Q)

Hp, QP) H’Q? QQ’ QPQ

e (Cross-covariances: QVPaﬂVQ ‘




Learning with end-users

* Data: Time-series Nodal voltages and injection samples at leaves
e Algorithm:
» Compute effective impedances between leaf pairs

Resp(a,b) = Hyp(a,a) + Hp B (b,b) — 2H 1 (a,b)

» Recursive Grouping Algo (Anandkumar’11) to learn topology &
distances from known effective impedances




Recursive Grouping Algo

[
1. a, b are leaf nodes with common parent iff

d(a,c) —d(b,c) =d(a,c’) —d(b,c") forallc,c’ #a,b

2. a is a leaf node and b is its parent iff

d(a,c) —d(b,c) =d(a,b) forallc # a,b

\

\
Py ® 2. Introduce parents
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3. Update distance
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Recursive Grouping Algo

2. Introduce parents

SN e N

3. Update distance



Recursive Grouping Algo

R After Iterations
VAR L~
./ l x » ‘/’



Estimating effective impedances

e Algorithm:
» Compute effective impedances between leaves

Rest(a,b) = H ' (a,a) + H 5 (b, b) — 2H . (a, b)

1/R 1/R 1/R

» Power Flow equations: ‘

7 o Elpepz] Elpedz]
Elocpf) Elocafl] = [Hip(L,L) Hy(£,0)] [E[gﬁﬁfl E[gﬁgfd

> Uncorrelated Injections ‘

B Ep?]  Elpva)
[E[fuapb] E[UaCIbH = [Hl/ (a,b) 1/ 2, b)} [E[qzng] Eﬁg] ]

— Two equations with 2 unknowns




Effect of Correlated Injection

e Algorithm:

» Compute effective impedances between leaves

Reff(a,b) = Hl_/R(a a) + Hl/R(b, b) —

» Power Flow equations:

Elvepr] Elveqr]] =[ r

16
14
12
10

N s O o

2 4 6 8 10 12 14 16

(L. L)

* DiSc data set,
* Aalborg Uniy,

2H

H—l

1/R(a, b)




Effect of Correlated Injection

* Algorithm:
» Compute effective impedances between leaves

Resp(a,b) = H ' (a,a) + H 5 (b, b) — 2H - (a, b)

1/R 1/R 1/R

» Correlated Injections

h o perf] Elpeaf]
Slocrt] Bloedtl] = [HiAC0) HLE o] [EPer] Epeif

» Computing inverse
» ML estimate (SPICE) for inverse:

min — det(Q) + tr(E[[pZ ¢z [pz ¢Z]]Q) + A7 x



Sample Complexity

Uncorrelated : Correlated :
For a grid with constant depth O(|V|?1log(|V]/n)) samples
and sub-Gaussian complex power recovers the true topology with

injections, O(|V|log(|V|/n)) =) probability 1 — 7.
samples recovers the true
topology with probability 1 — n.

 Park et al., Learning with End-Users in Distribution Grids: Topology and
Parameter Estimation, /EEE Trans. Control of Networks, 2020



Simulations: IEEE 33 bus graphs (Matpower samples)

oy /| o0
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500 600 700 800 900 1000

1.0
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Correct Recovery Ratio

0.4~

500 600 700 800 900 1000
Number of Samples




What about

1. Loopy grids
2. Time-correlated voltages and injections

Beyond radial
grids: Graphical
Models




Probabilistic Distribution = Graphical Model

I'emp | Temp

load load ,
e E— e —

Correlation Conditional Dependence



Probabilistic Distribution - Graphical Model

e Graphical Model: Graphical Factorization of Distribution

e Think Inverse Correlation instead of Correlation

Correlation of stock prices Graphical Model of stock prices



Probabilistic Distribution of Nodal VVoltages

e Distribution of injections: 6 =H\P—H 50O,
— Hrpa(Pa) U_HI/RP+H1/XQ
acV /\
e Distribution of voltages: voltages "/
1
P(V,0) = Pa(P
‘JP(Va 9)‘ GH)

\JPVQ\HP b{zbj}e‘; Vo) 2
\ a

Jacobian Jp(V,0) = (gg’g)




Graphical Model of Voltages

_ -1 p g1

e Distribution P(V,0) with 0= 1HyxP—HRpQ,
—1 —1

v=H pP+H xQ

* Graphical Model: between voltage, phase

Power grid

k




Graphical Model of Voltages

e Distribution P(V,0)

* Graphical Model: Topology Edges + 2-hop neighbors

Power grid

k




Graphical Model Estimation

e VariablesiV,0)

e Gaussian voltage fluctuations

e |nverse covariance E(_Vlg) gives graphical model

e Graphical Lasso: [ arg min — log det '+ (5, 3 252 /) + )\||S||1}
(Yuan & Lin, 2007) :

4 "o ] N\
2 Bi1
* Neighborhood Lasso: | argminE [w _ Z@.ywj] 4| P
(Meinshausen, 2006) ji ji

" - )




Graphical Model - Topology estimation

e How to distinguish true edges??

e Two schemes:
e Neighborhood Counting

e Thresholding

e Exact for radial networks
e Restrictions for loopy/meshed grids

* Deka et al., Graphical Models in Meshed Distribution Grids: Topology estimation,
change detection & limitations, IEEE Trans. Power Systems, 2020



Graphical Model - Topology estimation

e Neighborhood Counting:

leaf nodes

|dentify non-leaf
Identify edges to neighbors

Remove edges




Graphical Model - Topology estimation

e Neighborhood Counting: topological separability

e Loopy Grid:
e Recovers exact topology if cycle length greater than 6

* Deka et al., Graphical Models in Meshed Distribution Grids: Topology estimation,
change detection & limitations, /IEEE Trans. Smart Grid, 2020



Graphical Model - Topology estimation

e Thresholding:

e True edges have Eggl(i,j) + Z;%,(i,j) <71 <0

e Loopy Grid:
e Recovers topology if cycle length greater than 3 (no triangles)

* Deka et al., Graphical Models in Meshed Distribution Grids: Topology estimation,
change detection & limitations, /IEEE Trans. Smart Grid, 2020



Graphical Model - Topology estimation

Algl: counting
Alg2: thresholding
56 bus system

Error in topology estimation
o o o o o o o
—_ r (93] E =Y o (2] =l

(==

=% Alg 1, no noise, T, = 0.05 ||
=[} Alg 1, 0.5% noise, T, = 0.1
=/ Alg 1, 1% noise, T, = 0.16 |
={> Alg 2, no noise, T, = 0.2

=[> Alg 2, 1% noise, T, = 0.3

A Y
L hY
A - o= =
- b" " |- T R — i‘-::: -_ .-E_. -‘-_-__—'_"'_-—
_oﬁﬁ_rﬁ_l___l__l__l___l_ T::?‘%
0.2 04 06 08 1 1.2 14 1.6 1.8 2
Samples «10%

Deka et al., Graphical Models in Meshed Distribution Grids: Topology estimation,
change detection & limitations, /IEEE Trans. Smart Grid, 2020



Graphical Model - Topology estimation

e Extends to 3-phase unbalanced system

 Deka et al., Topology estimation using graphical models
in multi-phase power distribution grids, IEEE Trans.
Power Systems, 2020

P | 2
a—— “ o 7 V) =y LLEE)
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What about

e General Grids with triangles??
e Temporal Correlations??

(@]
o

Does not vanish |

[\
-

()
o
—

—_
o
T

[

""-o--éouo 0 °"°§'°' © ?

=
o Io.

o

Absolute errors in estimated topology

IEEE 14 bus 500 1000 1500 2000
Number of phase angle samples in DC-PF



What about

e General Grids with triangles??

e Temporal Correlations?? . .
Learning using

Dynamics



Dynamic Regime: Swing Equations

* Fluctuations due to ambient noise in injections:

Maéa + Daéa — Z Bab _I_ Pa
(a,b) is edge

\ } \ }
| |

Net power imbalance

Dynamics of phase angles

* Frequency w, = 9a

()
* Inertia (M) and Damping (D) from synchronous H '| w

machines.

* Stochastic noise P,




Power Flow

e General Form:

0= Y Bau(b) -

(a,b) is edge

e Graphical Model:
Inverse Correlation Matrix

Yo = E[0(£)0(t)"]

\

Invert

>t

Swing equation

Moo+ Doby = Y Bap(0 +P,
(a,b) is edge

Inverse Power Spectral Density

So(r) = E[0(t)0(t —r)"]

\/

Fourier Transform of delayed correlation

\/

Invert

Qy ' (jw)



Power Flow Swing equation

e General Form:
0= Y B —0.) +P, Mo+ Daba = Y Bus( + P,

(a,b) is edge

(a,b) is edge
e Graphical Model:
Inverse Correlation Matrix Inverse Power Spectral Density
e Finite samples:
Neighborhood Lasso Wiener Filter (non-causal)
(Meinshausen, 2006) q (Wiener, Kolmogorov 1950)
/ 2 Bll \ 2 -§ . \
E |6, NE f%’!ﬁl
arg mm N Z Bij05| + : arg ;ﬂnm E |6;(t) — Z 31,0, (t—7r)| +A : ’2
o J#i ], Br d = :
N _ \_ s - )




Learning in dynamic regime:

e Graphical Model of voltages: Topology Edges + 2-hop neighbors

e Dynamic regime (inverse power spectral density):
e Neighborhood counting (cycle length > 6)

e |nverse PSD: (Qe_l(jw) is function of frequency)
(J Phase remains constant for spurious edges at all frequency

3 \ J
1T
l T, Qik
SRR
= ' | (| | ,‘ [ Qy
s " l‘ | v‘ l' " I« " |‘ ,' \ " ‘n ll
1tihn) A Iand Ian Iand lanl Ian /A
N f\‘. l |\ If “'\‘. “/"“; ,',/' \\ .', |'\‘|‘ /f
SIVIVIVIVIVIVIV
ot . : 2 :
Topology Graphical Model R g = iy o =

Normalized Frequency ( x = rad/sample)

5



Learning in dynamic regime:

e Graphical Model of voltages: Topology Edges + 2-hop neighbors

e Dynamic regime (inverse power spectral density):
e Neighborhood counting (cycle length > 6)

e Phase based edge detection (all graphs)

e Holds for colored (WSS or cyclo-stationary) inputs
e S.Talukdar et al., Physics-informed learning in linear dynamical systems,
Automatica, 2020.

'~

Y o s

Pruned rﬁodel

Topology Graphical Model



Learning in dynamic regime:

e Graphical Model of voltages: Topology Edges + 2-hop neighbors

e Dynamic regime (inverse power spectral density):
e Phase based edge detection (all graphs)

e Any linear dynamical system: Eg. Buildings
e S.Talukdar et al., Physics-informed learning in linear dynamical systems,
Automatica, 2020.
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Learning in dynamic regime:

e Graphical Model of voltages: Topology Edges + 2-hop neighbors

e Dynamic regime (inverse power spectral density):
 Phase based edge detection (all graphs)

e Any linear dynamical system: Eg. Buildings

e S.Talukdar et al., Physics-informed learning in linear dynamical systems,
Automatica, 2020.

Building Thermal Network

90
== Graph lasso
80 =@ = Graph laso with regularization
70k —4- Algo (no regularization)
_ == Algo with regularization
E 60 - —t- 1- step regression
PERIMETER III Ll
Area: 113.45 sq.m. g 50”""‘“—-—-_’ ________________ -
@
- = E‘; T 40 -
Eg CORE ZONE Ee I':'CD % o ."'"'-._ N
= Area: 149,66 sqm. =< o= i “ -
%: EE ¢ « - _.w --------- *
20 _ﬁ
PERIMETER I Mq-‘--.w—-—-+— --------- *
Area: 113.45 sq.m. 10+ B -
. ‘I--..-._-_"h'_.___r____
5___—_*
0 1 2 3 4 5
5

Number of Samples %10



Learning in under-excited grids:

e Graphical Model of voltages: static or dynamic
— Uses inverse voltage covariance or power spectral density

— Needs fluctuations at all nodes (27! = = 37!  to be defined)

(P,Q) (V.0)
— What if zero-injection buses exist?

e Learning when 0-injection buses not adjacent

d\o

e
(N J
Non-zero injection Identify zero-injection and neighbors Estimate non-zero neighborhood using
] zero- injection using regression-test graphical model in Kron-reduced graph

* Deka et al, Tractable learning in under-excited power grids, arxiv pre-print, 2020.



Learning in under-excited grids:

0.35 |

m=bmm | inear Model, 0% noise

03 == Nonlinear Model, 0% noise| |
Linear Model, 1% noise

—J— Nonlinear Model, 1% noise

0.25¢} -
o 5
O w 0.2f -
of R 2
© 0.154 -
@
va
0.1 -
0.05 -
33 bus system DE’:"&& PR
O Non- zero injection 102 10° 10*

[ ] zero- injection Sample Size

* Deka et al, Tractable learning in under-excited power grids, arxiv pre-print, 2020.



Practical Applications:

Use tractable/provable algorithms as a starting point
Additional constraints from real data:

— Prior structures /impedance values (monitor change instead)
— Use threshold selection based on historical data

— Learn noise levels

Data-driven guided by real-data:

— Matt Reno, Yang Wang, Ram Rajagopal, Reza Arghandeh, Sascha von Meier,
Vijay Arya

Direct Samples not statistics: (regression or active probing based)
— Steven Low, Vassilis Kekatos, Guido Cavraro

Statistical change detection:

— Anuradha Annaswamy, Alejandro Garcia



When such methods do not work well?

* Non-linearity makes linear approximations inadequate
— Kernel based methods (George Giannakis)

— Koopman operators PN RNRTVERSERY SPECTIL ENITION

— Neural networks- physics-informed Peter s"""r.ﬁl_\;uﬁﬁ?”““ . 2

(Yue Zhang) &%

s

4

e Use case where NN works well:

— Fault detection/ localization

e Wenting Li et al., Real-time Faulted Line Localization and
PMU Placement in Power Systems through Convolutional
Neural Networks, IEEE Trans. Power Systems, 2019.
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Overview

The Los Alamos National Laboratory’'s Advanced Network
Science Initiative (ANSI) is an interdisciplinary initiative that
enables fundamental and applied research to address long-term
challenges in critical infrastructure design, operation, and
security. The primary philosophy of ANSI is that combining
insights from Theoretical Physics, Applied Mathematics,
Computer Science, and Applied Engineering can result in novel
computational methods that address a variety of emerging
challenges in infrastructure networks.

Application Areas

To help motivate and inspire novel computational methods,
ANSI studies a variety of challenging problems in critical
infrastructure networks, such as Analysis of Extrermne Events,
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Thank You. Questions!




