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Introduction

Fourier series and Discrete Forier transform (DFT) are very important
to analyze periodic signal and sequences.

A signal or a sequence is periodic if and only if: x(t) = x(t + `T ) or
xn = xn+`N , respectively. Peridicity implies a horizontal structure or a
periodic repetition.

The mother signal of periodic signals is the Euler complex exponential

function e j2πkF1t , or the sequence e j
2π
N
kn.

One of the basic concepts of power systems is the phasor, a complex
number providing amplitude and phase angle of a steady-state
sinusoidal signal.

Fourier series can be applied without error when the power system is
in steady-state.

When the power system is under dynamic conditions, it is better to
apply the Laplace or the Prony theory.
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Fourier Equations

The synthesis and analysis equations of the Fourier series:

x(t) =
∞∑

h=−∞
che

j2πhF1t , t ∈ [−T1

2
,
T1

2
), ch =

1

T1

∫ T1

0
x(t)e−j2πhF1t .

(1)

The Discrete time version, for N samples per fundamental period:

xn =
N−1∑
k=0

c̃he
j 2π
N
hn, n = 0, 1, . . . ,N − 1 c̃h =

1

N

N−1∑
n=0

xne
−j 2π

N
hn. (2)

and the DFT (or FFT ) in matrix form:

x =
1

N
WNξ, x ∈ RN , ξ ∈ CN , ξ = WH

N x , c̃ =
1

N
ξ. (3)
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Research Problem: Power Oscillations

Periodicity is lost in oscillatory conditions:
Amplitude and phase angle modulated sinusoidal signal

s(t) = (2 + cos t
10 ) cos(2πt + t2

10 ).
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Figure 1: Oscillatory signal, time in cycles. Amplitude and phase angle modulated
signal.
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Triangular Oscillatory Signal

Harmonics are amplitude and phase modulated when a periodic signal
oscillates.
Their linear spectre widens by the complex envelope of the oscillation
which acts as a window function over the full set of harmonic
frequencies.
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Figure 2: Triangular oscillatory signal, time in cycles.
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Taylor-Fourier Signal Model

The complete response of a linear system due to a singularity of
multiplicity K + 1 at sh = −σh + jωh is of the form:

x(t) = (cK t
K + cK−1t

K−1 + . . .+ c0) e−σht e jωht︸︷︷︸
Fourier︸ ︷︷ ︸

Prony︸ ︷︷ ︸
Taylor−Fourier

which corresponds to Res{H(s)est}|sh .

Fourier signal model is the poorest one, since it assumes single
singularities at harmonic frequencies: che

jhω1t , h ∈ Z.

Prony signal model adds attenuation to the former one: che
−σhte jωht .

Taylor-Fourier signal model is the most complete, since it assumes
repeated singularities: (cK t

K + cK−1t
K−1 + . . .+ c0)e−σhte jωht
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TFT Signal Model

Signal model of TFT is:

x(t) =
∞∑

h=−∞
ξh(t)e j2πhf1t , −C T1

2
≤ t ≤ C

T1

2
. (4)

where ξh(t) ∈ C is the h-th complex envelope or dynamic phasor, that
replace the static Fourier coefficient of DFT. Each one of these functions
are approached by a K -th Taylor expansion of the form

ξ
(K)
h (t) = ξh(t0) + ξ̇h(t0)t + · · ·+

(K).
ξ h(t0)

tK

K !
(5)

where the coefficients
(k).
ξ h(t0) ∈ C are the k-th derivatives of complex

envelope ξh(t), corresponding to the h-th harmonic frequency in (4). The
time evolution of these coefficients perform as state spectrograms of x(t).
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Discrete Time Signal Model: Synthesis Equation

xK = ΦK ξK =

I


WN

WN
...

WN

 T


WN

WN
...

WN

 · · · 1
K !T

K


WN

WN
...

WN




ξN
ξ̇N
...

(K)

ξ N


(6)

For K = 1:

x1 = Φ1ξ1 =

(
I

(
WN

WN

)
T

(
WN

WN

))(
ξ1

ξ̇1

)
And for K = 3:

x3 = Φ3ξ3 =

I


WN

WN

WN

WN

 T


WN

WN

WN

WN

 T 2

2


WN

WN

WN

WN

 T 3

6


WN

WN

WN

WN




ξ3

ξ̇3

ξ̈3
˙̈ξ3
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Taylor terms for K = 3
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Figure 3: Taylor terms for K = 3.
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Solution: Analysis Equation

The Taylor-Fourier transform is given by the analysis equation:

ξK = Φ−1
K xK (7)

If Φ̃K is the dual matrix of ΦK :

Φ̃K = (Φ−1
K )H (8)

Φ̃K and Φ are biorthogonal, since Φ̃H
KΦ = I .
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Factorization into Taylor and Fourier Operators

ΦK = ΥKΩK

=


I T1 . . . 1

K !T
K
1

I T2 . . . 1
K !T

K
2

...
...

. . .
...

I TC . . . 1
K !T

K
C




WN 0 . . . 0
0 WN . . . 0
...

...
. . .

...
0 0 . . . WN

 (9)

where C = K + 1 and Tc are N × N diagonal submatrices with
consecutive cyclic pieces of the K th Taylor term.
We have

Φ−1
K = Ω−1

K Υ−1
K =

ΩH
N

N
Υ̃T

K (10)

In consequence the dual of the Taylor operator is given by:

Υ̃ =
Cof (Υ)

|Υ|
. (11)
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Key Idea for the Solution (K = 1)

For K = 1, t1 = t[−T1,0), and t2 = t[0,T1) = t1 + T1, we have

Υ1 =

(
1 t1

1 t2

)
(12)

with |Υ1| = t2 − t1 = T1. Then, we have:

Υ̃1 =

(
t2 −1
−t1 1

)
T1

=

(
u1 + 1 −F1

−(u2 − 1) +F1

)
(13)

where un is the normalized time: u = tn/T1. Its first column is a
triangular pulse:

υ̃
(1)
1 (u) =


u + 1 for − 1 ≤ u < 0,

1− u for 0 ≤ u < 1,

0 otherwise,

(14)

and the second one is a scaled Haar wavelet: υ̃
(1)
2 (u) = −F1

˙̃υ1(u).
José A. de la O Serna (UANL) Fast Fourier Transform 26 May 2022 13 / 75



Key idea for the solution (K = 2)

For K = 2, we have

Υ2 =

1 t1 t2
1/2

1 t2 t2
2/2

1 t3 t2
3/2

 . (15)

with t1 = t
[− 3T1

2
, −T1

2
)
, t2 = t1 + T1, and t3 = t1 + 2T1. In this case

|Υ2| = T 3
1 , and

Υ̃2 =

 1
2 (u1 + 2)(u1 + 1) −F1(u1 + 3

2 ) F 2
1

−(u2 + 1)(u2 − 1) 2F1u2 −2F 2
1

1
2 (u3 − 1)(u3 − 2) −F1(u3 − 3

2 ) F 2
1

 . (16)
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Key Idea (K = 3)

Finally, for K = 3, t1 = t[−2T1,−T1) and tn = t1 + (n − 1)T1 n = 2, 3, 4.
We have |Υ3| = T 6

1 . Its first dual column is:

υ̃
(3)
1 (u) =



1
6 (u + 3)(u + 2)(u + 1) for− 2 ≤ u < −1,

−1
2 (u + 2)(u + 1)(u − 1) for− 1 ≤ u < 0,

1
2 (u + 1)(u − 1)(u − 2) for 0 ≤ u < 1,

−1
6 (u − 1)(u − 2)(u − 3) for 1 ≤ u < 2,

0 otherwise.

(17)

and the following ones are: υ̃
(3)
2 (u) = −F1

˙̃υ
(3)
1 (u), υ̃

(3)
3 (u) = F 2

1
¨̃υ

(3)
1 (u),

and υ̃
(3)
4 (u) = (−F1)3

...
ϕ̃

(3)
0 (u).

O-splines are recognized as the Lagrange central interpolation kernels.
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O-splines and derivatives up to K = 3.
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Figure 5: At the top, the O-splines of order K , for K = 0, 1, 2, 3, below each one
of them its successive derivatives.
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O-splines are stable functions or Multiresolution Analysis
(MRA) generators

If ϕ(u) ∈ V0, the set of integer translates {ϕ(u − n)}n∈Z is an
inconditional basis (or Riesz basis) of V0, and forms a Multiresolution
Analysis on R.

José A. de la O Serna (UANL) Fast Fourier Transform 26 May 2022 17 / 75



O-Splines

Splines are polynomial piecewise functions used normally in
interpolation.

O-splines1 are used for implementing the Taylor-Fourier transform.

Odd order O-splines are cardinal splines: continuous functions of
compact support with zero crossings at their knots.

They are used here as bandpass filters to analyze oscillations.

They converge to the ideal filter as the order K →∞.

In interpolation, odd order O-splines correspond with the Lagrange
central interpolation kernel of the same order.

1J. A. de la O Serna, “Dynamic Harmonic Analysis with FIR filters designed with
O-splines”, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol.67, No.12,
Dec. 2020, pp. 5092-5100.
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O-splines II

O-splines in closed-form reduce the computational complexity of the
DTTFT.

In addition, each O-spline comes with its derivatives, which perform
as ideal differentiators.

They provide a sequence of adjustable FIR filters that offer optimal
coefficients for Hermite interpolation of the approximated function.

They are very useful for multi-resolution and time-frequency analysis.

A new family of wavelets build with linear combinations of O-splines
is coming soon.
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O-splines Relationships

ϕ0(u) =

{
1 for − 1

2 ≤ u ≤ 1
2

0 otherwise
(18)

The first O-spline

ϕ1(u) =


u + 1 for − 1 ≤ u ≤ 0

−(u − 1) for 0 ≤ u ≤ 1

0 otherwise

(19)

and its first derivative:

ϕ̇1(u) = f0(ϕ0(u +
1

2
)− ϕ0(u − 1

2
)) (20)

José A. de la O Serna (UANL) Fast Fourier Transform 26 May 2022 20 / 75



O-splines Relationships

The second O-spline

ϕ2(u) =


1
2 (u + 2)(u + 1) for − 3

2 ≤ u ≤ −1
2

−(u + 1)(u − 1) for − 1
2 ≤ u ≤ 1

2
1
2 (u − 1)(u − 2) for 1

2 ≤ u ≤ 3
2

0 otherwise,

(21)

its first derivative:

ϕ̇2(u) = f0(ϕ1(u +
1

2
)− ϕ1(u − 1

2
)), (22)

and its second derivative:

ϕ̈2(u) = f 2
0 (ϕ0(u + 1)− 2ϕ0(u) + ϕ0(u − 1)). (23)
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O-splines Relationships

And finally the third O-spline:

ϕ3(u) =



1
6 (u + 3)(u + 2)(u + 1) for − 2 ≤ u ≤ −1

− 1
2 (u + 2)(u + 1)(u − 1) for − 1 ≤ u ≤ 0

1
2 (u + 1)(u − 1)(u − 2) for 0 ≤ u ≤ 1

− 1
6 (u − 1)(u − 2)(u − 3) for 1 ≤ u ≤ 2

0 otherwise,

(24)

its first derivative:

ϕ̇3(u) = f0(ϕ2(u +
1

2
)− ϕ2(u − 1

2
)), (25)

its second derivative:

ϕ̈3(u) = f 2
0 (ϕ1(u + 1)− 2ϕ1(u) + ϕ1(u − 1)) (26)

and, finally its third derivative:

...
ϕ3(u) = f 3

0 (ϕ0(u +
3

2
)− 3ϕ0(u +

1

2
) + 3ϕ0(u − 1

2
)− ϕ0(u − 3

2
)) (27)
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101st O-spline
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Figure 6: O-spline K = 101
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From phasor to parameter derivatives
(k).

ξ h →
(k).
a h,

(k).
ϕh

For h = 0:
a0(t0) = ξ0(t0), ϕ0(t0) = 0,

ȧ0(t0) = ξ̇0(t0), ϕ̇0(t0) = 0,

ä0(t0) = ξ̈0(t0) ϕ̈0(t0) = 0.

(28)

and for h > 0:

ah(t0) = 2|ξh(t0)|,
ϕh(t0) = ]ξh(t0),

ȧh(t0) = 2Re{ξ̇h(t0)e−jϕh(t0)},
ϕ̇h(t0) = 2

ah(t0) Im{ξ̇h(t0)e−jϕh(t0)},
äh(t0) = 2Re{ξ̈h(t0)e−jϕh(t0)}+ ah(t0)ϕ̇h(t0)2,

ϕ̈0(t0) = Im{ξ̈h(t0)e−jϕh(t0)}−2ȧh(t0)ϕ̇h(t0)
ah(t0) .

(29)
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Nonic O-spline Spectrogram of s(t) = cos(120πt + ϕ(t))
with ϕ(t) = e−4t cos(10πt), and

ϕ̇(t) = −4e−4t cos(10πt)− 10πe−4t sin(10πt)
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Figure 7: Nonic O-spline Spectogram of s(t).
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O-splines for K = 1, ..., 11
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Figure 8: O-splines for K = 0, 1, . . . , 5, 10 and 11.
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O-spline Spectra
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Figure 9: Magnitude of the O-spline Fourier transforms, K = 0, 1, . . . , 5, 10 and
11.
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Odd O-spline Spectra
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Figure 10: Spectra Odd O-splines, K = 0, 1, . . . , 9, and 199.
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First Differentiators and their Spectra
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Figure 11: Impulse and magnitude responses of the first differentiators,
K = 0, 1, . . . , 5, 10 and 11.
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Second Differentiators and their Spectra
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Figure 12: Impulse and magnitude responses of the second differentiators,
K = 0, 1, . . . , 5, 10 and 11.
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Conclusions about O-splines

Odd order O-splines are cardinal splines with compact support.

They offer a ladder of function spaces very useful for multi-resolution
analysis.

They are maximally-flat differentiators that provide state sampling of
signals.

They allow us to estimate not only the signal, but also its
instantaneous speed and acceleration.

Used as bandpass filters, they provide not only the synchrophasor of a
signal but also its derivatives, from which amplitude, phase, frequency
and ROCOF are obtained.

They are very useful to analyze modes in power oscillations, with
better precision than the Prony method.

Off course, they are efficient when the signal spectral density is
located under the ideal gain of the filters.
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Fast Taylor-Fourier Transform

We have:

ξ̂K = Ω−1
K Υ̃−1

K x

=
1

N


WH

N 0 . . . 0
0 WH

N . . . 0
...

...
. . .

...
0 0 . . . WH

N




Ỹ1 Ỹ2 . . . ỸC˜̇Y 1
˜̇Y 2 . . . ˜̇Y C

...
...

. . .
...

(̃K)

Y 1

(̃K)

Y 2 . . .
(̃K)

Y C




x1

x2
...
xC


(30)

The FTFT results by implementing the product Υ̃−1
K x , and then

multiplying by Ω−1
K .

Each row of the product Υ̃−1
K x is the cyclic addition of the Hadamard

real product (.*) between the Ospline in that row and the signal x .

Then, the Fourier operator produces the FFTs of the former cyclic
additions.
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Synthesis Equation

For any order K , and observation interval t, the synthesis equation is given
by:

x(t) = ΥKΩK ξk(τ) (31)

where τ is the estimation time instance, at the center of the observation
interval t, and ξk(τ) contains the estimated Taylor-Fourier coefficients:

ξK (τ) = Ω−1
K Υ̃−1

K x(t) (32)

For each K , the basis vector in ΦK spans a complete space V = R(K+1)N ,
on the observation interval of length (K + 1)N cycles, since for any K we
have:

x(t) = ΥKΩKΩ−1
K Υ̃−1

K x(t) = ΥK Υ̃−1
K x(t) = x(t) (33)
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Instantaneous Synthesis Equation

On the other hand, the series of instantaneous Taylor-Fourier coefficients
ξh(t) constitute the analytic functions of the hth harmonic signals and
their corresponding derivatives. For any harmonic h, we have the following
instananeous reconstruction:

sh(t) = ah(t) · cos(Φh(t)) = 2Re{ξh(t)} (34)

ṡh(t) = 2Re{ξ̇h(t)} (35)

. . . (36)

(K)
s (t) = 2Re{

(K)

ξ h(t)} (37)

In (32), each set of harmonic derivatives is channeled independently
of the others.

One FFT is needed per derivative harmonic set.

Only 3 FFTs are needed to obtain the main three harmonic full sets.
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Example: Amplitude modulated harmonic and its
derivatives
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Figure 13: First three derivatives of amplitude modulated harmonic.

a1(t) = A(t) cos(2πF1t) (38)

ȧ1(t) = Ȧ(t) cos(2πF1t)− 2πF1A(t) sin(2πF1t) (39)

ä1(t) = [Ä(t)− 4π2F 2
1 A(t)] cos(2πF1t)− 4πF1Ȧ(t) sin(2πF1t) (40)
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Example: Amplitude and Phase modulated harmonic and
its derivatives
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Figure 14: First three derivatives of amplitude and phase modulated harmonic.

a1(t) = A(t) cos(Φ(t)) (41)

ȧ1(t) = Ȧ(t) cos(Φ(t))− A(t)Φ̇(t) sin(Φ(t)) (42)

ä1(t) = [Ä(t)− A(t)Φ̇(t)2] cos(Φ(t))− [2Ȧ(t)Φ̇(t) + A(t)Φ̈(t)] sin(Φ(t))
(43)José A. de la O Serna (UANL) Fast Fourier Transform 26 May 2022 36 / 75



Conclusions FTFT

Fast Taylor-Fourier transform can be calculated with one FFT for
each derivative of the harmonic set.

The evolution of the instantaneous Taylor-Fourier coefficients
provides the analytic function of each harmonic derivative.

3 FFTs are needed to collect the first three derivatives of each
harmonic

From the analytic signals the amplitude and phase derivatives of the
oscillations can be computated.

The implications in coding of this transform need to be further
investigated.
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Analazing Power Oscillations2
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Figure 15: PO (top plot) and its spectrum (middle plot), and frequency response
of splitting filters (at the bottom).

2J.A. de la O, “Analyzing Power Oscillating Signals with the O-splines of the
Discrete Taylor-Fourier Transform”, IEEE Transactions on Power Systems, vol. 33, no.
6, Nov. 2018, pp. 7087-7095.
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Oscillation Spectrogram

Figure 16: Spectrogram of the oscillation with varying frequency.
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Estimated Angle and Frequency Modulations
(Spectrogram)
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Figure 17: Estimated phase and frequency modulation (Spectrogram).
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Analyzed Power Oscillation
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Figure 18: Frequency modulating mode (top plot) and harmonics about 115Hz
(middle plot), with the original and reconstructed PO.
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Co-authors in DTTFT Papers

Figure 19: Coauthors in DTTFT design or applications papers (Wendy Van Moer,
Tom Van Acker).
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Assesing PMU Measurements: Coauthors3

(a) Mario Arrieta P. (b) Alejandro
Zamora

Figure 20

3J. A. de la O Serna, M. R. Arrieta Paternina, A. Zamora-Mendez, “Assessing
Synchrophasor Estimates of an Event Captured by a Phasor Measurement Unit”, IEEE
Transactions on Power Delivery, IEEE Xplore Early Access
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Synchrophasor Estimation from Real Signals

Synchrophasor estimates can be evaluated with TVE only for the very
few and lax benchmark signals of the Standard.

This dependence prevents its application to power signals of real
events.

Our research problem is to quantify the erratic phasor estimates
provided by a PMU from a real case in a power system.

The solution of this problem is proposed for obtaining the
synchrophasor of real signals.

A nonic O-spline filter obtains phasor estimates asymptotically close
to those obtained with an ideal bandpass filter.

Once the synchrophasor is obtained, the accuracy of one or several
PMUs can be assessed using the TVE.

This solution opens the way to compare synchrophasor estimates of
PMUs of different brands, when they process signals of the same
power system event.
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Convergence to Sinc(t) and U(F )

-10 -5 0 5 10

u=t/T
1

-0.2

0

0.2

0.4

0.6

0.8

(u
)

Odd O-splines
K=9

K=19

K=29

K=39

K=49

K=59

K=199

Sinc

-3 -2 -1 0 1 2 3

u=fT
1

0

0.2

0.4

0.6

0.8

1

|
(u

)|

K=9

K=19

K=29

K=39

K=49

K=59

K=199

Figure 21: O-spline convergence to Sinc(t), and U(F ).
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Assesing PMU Measurements
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Figure 22: Ten-cycle Nonic O-spline (top plot) used to extract the synchrophasor,
and at the bottom its frequency response compared with that of the Cosine filter
used in the PMU.
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Cauchy Convergence to the Ideal Filter4
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Figure 23: Nonic and decimononic bandpass filters frequency responses.

4Distance very small between 9th and 19th O-spline synchrophasors. In a convergent
Cauchy sequence, this indicates that their estimates have reached to the ideal
synchrophasor.
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Filtering Diagram for Synchrophasor Estimates.
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Figure 24: Flowchart of the proposed method.
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Steady-State Compliance

Table 1: Steady State Compliance.

Case Measurement Standard Limit

f0 ± 5 Hz
TVE = 2.185× 10−5 % 1%
|FE | = 0 Hz 0.005 Hz
|RFE | = 5.128× 10−6 Hz/s 0.1 Hz/s

10 %
Harmonic
distortion
up to 50th

TVE = 2.5× 10−12 % 1 %
|FE | = 6× 10−15 Hz 0.025Hz
|RFE | = 1.5× 10−13 Hz/s Limit Suspended

Out-of-
Band

TVE = 2.9933 % 1.3 %
|FE | = 1.166× 10−05 Hz 0.01 Hz
|RFE | = 6.9919× 10−05 Hz/s Limit Suspended
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Dynamic Compliance - Measurement Bandwidth.

Table 2: Dynamic Compliance - Measurement Bandwidth.

Case Measurement Standard Limit

Amplitude
Modulated

TVE ≤ 2.5× 10−6 % 3 %
|FE | ≤ 1.95× 10−7 Hz 0.3 Hz
|RFE | < 7.357× 10−6 Hz/s 14 Hz/s

Phase
Modulated

TVE ≤ 4.71× 10−5 % 3 %
|FE | ≤ 6.92× 10−6 Hz 0.3 Hz
|RFE | < 1.65× 10−3 Hz/s 14 Hz/s.

Frequency
Modulated

TVE ≤ 2× 10−5 % 1 %
|FE | ≤ 1.627× 10−6 Hz 0.01 Hz
|RFE | < 5× 10−4 Hz/s 0.2 Hz/s
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Dynamic Compliance - Step Responses.

Table 3: Dynamic Complience - Step Responses.

Case Measurement Standard Limit

Step

Response time = 7.23 cycles 7 cycles
Amplitude delay time = 0 cycles 1

4 cycle
Overshoot = 6.4 % 10 %
Frequency response time = 6 cycles 14 cycles
ROCOF response time = 6 cycles 14 cycles

Step

Response time = 7.37 cycles 7 cycles
Phase delay time = 0 cycles 1

4 cycle
Overshoot = 7.4 % 10 %
Frequency response time = 6 cycles 14 cycles
ROCOF response time = 8 cycles 14 cycles

Frequency

TVE ≤ 2× 10−5 % 1 %
Modulated |FE | ≤ 1.627× 10−6 Hz 0.01 Hz

|RFE | < 5× 10−4 Hz/s 0.2 Hz/s
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Study Case: Event in System with Solar and Wind Power
Generation
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Figure 25: Topology of the low-voltage distributed generation system considered
in this paper with two PVSs and one WPS interconnected to the grid.
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Voltage Waveforms and PMU Amplitude Estimations
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Figure 26: Voltage waveforms with amplitude estimated by the PMU.
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Voltage Spectra
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Figure 27: Voltage spectra and nonic DTTFT filter frequency response. At the
bottom, voltage oscillography and the corresponding synchrophasors.
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Current Spectra

-10 -8 -6 -4 -2 0 2 4 6 8 10
-100

-50

0

C
u

rr
e

n
t 

A

Normalized Spectra and Bandpass Filter Frequency Response in dB

-10 -8 -6 -4 -2 0 2 4 6 8 10
-100

-50

0

C
u

rr
e

n
t 

B

Current

Filter FR

-10 -8 -6 -4 -2 0 2 4 6 8 10
-100

-50

0

C
u

rr
e

n
t 

C

(a) Spectra and fundamental bandpass
filter

15 20 25 30 35

-0.5

0

0.5

C
u

rr
e

n
t 

A
 (

A
)

Dynamic Phasors

15 20 25 30 35
-20

0

20

C
u

rr
e

n
t 

B
 (

A
) Oscillographic

Amplitude

Phase

15 20 25 30 35

Time in Cycles

-20

0

20

C
u

rr
e

n
t 

C
 (

A
)

(b) Dynamic Phasors.

Figure 28: Current spectra and nonic DTTFT filter frequency response. At the
bottom, current oscillography and the corresponding synchrophasors (amplitude
and phase).
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Current and their synchrophasor syntetic signals
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Figure 29: Currents and their synchrophasor synthetic signals.
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Current Phasor Estimates

Current Estimates

0 20 40 60
0

0.2

0.4

0.6

Ia

Ampltude

PMU

9th O-spline

0 20 40 60
0

2

4

6
Phase Angle

0 20 40 60
0

10

20

Ib

0 20 40 60
0

2

4

6

0 20 40 60

Time (cycles)

0

10

20

Ic

0 20 40 60

Time (cycles)

0

2

4

6

Figure 30: Current phasor estimates. At the left column the amplitudes, and at
the right column the corresponding phase angles.
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TVE of PMU Voltage Estimates
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Figure 31: TVE of PMU Voltage (left), and current (right) estimates.

José A. de la O Serna (UANL) Fast Fourier Transform 26 May 2022 58 / 75



Frequency and ROCOF Estimaes from Voltages
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Figure 32: Frequency and ROCOF estimates from voltage channels obtained with
the nonic O-spline first and second differentiators.
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Discussion I: What Standards Are 5

Standards reflect the global consensus and distilled wisdom of many
technical delegated experts.

They provide instructions, guidelines, rules or definitions that are used
to design, manufacture, install, test & certify, maintain and repair
electrical and electronic devices and systems.

They are essential for quality and risk management;

Standards are always used by voluntary technical experts (and based
on international consensus).

They help researchers to understand the value of innovation and allow
manufacturers to produce products of consistent quality and
performance.

5Taken from: https://www.iec.ch/understanding-standards
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Discussion II: Synchrophasor Standard
IEC/IEEE 60255-118-1

Standards are not for promoting scientific research, it is the other way
around.

The O-spline performance shows that the standard limits are unduly
lax.

The standard prevents to test PMUs with real signals whose
synchrophasors are unknown.

TVE only takes into account amplitude and phase. A synthetic error
including frequency and ROCOF is required.

Out-of-Band test obliges to filter out important oscillations due to a
low reportig rate.

The standard allows noisy frequency and ROCOF estimates.
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Conclusions PMUs Phasor Estimates

The paper proposes a quantitative method to assess the estimation
performance of PMUs using signals from the field, instead of only
with the few benchmark signals of the Standard.

Real signals contain realistic harmonics and real noisy conditions.

The analyzed case exhibits very poor and erratic PMU estimates, with
intolerable TVEs.

This work opens up the possibility of employing the TVE to assess
and compare the estimation performance of different PMUs at a
control center, when they monitor the same disturbance.

Application that was considered before as unthinkable and impossible.
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Introduction to De la O Wavelets

Wavelets are function orthogonal to cyclic
time translations. With them perfect
reconstruction can be achieved through
the Discrete Wavelet Transform algorithm

O-splines can be transformed into
wavelets with the frequency compensation
used by Battle-Lemarié to orthogonalize
translated B-splines.

(a) Jaime
Menéndez
Álvarez

(b) Gina
Idárraga-
Ospina
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Discrete Wavelet Transform algorithm
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Figure 33: Discrete Wavelet Transform algorithm through low and high pass filter
bank.
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Transition band of O-splines
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Figure 34: Spectra of decimononic scaling function, O-spline, and Wavelet
functions.
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Frequency compensation function
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√
Gk(u).
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Battle-Lemarié Frequency Gain

Figure 36: Battle-Lemarié Compensation Gain for B-splines
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Scalar and Wavelet Functions: Meyer and de la O nonic
and decimononic.
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Figure 37: Scaling functions and Wavelets: Meyer and de la O nonic and
decimononic.
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Scalar and Wavelet Functions: Bandlimited and de la O∞.
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Figure 38: Scaling functions and Wavelets: Bandlimited and de la O∞.
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Future Paper on Dynamic Impedance

Paper ”Assessment of Harmonic Network Impedance through
Transient Harmonic Signals” by Tom Van Acker

Julia Package at GitHub:
https://github.com/timmyfaraday/TFT.jl

Main idea

lim
∆t→0

∆Uh,s(t)

∆t
= Z

ntw
h,s lim

∆t→0

∆I h,s(t)

∆t
, U

(1)
h,s(t) = Z

ntw
h,s , I

(1)
h,s(t).

(a) Tom Van Acker,
BASF, Belgium.
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FTFT papers to come in Power Systems

1 Book Chapter: Power Quality Harmonic Monitoring by the
O-splines-based Multiresolution Signal Decomposition

2 “Fast Taylor-Fourier Transform for Monitoring Modern Power Grids
with Real-Time Dynamic”Harmonic Estimation

3 “Model-Free Inertia Estimation in Bulk Power Grids Through
O-splines”

4 “Adaptive Discrimination Scheme for Transformer Differential
Protection”

5 “O-splines-based Fixed-Frequency Integral Sliding-Mode Controller for
PFC Rectifier”
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Power System Concepts review due to FTFT

Dynamic phasor

Dynamic impedance

Inertia estimation

Harmonic packages through wavelets

Power oscilation time-frequency analysis (and maybe spacial
localization)

Classification of power signals

Dynamic Power Systems

Automatic control algorithms

Protection scheeme with transient information instead of static
phasor scheme

Power signals derivative interpretation.

Dynamic states
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Thank you

Thanks.
jdelao@ieee.org
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