

Control and end-to-end stability analysis of converter dominated power systems

Dominic Groß

University of Wisconsin-Madison

We are replacing the foundation of today's grid

fuel & synchronous machines

- emissions & waste
- + dispatchable generation
- + inherent self-sync. & inertia
- + reliable control & ride-through
- slow actuation & physics

renewables & power electronics

- + clean & sustainable
- intermittent generation
- no inherent sync. or inertia
- fragile grid-following control
- + fast actuation & flexible control

Overview

The role of inertia & dynamics of converter-interfaced generation (CIG)

- why do we need rotational inertia? how much?
- impact of CIG on system-level frequency dynamics

Grid-forming and grid-following control

- ► principles, control strategies, & results
- a universal grid-forming control paradigm
- end-to-end stability analysis: generation, conversion, & network

Opportunities for data-enabled optimization & analysis

- stability & performance: reserves, network topology, ...
- validating interoperability using input-output data

The role of inertia & converter-interfaced generation

The foundation of today's system operation

1. self-synchronization of machines through power flows

$$p_{\mathrm{ac},k} \approx \sum_{j} b_{kj} \left(\theta_k - \theta_j \right)$$

- 2. inertia m_k acts as buffer for slow turbine/governor response
- 3. primary frequency control, voltage regulation, power system stabilizer

Low-inertia concerns are not hypothetical (but seem exaggerated?)

😵 INDEPENDENT	≡	m Internet and a particular participation of the second state of t	
News World Australasia Tesla's new mega reacts to outages	battery in Australia in 'record' time	Prequency stabulity of Synchronous Machin and Grid-Forming Power Converters at Toylo ⁴⁰ , Passe de ⁴⁰ , Nucl. EEC, Adv. Star. Tunka Steps at The Weight Nucl. EEC. Proceedings of the Star Star Star Star Star Grid-Following Virtual Interits and Fast Errorgence Research	Microni M
One of Australia's biggest p output - the new battery ki	ower plants suffered a drop in cked in just 0.14 seconds later	Rah Kanolyne Polskow Hodyk (TRZ) Polskow Rah Kanolyne Polskow Polskow (Polskow Konolec #22), and Youn Polsko Meeter #23	147 Austra Indian of Bahadage Austra Vieneery of Patrix Rds - VIP Patrix Instantian
CONT Is commonling the specifies to the following the Lagrands in the following the specifies operation of the world have use memory period. Sector 1 and the specific for the following the specific for the specific for the specific for the following the specific for the speci	Frequency Stability Evaluation Criteria for the Synchronous Zone of Continental Europe - Requirements and Impacting factors – RG-CE System Protection & Dynamics Sub Group	Improvement of Transient Response in Microgrids Using Virtual Inertia Statuto: Nate Academic Statute Statute Statute Virtual synchronous generation: A survey and new perspective Risean Result ²⁶ , Holdmain & Yual Mana ² Statute S	plementing Virtual Inertia in DFIG-Based Wind Power Generation Tynamic Frequency Control Support: a Virtua nertia Provided by Distributed Energy Storage to Isolated Power Systems
Biblis A generator	However, as these sources are by constrained, a population can be added to the investment to prove a "ymbiget ment". This can also be seen as a bort two beginning support on the other hand, these capacity and possible activation time. The investment hand, these expanding activation time. The investment hand, the activation statistication of the investment of the activation of the investment of the investment of the investment of the investment of the investment of the investment of the investment of the investment of the statistication of the investment of the investment of the investment of the investment of the investment of the investment of the statistication of the investment of the invest	The Description Review Of Preference on a sub-law rev Incertia Emulation Control Strategy for VSC-HVDC Transmission Systems Joint Za, Carefull D Bord, Good P. Mar, Joney J. Room, and Chirol. Dight	Sather Dellin, Lindow, 1997, France France, Science Holder, 1997, and Giften Marzage Grid Tied Converter with Virtual Kinetic Storage MPN:148 Weathout', SWIT & Hard', Science methor, 1997, P. Yashi' and K. Yundar',

Synchronous machines & slow turbine can be replaced by

- **grid-forming** power converters (self-synchronizing, **no PLL**)
- ► fast frequency response & (expensive?) virtual inertia

The elephant in the room: loss of SG inertia

"System" frequency dynamics

$$\begin{split} m/\tau \frac{\mathrm{d}}{\mathrm{d}t'} \omega &= -p_{\mathrm{ac}} + p_{\mathrm{m}} \\ \frac{\mathrm{d}}{\mathrm{d}t'} p_{\mathrm{m}} &= -p_{\mathrm{m}} + p^{\star} - K(\omega_0 - \omega) \end{split}$$

- ► center-of-inertia (COI) frequency model
- ► inertia *m* acts as **buffer** for **slow turbine**
- normalize time $t' = \tau t$
- nadir scales with ratio m/τ
- power source time constants
 - · battery $\tau \approx 50 \text{ ms}$
 - + Wind turbine $\tau\approx 300~{\rm ms}$
 - $\cdot\,$ Steam turbine $\tau\approx7~{\rm s}$
- Need to leverage fast and flexible actuation of IBRs/VSCs
- **max. RoCoF** approx. linear in *m*
 - \cdot mostly related to m at machine buses
 - $\cdot\,$ no rotating parts at converter bus
 - RoCoF protection?

IEEE 9-bus with one sync. machine and two grid-forming converters

- ► high-fidelity simulation:
 - high-order SM with turbine, AVR, & PSS
 - $\cdot\,$ VSC with filter, inner loops, & DC side
 - transformer & line dynamics
- ► tuning: no or negligible virtual inertia

better performance than all SM case

Simplified frequency dynamics of a two bus system (droop GFC & SM)

▶ share of GFC relative to overall rating: $\nu \in (0, \frac{2}{3}]$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \theta_{\mathsf{GFC}} &= \left(\nu d_{\mathsf{GFC}}\right)^{-1} b(\theta_{\mathsf{SM}} - \theta_{\mathsf{GFC}}) \\ \frac{\mathrm{d}}{\mathrm{d}t} \theta_{\mathsf{SM}} &= \omega_{\mathsf{SM}} \\ (1 - \nu) m \frac{\mathrm{d}}{\mathrm{d}t} \omega_{\mathsf{SM}} &= -b(\theta_{\mathsf{SM}} - \theta_{\mathsf{GFC}}) + p_{\tau} - p_{l} \\ \tau \frac{\mathrm{d}}{\mathrm{d}t} p_{\tau} &= -p_{\tau} - (1 - \nu) d_{\mathsf{SM}} \omega \end{split}$$

Simplified frequency dynamics of a two bus system (droop GFC & SM)

- share of GFC relative to overall rating: $\nu \in (0, \frac{2}{3}]$
- change coordinates to relative angle $\delta = \theta_{\rm SM} \theta_{\rm GFC}$

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \theta_{\mathsf{GFC}} &= (\nu \, d_{\mathsf{GFC}})^{-1} \, b(\theta_{\mathsf{SM}} - \theta_{\mathsf{GFC}}) \\ \frac{\mathrm{d}}{\mathrm{d}t} \theta_{\mathsf{SM}} &= \omega_{\mathsf{SM}} \\ (1 - \nu) m \frac{\mathrm{d}}{\mathrm{d}t} \omega_{\mathsf{SM}} &= - b(\theta_{\mathsf{SM}} - \theta_{\mathsf{GFC}}) + p_{\tau} - p_{l} \\ \tau \frac{\mathrm{d}}{\mathrm{d}t} p_{\tau} &= - p_{\tau} - (1 - \nu) \, d_{\mathsf{SM}} \omega \end{aligned}$$

Simplified frequency dynamics of a two bus system (droop GFC & SM)

- share of GFC relative to overall rating: $\nu \in (0, \frac{2}{3}]$
- change coordinates to relative angle $\delta = \theta_{\rm SM} \theta_{\rm GFC}$

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \delta &= \omega_{\mathrm{SM}} - (\nu \, d_{\mathrm{GFC}})^{-1} b \delta \\ (1-\nu) m \frac{\mathrm{d}}{\mathrm{d}t} \omega_{\mathrm{SM}} &= -b \delta + p_{\tau} - p_{l} \\ \tau \frac{\mathrm{d}}{\mathrm{d}t} p_{\tau} &= -p_{\tau} - (1-\nu) d_{\mathrm{SM}} \omega \end{aligned}$$

Simplified frequency dynamics of a two bus system (droop GFC & SM)

- share of GFC relative to overall rating: $\nu \in (0, \frac{2}{3}]$
- change coordinates to relative angle $\delta = \theta_{\rm SM} \theta_{\rm GFC}$
- $m \text{ and } \tau \text{ are large} \rightarrow \text{eliminate "fast" angle dynamics (COI model)}$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\delta &= \omega_{\mathrm{SM}} - (\nu \, d_{\mathrm{GFC}})^{-1} b\delta \\ (1-\nu) m \frac{\mathrm{d}}{\mathrm{d}t} \omega_{\mathrm{SM}} &= -b\delta + p_{\tau} - p_{l} \\ \tau \frac{\mathrm{d}}{\mathrm{d}t} p_{\tau} &= -p_{\tau} - (1-\nu) d_{\mathrm{SM}} \omega \end{split}$$

Simplified frequency dynamics of a two bus system (droop GFC & SM)

- share of GFC relative to overall rating: $\nu \in (0, \frac{2}{3}]$
- change coordinates to relative angle $\delta = \theta_{\rm SM} \theta_{\rm GFC}$
- $m \text{ and } \tau \text{ are large} \rightarrow \text{eliminate "fast" angle dynamics (COI model)}$

$$\begin{split} (1-\nu)m_{dt}^{\rm d}\omega_{\rm SM} &= \nu d_{\rm GFC}\omega_{\rm SM} + p_{\tau} - p_l \\ \tau \frac{\rm d}{{\rm d}t}p_{\tau} &= -p_{\tau} - (1-\nu)d_{\rm SM}\omega \end{split}$$

Simplified frequency dynamics of a two bus system (droop GFC & SM)

- share of GFC relative to overall rating: $\nu \in (0, \frac{2}{3}]$
- change coordinates to relative angle $\delta = \theta_{\rm SM} \theta_{\rm GFC}$
- $m \text{ and } \tau \text{ are large} \rightarrow \text{eliminate "fast" angle dynamics (COI model)}$

$$(1 - \nu)m\frac{\mathrm{d}}{\mathrm{d}t}\omega_{\mathrm{SM}} = \nu d_{\mathrm{GFC}}\omega_{\mathrm{SM}} + p_{\tau} - p_{l}$$

$$\tau \frac{\mathrm{d}}{\mathrm{d}t}p_{\tau} = -p_{\tau} - (1 - \nu)d_{\mathrm{SM}}\omega$$

$$(1 - \nu)m\frac{\mathrm{d}}{\mathrm{d}t}\omega_{\mathrm{SM}} = -p_{\tau} - (1 - \nu)d_{\mathrm{SM}}\omega$$

$$(1 - \nu)m\frac{\mathrm{d}}{\mathrm{d}t}\omega_{\mathrm{SM}} = -p_{\tau} - (1 - \nu)d_{\mathrm{SM}}\omega$$

150 .

40

RoCoF [%]

[1] Tayyebi, Groß, Anta, Kupzog, Dörfler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020

100

Simplified frequency dynamics of a two bus system (droop GFC & SM)

- share of GFC relative to overall rating: $\nu \in (0, \frac{2}{3}]$
- change coordinates to relative angle $\delta = \theta_{\rm SM} \theta_{\rm GFC}$
- $m \text{ and } \tau \text{ are large} \rightarrow \text{eliminate "fast" angle dynamics (COI model)}$

$$(1-\nu)m\frac{\mathrm{d}}{\mathrm{d}t}\omega_{\mathrm{SM}} = \nu d_{\mathrm{GFC}}\omega_{\mathrm{SM}} + p_{\tau} - p_{l}$$

$$\tau \frac{\mathrm{d}}{\mathrm{d}t}p_{\tau} = -p_{\tau} - (1-\nu)d_{\mathrm{SM}}\omega$$

\Rightarrow Fast frequency response replaces slow SM turbine/governor

Caveat: inertia placement in weakly coupled systems

Inertia placement problem

- minimize disturbance amplification
- device-limits & grid-code constraints

Efficient \mathcal{H}_2 -norm optimization [1]

- structured control design problem
- \mathcal{H}_2 -norm optimization (complexity $\mathcal{O}(n^3)$)

[1] Poolla, Groß, Dörfler: Placement and Implementation of Grid-Forming and Grid-Following Virtual Inertia and Fast Frequency Response, IEEE TPWRS, 2019

Caveat: inertia placement in weakly coupled systems

Inertia placement problem

- minimize disturbance amplification
- device-limits & grid-code constraints

Efficient \mathcal{H}_2 -norm optimization [1]

- structured control design problem
- \mathcal{H}_2 -norm optimization (complexity $\mathcal{O}(n^3)$)

 \Rightarrow location & tuning matters in large systems with "weak" coupling

[1] Poolla, Groß, Dörfler: Placement and Implementation of Grid-Forming and Grid-Following Virtual Inertia and Fast Frequency Response, IEEE TPWRS, 2019

Caveat: inertia placement in weakly coupled systems

Inertia placement problem

- minimize disturbance amplification
- device-limits & grid-code constraints

Efficient \mathcal{H}_2 -norm optimization [1]

- structured control design problem
- \mathcal{H}_2 -norm optimization (complexity $\mathcal{O}(n^3)$)

Note: \mathcal{H}_2 -norm optimization requires full system knowledge

[1] Poolla, Groß, Dörfler: Placement and Implementation of Grid-Forming and Grid-Following Virtual Inertia and Fast Frequency Response, IEEE TPWRS, 2019

Grid-forming vs. grid-following control

Actual contingencies involving power electronics

"Nine of the 13 wind farms online did not ride through the six voltage disturbances during the event"

25% of generation lost

50% of credible cont.

1,200 MW Fault Induced

Resource Interruption

"the largest percent-

age of inverter loss

(700 MW) was due to

the inverter phase

lock loop (PLL) "

Disturbance Report

AEMO Final Report – Queensland and South Australia system separation on 25 August 2018

"The fast response of the Hornsdale battery during the event contributed to operation of the EAPT scheme."

30% of primary control

Some controls lack basic robustness / resilience of SGs

NERC

- standard time-scale separation assumptions fail
- ▶ interoperability with legacy devices not guaranteed

Grid-following (GFL) control: renewables & DC voltage control

Basic assumptions & objectives

- assumption: AC power system is an infinite AC bus
- converter model: AC current source feeding into an infinite AC bus
- ▶ objective: control DC voltage (e.g., PV MPPT, HVDC, ...)

More accurately: AC-GFL/DC-GFM control

- ► DC-GFM: forms stable DC voltage (not necessarily constant or nominal)
- AC-GFL: requires another device to stabilize the AC voltage

Challenge: PLL-based AC-GFL control is fragile

"the **largest** percentage of **inverter loss** (700 MW) was due to the **inverter phase lock loop (PLL)** "

Lack of resilience to line opening, ...

- v_{PCC} depends on IBR current $i_s^{qd\star}$
- PLL can induce positive feedback

Non-trivial dependence of stability on operating point and grid conditions

 Dong, Wen, Boroyevich, Mattavelli, Xue: Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions, IEEE TIE, 2015

[2] Pattabiraman, Lasseter, Jahns: Impact of Phase-Locked Loop Control on the Stability of a High Inverter Penetration Power System, IEEE PES GM, 2019

Grid-forming (GFM) control: grid stability

Droop control [1]	
$rac{\mathrm{d}}{\mathrm{d}t} heta_k = \omega_0 + m_p \left(oldsymbol{p}_k^\star - oldsymbol{p}_{ac,k} ight)$	
$p_{ac,oldsymbol{k}}pprox \sum_j b_{kj}(heta_k- heta_j)$	

Basic assumptions & objectives

- assumption: DC terminal is an infinite DC bus
- converter model: AC voltage source feeding network (no current limits)
- objective: stabilize AC network at desired operating point

More accurately: AC-GFM/DC-GFL control

- AC-GFM: forms stable AC voltage (not necessarily constant or nominal)
- DC-GFL: requires another device to stabilize the DC voltage

[1] Chandorkar, Divan, Adapa: Control of Parallel Connected Inverters in Standalone AC Supply Systems, IEEE TIA, 1993

Standard grid-forming VSC control architecture

- Assumption: DC source controls DC voltage to constant reference
- **GFC measures power** injection P,Q (or current i_o in $\alpha\beta$ -frame)
- ► GFC provides AC voltage reference $\angle v^* = \theta$, $||v^*|| = V$ (or $v^*_{\alpha\beta}$ in $\alpha\beta$ -frame)
- inner cascaded current and voltage PI controllers track AC voltage reference

State-of-the-art in grid-forming control

droop control

- + intuitive & good small-signal performance
- stability & performance certificates

synchronous machine emulation

- + (supposedly) backward compatible
- fast converter emulates slow machine

virtual oscillator control (VOC)

- + robust & almost globally stable sync
- cannot meet power specifications

dispatchable VOC

- + power & voltage specifications
- + strong theoretical guarantees

dVOC for multi-converter systems

Grid-forming voltage reference dynamics [1]

$$\frac{d}{dt}v_{k} = \underbrace{\begin{bmatrix} 0 & -\omega_{0} \\ \omega_{0} & 0 \end{bmatrix} v_{k}}_{\text{rotation at }\omega_{0}} + \eta \left(\underbrace{R(\kappa) \left(\frac{1}{v^{\star 2}} \begin{bmatrix} p_{k}^{\star} & q_{k}^{\star} \\ -q_{k}^{\star} & p_{k}^{\star} \end{bmatrix} v_{k} - i_{o,k}\right)}_{\text{synchronization through physics}} + \alpha \underbrace{(v^{\star 2} - \|v_{k}\|^{2}) v_{k}}_{\text{local amplitude regulation}}\right)$$

quantifiable and intuitive stability conditions for multi-converter systems [2]

- v^* , p_k^* , and q_k^* satisfy AC power flow equations
- power transfer "small enough" compared to network "connectivity"
- increase admittance $\max_k \sum_{i} ||Y_{jk}|| \times \text{time-constant } \ell/r \Rightarrow \eta \text{ smaller}$
- upgrading or adding lines can destabilize the system
- time scale separation can be enforced by control

magnitude ($\eta \alpha$) > sync (η) > line currents > volt. PI > curr. PI

^[1] Groß, Colombino, Brouillon, Dörfler: The Effect of Transmission-Line Dynamics on Grid-Forming Dispatchable Virtual Oscillator Control, IEEE TONS, 2019 [2] Subotič, Groß, Colombino, Dörfler: A Lyapunov framework for nested dynamical systems on multiple time scales with application to converter-based power systems, IEEE TAC, 2021

Almost global stability with inner loops & network dynamics (π -model)

If the stability condition holds, the system is **almost globally asymptotically stable** with respect to a **limit cycle** corresponding to a **pre-specified** solution of the **AC power-flow** equations at a **synchronous** frequency ω_0 .

$$\begin{split} \text{microgrid} \left(\ell_{jk} = 0, p_k^* = q_k^* = 0\right) &= \text{averaged VOC} \quad \text{[Johnson, Dhople, Krein, '13]} \\ \\ \frac{d}{dt}\theta_k &= \omega_0 + \eta \frac{q_k}{\|v_k\|^2} \qquad (\text{phase}) \\ \\ \frac{d}{dt}\|v_k\| &= -\eta \frac{p_k}{\|v_k\|^2}\|v_k\| + \eta \alpha \left(\|v_k\| - \frac{1}{v^{\star 2}}\|v_k\|^3\right) \qquad (\text{magnitude}) \end{split}$$

$$\begin{aligned} \text{transmission system} \left(r_{jk} = 0, \|v\| \approx v^{\star}\right) \approx \text{droop control} \quad \text{[Chandorkar, Divan, Adapa, '93]} \\ \\ \\ \frac{d}{dt}\theta_k \approx \omega_0 + \frac{\eta}{v^{\star 2}} \left(p_k^{\star} - p_k\right) \qquad (\text{phase}) \\ \\ \\ \|v_k\| \approx v^{\star} + \frac{1}{\alpha v^{\star}} \left(q_k^{\star} - q_k\right) \qquad (\text{magnitude}) \end{split}$$

Colombino, Groß, Dörfler: Global phase and voltage synchronization for power inverters: A decentralized consensus-inspired approach, CDC, 2017
 Seo et al.: Dispatchable Virtual Oscillator Control for Decentralized Inverter-dominated Power Systems: Analysis and Experiments, APEC, 2019

Grid-forming controls exhibit similar performance (for realistic tuning)

Grid-forming: $(P, Q) \rightarrow (\omega, V)$

- sync. through $p \approx \sum_{j} b_{kj}(\theta_k \theta_j)$
- \blacktriangleright virtual inertia *m* limited by
 - DC side energy storage
 - DC and AC current limits
 - $\rightarrow m$ typically very small
- ► similar reduced-order models
- ► main GFC response interoperable

[1] MIGRATE Deliverable 3.3: New options for existing system services and needs for new system services, 2018

Classification & implications of different ac-GFM controls

[1] Dörfler, Groß: Control of Low-Inertia Power Systems, submitted. http://people.ee.ethz.ch/~floriand/docs/Drafts/2022_ARSurvey.pdf

Challenges and results in GFM control

Well understood & analytic certificates available

- ▶ networks of 100% GFM inverters (with "infinite" DC bus) [1,2,3,...]
- ▶ time-scale separation with network dynamics & inner loops [2,3]

Some progress on modeling & analytic certificates

- ▶ adverse interactions with machine controls [3,4]
- stability conditions for heterogeneous systems [5]

Not well understood

- ▶ GFM control subject to converter and power source constraints [6]
- ▶ end-to-end stability certificates with dc side & source dynamics [7]
- data-enabled design, optimization, & data-based verification

[6] Tayyebi, Groß, Anta, Kupzog, Döffler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020 [7] Subotić, Groß: Power-balancing dual-port grid-forming power converter control for renewable integration and hybrid AC/DC power systems, IEEE TCNS, 2022

Challenge: mixing AC-GFM/DC-GFL and DC-GFM/AC-GFL controls

Definitions for this talk

- ► AC-GFM (resp. DC-GFM): imposes stable AC (resp. DC) voltage
- ► AC-GFL (resp. DC-GFL): requires stable AC (resp. DC) voltage

GFM/GFL role assignments

- ▶ are non-trivial in meshed DC/AC networks [1]
- may have to change during operation
 - MPPT vs. grid-support
 - weather, day/night cycle, season, ...

Numerical results on stability of benchmark systems

- ► non-trivial dependence on assignment and dispatch
- ▶ many assignments only stable for a limited set of operating points
- ▶ no assignments covers all operating points in HVAC/HVDC system

 O. Gomis-Bellmunt, E. Sánchez-Sánchez, J. Arévalo-Soler, E. Prieto-Araujo: Principles of operation of grids of DC and AC subgrids interconnected by power converters, IEEE TPWRD, 2020

Challenge 3: AC-GFM under converter and source limits

DC terminal not an infinite bus

- power source with limited headroom [1]
- loss of DC-GFM units or DC open-circuit faults [2]

Fault ride through and converter current limits

- ► low voltage ride through & short-circuit faults [3]
- loss of AC-GFM units or AC open-circuit faults [2]

[1] Tayyebi, Groß, Anta, Kupzog, Dörfler: Frequency Stability of Synchronous Machines and Grid-Forming Power Converters, IEEE JESTPE, 2020 [2] Groß, Sánchez-Sánchez, Prieto-Araujo, Gomis-Bellmunt: Dual-port grid-forming control of MMCs and its applications to grids of grids, arXiv:2106.11378

[3] MIGRATE Deliverable 3.3: New options for existing system services and needs for new system services, 2018

Universal GFM control paradigm

Power source

- generates power
- response time often non-negligible
- limits on power generation

DC/AC voltage source converter

- converts power between terminals
- very small energy buffer
- current & voltage constraints

DC/AC power balance is crucial to translate between networks and sources

- ► AC-GFM/DC-GFL: stiff DC voltage → form stable AC voltage
- ► AC-GFL/DC-GFM: stiff AC voltage → form stable DC voltage
- AC-GFM/DC-GFM: unified control & bidirectional support?

- $i_{dc}^{*} \xrightarrow{i_{a} \atop i_{a} \atop$
- dc-link capacitor as energy buffer:

$$v_{\rm dc}(t)\approx \frac{1}{C_{\rm dc}v_{\rm dc}^{\star}}\int p_{\rm dc}(t)-p_{\rm ac}(t)$$

• responsive src.:
$$v_{dc} \downarrow$$
 implies $p_{dc} \uparrow$

rotating mass as energy buffer:

$$\omega(t) \approx \frac{1}{M} \int p_m(t) - p_{\rm ac}(t)$$

- ▶ turbine/governor: $\omega \downarrow$ implies $p_{\rm m} \uparrow$
- ► No turbine or no governor:
 - inertia response
 - voltage support

Dual-port GFM control [1]

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta = \omega_0 + m_p(p_{\mathrm{ac}}^\star - p_{\mathrm{ac}}) + m_{\mathrm{dc}}(v_{\mathrm{dc}} - v_{\mathrm{dc}}^\star)$$

rotating mass as energy buffer:

$$\omega(t) \approx \frac{1}{M} \int p_m(t) - p_{\rm ac}(t)$$

- ▶ turbine/governor: $\omega \downarrow$ implies $p_{\rm m} \uparrow$
- ► No turbine or no governor:
 - inertia response
 - voltage support

Dual-port GFM control [1]

dc-link capacitor as energy buffer:

$$v_{\rm dc}(t) \approx \frac{1}{C_{\rm dc} v_{\rm dc}^{\star}} \int p_{\rm dc}(t) - p_{\rm ac}(t)$$

- ► responsive src.: $v_{\rm dc} \downarrow$ implies $p_{\rm dc} \uparrow$
- no source or source at MPPT:
 - \cdot frequency oscillation damping
 - volt-var control

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta = \omega_0 + m_p(p_{\mathrm{ac}}^\star - p_{\mathrm{ac}}) + m_{\mathrm{dc}}(v_{\mathrm{dc}} - v_{\mathrm{dc}}^\star)$$

[1] Subotić, Groß: Power-balancing dual-port grid-forming power converter control for renewable integration and hybrid AC/DC power systems, IEEE TCNS, 2022

rotating mass as energy buffer:

$$\omega(t) \approx \frac{1}{M} \int p_m(t) - p_{\rm ac}(t)$$

- ▶ turbine/governor: $\omega \downarrow$ implies $p_{\rm m} \uparrow$
- ► No turbine or no governor:
 - inertia response
 - voltage support

Dual-port GFM control [1]

dc-link capacitor as energy buffer:

$$v_{\rm dc}(t) \approx \frac{1}{C_{\rm dc} v_{\rm dc}^{\star}} \int p_{\rm dc}(t) - p_{\rm ac}(t)$$

- ► responsive src.: $v_{\rm dc} \downarrow$ implies $p_{\rm dc} \uparrow$
- no source or source at MPPT:
 - \cdot frequency oscillation damping
 - volt-var control

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta = \omega_0 + m_p(p_{\mathrm{ac}}^\star - p_{\mathrm{ac}}) + m_{\mathrm{dc}}(v_{\mathrm{dc}} - v_{\mathrm{dc}}^\star)$$

[1] Subotić, Groß: Power-balancing dual-port grid-forming power converter control for renewable integration and hybrid AC/DC power systems, IEEE TCNS, 2022

rotating mass as energy buffer:

$$\omega(t) \approx \frac{1}{M} \int p_m(t) - p_{\rm ac}(t)$$

- ▶ turbine/governor: $\omega \downarrow$ implies $p_{\rm m} \uparrow$
- ► No turbine or no governor:
 - inertia response
 - voltage support

Energy-balancing dual-port GFM control

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta = \omega_0 + m_p(p_{\mathrm{dc}} - p_{\mathrm{ac}}) + m_{\mathrm{dc}}(v_{\mathrm{dc}} - v_{\mathrm{dc}}^{\star})$$

dc-link capacitor as energy buffer:

$$v_{\rm dc}(t) \approx \frac{1}{C_{\rm dc} v_{\rm dc}^{\star}} \int p_{\rm dc}(t) - p_{\rm ac}(t)$$

- ▶ responsive src.: $v_{dc} \downarrow$ implies $p_{dc} \uparrow$
- no source or source at MPPT:
 - frequency oscillation damping
 - volt-var control

rotating mass as energy buffer:

$$\omega(t) \approx \frac{1}{M} \int p_m(t) - p_{\rm ac}(t)$$

- ▶ turbine/governor: $\omega \downarrow$ implies $p_{\rm m} \uparrow$
- ► No turbine or no governor:
 - inertia response
 - voltage support

$i_{dc}^{*} \xrightarrow{i_{a} \rightarrow i_{a}} G_{dc} \xrightarrow{i_{a}} G_{dc} \xrightarrow{i_{a}}$

dc-link capacitor as energy buffer:

$$v_{\rm dc}(t) \approx \frac{1}{C_{\rm dc} v_{\rm dc}^{\star}} \int p_{\rm dc}(t) - p_{\rm ac}(t)$$

- ▶ responsive src.: $v_{\rm dc} \downarrow$ implies $p_{\rm dc} \uparrow$
- no source or source at MPPT:
 - frequency oscillation damping
 - volt-var control

Energy-balancing dual-port GFM control

$$rac{\mathrm{d}}{\mathrm{d}t} heta=\omega_0+m_p(p_{\mathrm{dc}}-p_{\mathrm{ac}}-p_{\mathrm{loss}})+m_{\mathrm{dc}}(v_{\mathrm{dc}}-v_{\mathrm{dc}}^\star)$$

rotating mass as energy buffer:

$$\omega(t) \approx \frac{1}{M} \int p_m(t) - p_{\rm ac}(t)$$

- ▶ turbine/governor: $\omega \downarrow$ implies $p_{\rm m} \uparrow$
- ► No turbine or no governor:
 - inertia response
 - voltage support

dc-link capacitor as energy buffer:

$$v_{\rm dc}(t) \approx \frac{1}{C_{\rm dc} v_{\rm dc}^{\star}} \int p_{\rm dc}(t) - p_{\rm ac}(t)$$

- ▶ responsive src.: $v_{\rm dc} \downarrow$ implies $p_{\rm dc} \uparrow$
- no source or source at MPPT:
 - frequency oscillation damping
 - volt-var control

Energy-balancing dual-port GFM control [2, 3]

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta = \omega_0 + m_p \frac{\mathrm{d}}{\mathrm{d}t} v_{\mathrm{dc}} + m_{\mathrm{dc}} (v_{\mathrm{dc}} - v_{\mathrm{dc}}^{\star})$$

[2] Groß, Sänchez-Sänchez, Prieto-Araujo, Gomis-Bellmunt: Dual-port grid-forming control of MMCs and its applications to grids of grids, IEEE TPWRD, 2022

[3] Lyu, Subotić, Groß: Unified Grid-Forming Control of Wind Turbines, IREP, 2022

Key features:

- ▶ provides range of "GFL" and "GFM" functions without switching
- ▶ Renewable source at MPP \rightarrow approx. MPPT control [1, 2]
- ▶ Renewable source below MPP \rightarrow "GFM" grid-support [1, 2]
- ▶ improved interoperability & unified small-signal stability analysis [1]

[1] Subotić, Groß: Power-balancing dual-port grid-forming power converter control for renewable integration and hybrid AC/DC power systems, IEEE TCNS, 2022

[2] Lyu, Subotić, Groß: Unified Grid-Forming Control of Wind Turbines, IREP, 2022

End-to-end linear stability analysis for dual-port GFM control

- ► AC nodes and edges (red)
- DC nodes and edges (black)
- converter nodes (red/black)

Network model and node dynamics (extremely crude)

network power flow

$$P_{\rm ac} = L_{\rm ac}\theta, \quad P_{\rm dc} = L_{\rm dc}v$$

synchronous machines

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta_k = \omega_k$$
$$M_k \frac{\mathrm{d}}{\mathrm{d}t}\omega_i = -D_k \omega_k + P_k - P_{\mathrm{ac},k}$$

mechanical power source $T_{g,k} \frac{d}{dt} P_k = -P_k - k_{g,k} \omega_k$ DC nodes $C_{k} \frac{d}{dt} v_{k} = -G_{k} v_{k} + P_{k} - P_{dc,k}$ DC/AC converter $\frac{d}{dt} \theta_{k} = -m_{p,k} \frac{d}{dt} v_{k} + k_{\theta,k} v_{k}$ $C_{k} \frac{d}{dt} v_{k} = -G_{k} v_{k} + P_{k} - P_{ac,k} - P_{dc,k}$ DC power source $T_{\sigma,k} \frac{d}{dt} P_{k} = -P_{k} - k_{\sigma,k} v_{k}$

Can model wide range of devices: sync. machines & turbine/governor, sync. condensers, PV, HVDC, wind-turbines, flywheel energy storage, . . .

Basic notation & assumptions

Network & node partitioning

- ▶ nodes in *i*-th AC network: \mathcal{N}_{ac}^{i} and $\mathcal{N}_{ac/dc}^{i}$
- nodes in *i*-th DC network: \mathcal{N}_{dc}^{i} and $\mathcal{N}_{dc/ac}^{i}$
- ▶ machine and DC/AC nodes with $k_{g,k} > 0$: $\mathcal{N}_{ac^{d}}^{i}$ and $\mathcal{N}_{ac/dc^{d}}^{i}$
- machine nodes with $k_{g,k} = 0$: $\mathcal{N}_{ac^{o}}^{i}$

Assumption 1

- ▶ the overall graph of the DC & AC power network is connected
- there exists at least one node with $k_{g,k} > 0$
- ► $k_{\theta,k} = k_{\theta,l} := k_{\theta}^i$ holds for all $i \in \mathbb{N}_{[1,N_{dc}]}$ and $(k,l) \in \mathcal{N}_{dc/ac}^i \times \mathcal{N}_{dc/ac}^i$

Stability condition

Definitions

- $\blacktriangleright \text{ Machine-dominated } (|\mathcal{N}_{\text{ac/dc}}^i| < |\mathcal{N}_{\text{ac}}^i|): \mathcal{C}^i \coloneqq \mathcal{N}_{\text{ac}^d}^i \cup \mathcal{N}_{\text{ac/dc}^d}^i, \mathcal{D}^i \coloneqq \mathcal{N}_{\text{ac}^o}^i$
- ► Converter-dominated ($|\mathcal{N}_{ac/dc}^i| \ge |\mathcal{N}_{ac}^i|$): $\mathcal{C}^i \coloneqq \mathcal{N}_{ac/dc}^i, \mathcal{D}^i \coloneqq \mathcal{N}_{ac}^i$
- "reduced" AC graph $\overline{\mathcal{G}}_0^i$ with node set $\overline{\mathcal{N}}_0^i \coloneqq \mathcal{N}_{ac}^i \cup \mathcal{N}_{ac/dc}^i$, and edge set $\overline{\mathcal{E}}_0^i \coloneqq \mathcal{E}_{ac}^i \setminus ((\mathcal{D}^i \times \mathcal{D}^i) \cup (\mathcal{C}^i \times \mathcal{C}^i))$
- ► single-edge node: a node with only one edge

Condition 1 (can be checked independently for every AC network) One of the following holds for the graph $\bar{\mathcal{G}}_0^i$:

- \blacktriangleright every node in \mathcal{D}^i is connected to at least one single edge node from \mathcal{C}^i
- every node in Dⁱ is part of a cycle with at least one node from Dⁱ connected to a single edge node in Cⁱ

Extensions

▶ *N* − *x* stability conditions, steady-state analysis, ...

Machine-dominated system

- "enough" sources that respond to imbalances
- "enough" connections from synchronous condensers to sources that respond to imbalances

Converter-dominated system

- "enough" connections from synchronous machines to converters
- source that responds to imbalances anywhere in the system

DC networks

- restrictions on control gains
- no conditions on topology

Example: PV, offshore wind, flywheel, sync. condenser, ...

Steps to verify the stability condition

- we only need to look at AC networks in isolation
- split nodes into sets \mathcal{C}^i and \mathcal{D}^i
- \blacktriangleright construct graph $ar{\mathcal{G}}_0^i$ by only keeping edges between \mathcal{C}^i and \mathcal{D}^i

Theorem

If Assumption 1 and Condition 1 hold, then the system is asymptotically stable with respect to $\omega = \mathbb{O}_{|\mathcal{N}_{ac}|}, v = \mathbb{O}_{|\mathcal{N}_{dc}|+|\mathcal{N}_{ac/dc}|}, P = \mathbb{O}_{|\mathcal{N}_{g}|}$ and $\theta_j^i = \theta_l^i$ for all $i \in \mathbb{N}_{[1, N_{ac}]}$.

Discussion

- ▶ proof via LaSalle's invariance principle & rank condition on blocks of *L*_{ac}
- only depends on AC network topology / does not use (exact) line or node parameters
- seems to cover most practically relevant cases (?)
- ► Topology independent results cannot be established:
 - counter example: one SM with damping & two SMs without damping
 - For any set of network parameters there exist machine parameters such that the system is not asymptotically stable (and vice-versa)

Classification & implications of different ac-GFM controls (revisited)

[1] Dörfler, Groß: Control of Low-Inertia Power Systems, submitted. http://people.ee.ethz.ch/~floriand/docs/Drafts/2022_ARSurvey.pdf

Universal GFM control paradigm:

- ▶ supports standard "GFL" and "GFM" functions without switching controls
- level of grid-support depends on power source (not converter)
 - $\cdot\,$ renewable source at MPP \rightarrow resilient "GFL" control (no PLL)
 - $\cdot\,$ renewable source below MPP $\rightarrow\,$ "GFM" grid-support

Universal small-signal analysis framework

- unified reduced-order modeling framework for wide range of devices
- ► conditions for frequency stability using partial network knowledge

Open questions

- more detailed network and device models?
- proprietary converter & control implementations?
- (unknown) time-varying topology & CIG flexibility (i.e., C^i , D^i)?

Example: renewable integration & hybrid DC/AC systems using two-level VSCs

- requires at least four "standard" controls
- "universal" control on all VSCs
- supports entire spectrum from MPPT to "full" GFM mode
- ► grid-support through HVDC
- PV₁ at MPP: provides oscillation damping and volt-var support

[1] Subotić, Groß: Power-balancing dual-port grid-forming power converter control for renewable integration and hybrid AC/DC power systems, arXiv:2106.10396

Example: Modular Multilevel Converter (MMC) and hybrid AC/DC systems

 Groß, Sánchez-Sánchez, Prieto-Araujo, Gomis-Bellmunt: Dual-port grid-forming control of MMCs and its applications to grids of grids, arXiv:2106.11378

- MMC energy-balancing control
 - $$\begin{split} \omega &= \omega_0 + G_{\text{PD}}(s)(W_t W_t^{\star}) \\ V_t^{\text{dc}} &= V_t^{\text{dc}\star} + G_{\text{PD}}(s)(W_t W_t^{\star}) \end{split}$$
- typically least three standard controls
- "universal" control on all MMCs
- resilient to open-circuit faults & loss of AC-GFM and DC-GFM units
- fully dispatchable despite lack of power setpoints in MMC control

Example: PMSG Wind turbine

Simulation results at $v_{\rm W} = 10 {
m m/s}$

Opportunities for data-enabled optimization & analysis

Opportunities for using data

Crucial assumptions so far

- every converter is using the same control
- partial network knowledge for stability certificates
- ► full network knowledge for optimization of weakly coupled systems
- only small changes to network and devices (e.g., N-1)

vs. reality ...

- limited network knowledge & lots of legacy devices
- ► proprietary converter hardware & control implementations
- ► rapid changes in CIG flexibility & role (predictable & unpredictable)
- stability does not imply performance

SG dynamics "straightforward" to validate

- ► SG dynamics mostly governed by physics
- ► same reduced order model for SGs from different vendors
- parameters mostly proportional to rating

CIG as a highly complex blackbox

- no visibility into internals and controls
- ▶ identify & learn CIG dynamics from terminal "behaviour"
- compare to known good behaviour? bounds to certify stability?

Data-enabled stability certificates

Stability & performance depend on

- flexibility & reserves of individual sources
- connections between groups of devices (e.g., SCs & MPPT PV to GFM and SGs)

Can we use data to certify stability of stochastic systems

- use day-ahead forecast & statistical analysis to guarantee that enough devices with flexibility & reserves are online [1]
- identify critical connections online?
- abstract "learned" models of legacy devices and protection?

[1] Konstantinopoulos, Avramiotis-Falireas, Bolognani, Groß, Chacko, Hug: Reliability assessment of PV units in primary and secondary frequency control ancillary services, EEM, 2019

Optimization, parameter tuning, & performance

Tuning & placement problems

- heavily depend on dynamics of legacy devices & network topology
- dynamics behind PCC may not be known to operator
- changes to grid topology & devices that are online pose challenges
- increasingly complex interconnections (e.g., HVDC)
- numerical optimization and simulation become intractable

Opportunities for using data

- identify bottlenecks and "weak" areas from data?
- automatically place GFM converters
- responsive decision making based on data-driven optimization?

Loss of rotational inertia (& slow turbines)

- ► can be **mitigated** by **fast response** of **grid-forming** converters
- ► 100% GFC system is **least problematic** (from frequency stability standpoint)
- ▶ interoperability of SGs, ac-GFL, ac-GFM not well understood

Universal GFM control paradigm:

- ► supports MPPT and "GFM" functions (no control switching)
- ► level of grid-support depends on power source (not converter)
- ▶ end-to-end linear stability certificates for many devices & topologies
- impact of dynamics on different time scales?

Outlook

- stability & performance: reserves, network topology, ...
- validating interoperability using input-output data