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Topics Covered:
Introduction
Energy loT Platform - Chandra
Wind Power Forecasting - Pierre
Q &A

Introduction

« Hitachi - Global Center for Social Innovation

- BasedinSanta Clara, Califomnia
- Research through Co-areation with customers

- Big Data Lab
» Power and Energy Research
- Energy loT Platform
Renewable Energy Forecasting
Microgrid
Distributed Energy Resource ManagementSystems (DERMS)
Distribution Operations and Maintenance Optimization (DOMO)
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Part 1: Energy loT Platform and Real-time
Wind Turbine data collection system

Energy loT Platform

https://www.hitachiinsightgroup.com/en-us/lumada.htm|
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Energy Forecast

* Increasingly Utilities purchasing power from Independent Power
Producers (IPP) have been demanding accurate estimate of
power they can supply in 15-minute intervals.

* Renewable Energy Forecasting is becoming increasing important
topic — both in research, engineering, and business community
— Meteorological wind speed forecasting techniques
— New loT and machine-learning based techniques
* Focus of this webinar:
— An Energy loT platform for wind turbine farm power
forecasting
— Novel machine learning techniques for forecasting and results

Need for an EnergyloT Platform

* Wind Turbines systems are

— Complex and are highly instrumented for optimal
operations and maintenance

— Typically they have a SCADA (Supervisory Control
And Data Acquisition) system

— Wind mast in the vicinity

— Multiple turbines in a Farm

* e.g. 16 turbines, 1.6MW each |
— ‘testsite’

— In Remote locations

— Need for a robust data acquisition system (loT)
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Energy loT PlatformRequirements

Key Requirements

— Access to all sensor data from Wind Turbines

* Accommodate multiple manufacturers
» Typically 2000+ sensors
— Volume and Velocity

Sensor data from wind masts

* Usuallytheyare notinthe same SCADAsystem !
Handle network and connectivity failures
Security
Remote management

Data acquisition:
Challenges and approach

Large amount of data
— Close to 1GBper day from test site (10sec sampling rate)
— Need for sensor selection
— Adaptive sampling rate
Latencies
— 260- 300 msec round trip delays
24x7 data
— Handle network failures
Access to site is not convenient

— Architecture to accommodate remote configuration and
management

Process automation
— Customer requires update every 90 minutes
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Wind Turbine - Edge System
(at the Wind Farm site)

Configuration /
Management

OPC
Data Colector
Site€—> P Network e Inter net
SCADA - Data Optimizer
System Data Colect: Buffer Pusher (@mpression
,encryption)
OPC
Data Colector

One perturbine

Smart Edge Processing

Edge Systemblocks

» Data Colector
— Software module toretrieve data from site SCADA systens
» Support OPCDA and OPC UA systems
+ Javabased - multi-threaded
* Irstantiate one per turbine
+ Buffer system
» Toaccommodate netwark failres, congestion
* Memory and fie-system based - configurable
+ Data Pusher
* Socket based datatransfer
* Restart fast_sync onreconnection
*  Network Optimizer
» Adaptive compression
» Encryption option
+ Configuration and Management
* Smart Edge Processing
* Microservices - sensor dataprocessing and model processing




Server Side
- Addressing Scale, Open source, Security

.| Durable
“1 (HDFS)
R S )

Message Cwer
> Bus [ Relatioral
DB

Network Data S~ Data

imi Receiver — i
To Site-Sy Optimizer S— Analytics
Via . Cassandra
Real-time )

Internet
data

Historic
data

Forvisualization

Wind Turbine (test)site

GE Wind Turbine- 1.6MW

Tower height -80m, Rotor diameter - 82.5m
Average wind speed - 8.5m/s
SCADAsystem- OPC-DA
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Part 2: Day-Ahead Wind Power Generation
Forecasting Using Support Vector Machines

Pierre Huyn

1. Day-Ahead Wind Power Generation Forecast

» Forecast wind power generation
— Every 90 minutes, produce 96 forecast values

— For the next 24 hours, in 15-minute periods, starting in the next 90
minutes

» Forecasting is an important core problem because
— When feeding renewable energy to the grid, this is mandated
— Whentrading renewable energy in the spot market, this is usedto
determine electricity pricing
» Accurate forecast is veryimportant
» Accurate forecast is difficult due to weatherunpredictability
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2. Observations From a Historical Data Sample
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3. Challenges and Opportunities

® Capturing sudden and wild swings in weather is di

when prediction produces average and not extreme
behaviors

®  Mismatch between Weather data and Power data resolution:
— Spatial: location and elevation
— Temporal

Weather forecast data available at low resolution
Limited availability of historical data

Leverage day-to-day seasonality

Leverage year-to-year seasonality

© 0 e
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4. Forecast Solution Approach Defined
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5. Forecasting Framed as SVM Regression

(pod(T)woy T )WSo,Ro,P-1, ..., P-12) +  Model for horizon h =32

» Depth =13 for power history

* Depth=1 for windspeed
history

» pod(T): indexes period-of-day

»  woy(T): indexes week-of-year

* 96 models independently
built, minimize error
propagation for long horizons

22
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6. What is and Why SVM Regression?

Supervised leaming technique
Success in NL and biotech in the
90’s, high-dimensional data
Unlike deep leaming techniques,
optimal solution unique: convex
Efficdent QP algorithms.
Supportlarge number of predictors
with minimal overfitting: built-in
regularization

Tunable: adjustable non-linearity
and regularization (C, Gamma)

y.

SupportVectors
. o
o % ‘®
®0% o
@
X

LinearSVR:y =w.x+ b
Minimize w22 subjectto
containment constraint
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7. Features Selection, Hyper-parameters Tuning

MOdeIS: 1j\h: SVRh(WOy, p0d7 WSO 7H)O7"'> Pdepth h{—l))

» Power input depth varies
with horizon (tuning C only)

* Period-of-Day

* Week-of-Year

+ Use RBF Kernel in SVR
Regression

* Tuning Hyper-parameters C
and Gamma using log grid
search

. Optimal Input Depth as a Function of Forecast Horizon

« Optimal Depth
— Quadratic Approximation

6/28/2017
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8. Model Evaluation and Optimization

Evaluation metrics: MAE
error

Model trained on training
dataset and evaluated on
cross-validation dataset
Error as a function of
model complexity: input
depth, hyper-parameters
Split data set for cross-

validation: random vs.
chronological

Prediction Error

X-Validation Set
Chronologically Split

X-Validation Set
ndomly Split

Training Set

.
|

Model Complexity
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9. Forecast vs. Actual During a 14-Day Test
Period
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11. Error Distribution for Short/Long Horizons

0.030

Il Forecast Periods 1 - 56
[ Forecast Periods 57 - 96

0.025 -

00201] onger tail on the left:
forecasting tendency to
0013 ynder-estimate

0.010 |

0.005 -

0.000,
-120 -100 -80 -60 -40 =20 0 20 40 60

27
10. Forecast Error as a Function of Horizon
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12. Leveraging External Weather ForecastData

« Limitations of history-only-based forecasting:
— Acauracy suffers under turbulent weather conditions
— Long-horizon data weakly correlated with history data

« Estimate power generation as a function of weather
forecast. Accuracy hinges on:

— Acauracy of weather forecast

— Proximity of extemal weather forecast location to turbines
— Spatial resolution

— Temporal resolution

29

13. Simplest Model: Weather Forecast DataOnly

( pod(T )woy T ,WASX%;?»‘,.WAS}I%)

®

Wind Speed
Vector Forecast
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14. Combining History with External
Weather Forecast Data - Accommodate
New Data Easily

( pod(T ywoy T, WSo, Ph,P_1, vy P12, W Sxq5, W Syss)
o

Wind Speed
Vector Forecast
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15. Enhancing Forecast Accuracy With
Weather Forecast Data

3% Improvement

Usi ine data only Addi ather forecast da
1<_ MAPE = 15.4% P{_ MAPE = 12.3%

Forecast First 6 Horizons

Actual Actual

Even low quality weather forecast datacan
enhance history-based power forecast

32
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16. Dashboard

Historic Data Forecasting Result

o ae 8 v o o] | rmoe

34

17. Forecasting Competition

l:_i':'-_l 1 £mmnu
EUROPEAN ENERGY MARKET
EEM 17 -9 June 2017, Dresdsn, Germany

Ve
Technical Sponsor QIEEE @Pism
Day-Ahead Forecast Competition using only
historical data
Team Hitachi 3r-Place Competition Winner
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Conclusion

Hitachi R&D - Big Data and Analytics based Applications for
emerging digital energy
Renewable Energy is key and forecasting is a must

Ascalable, secure, flexible platform to retrieve, store, and
process real-time data - Energy loT

Novel machine leaming based Wind Turbine power
forecasting approach and results

Validation of the approach and performance inaWind
Turbine Farm
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