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BDA and Webinar Taskforce 
BDA Mission 

• A professional society hub for information and  
collaboration 

• A forum bringing together academy, regulatory and  

industry leaders 

• Topics of interest: 
– Standards, Data management, Analytics 

– Big multi‐domain multi‐resolution data (PMUs, SCADA, Weather,  

GIS, etc.) for  power grid operations 

• http://sites.ieee.org/pes‐bdaps/ 

Webinar* Taskforce Objective 

• State‐of‐arts from researchers 

• Strategy and solutions from BDA vendors 

• Regulatory push from policy makers 
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*Every month or two, speaker by invitation only 

Upcoming events 

• July 20, BDA subcommittee  
meeting @ Chicago, IL 

How to join BDA? 

• Please contact subcommittee  
chair: 

– le.xie@tamu.edu 

 

 

Would like to be a speaker? 

• Please contact taskforce  

chairs: 
– Bo.yang@hal.hitachi.com 

– Yang.Weng@asu.edu 

Active members 

http://sites.ieee.org/pes-bdaps/ 
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delivery of wind power generation forecasts 
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is Principal Research Scientist at Hitachi  

Amer ica Big Data Laboratory focusing  

on Industrial IoT Architectures and  

Analytics for Energy. Prior to joining, he  

was Chief Scientist at FogHorn Systems 

– Palo Alto based start‐up focusing on  

Big Data Analytics and applications  

platform for Industrial Internet of  

Things (IoT). Chandr a was with Hewlett  

Packard Labs, Palo Alto for  almost two  

decades working on Information  

architectures, distributed computing,  

in‐home network, ePr int architecture,  

sensor  networks and Internet of  

Things. He has authored over 15  

patents and a number of research  

paper s and talks. 
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Topics Covered: 

Introduction 

Energy IoT Platform ‐ Chandra  

Wind Power Forecasting ‐ Pierre  

Q & A 
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Introduction 

• Hitachi –  Global Center for Social Innovation 
– Based in Santa Clara, California 

– Research through Co‐creation with customers 

– Big Data Lab 

• Power and Energy Research 

– Energy IoT Platform 

– Renewable Energy Forecasting 

– Microgrid 

– Distributed Energy Resource Management Systems (DERMS) 

– Distribution Operations and Maintenance Optimization (DOMO) 
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Part 1: Energy IoT Platform and Real‐time  
Wind Turbine data collection system 
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Energy Forecast 

• Increasingly Utilities purchasing power from Independent Power  
Producers (IPP) have been demanding accurate estimate of  

power they can supply in 15-minute intervals. 

• Renewable Energy Forecasting is becoming increasing important  

topic – both in research, engineering, and business community 

– Meteorological wind speed forecasting techniques 

– New IoT and machine-learning based techniques 

• Focus of this webinar: 

– An Energy IoT platform for wind turbine farm power  

forecasting 

– Novel machine learning techniques for forecasting and results 

9 
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Need for an Energy IoT Platform 

• Wind Turbines systems are 

– Complex and are highly instrumented for optimal  

operations and maintenance 

– Typically they have a SCADA (Supervisory Control  

And Data Acquisition) system 

– Wind mast in the vicinity 

– Multiple turbines in a Farm 

• e.g. 16 turbines, 1.6MW each 

–  ‘test site’ 

– In Remote locations 

 
– Need for a robust data acquisition system (IoT) 
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Energy IoT Platform Requirements 

 
Key Requirements 

– Access to all sensor data from Wind Turbines 

• Accommodate multiple manufacturers 

• Typically 2000+ sensors 

– Volume and Velocity  

– Sensor data from wind masts 

• Usually they are not in the same SCADA system 

– Handle network and connectivity failures 

– Security 

– Remote management 

Data acquisition:  

Challenges and approach 
• Large amount of data 

– Close to 1GB per day from test site (10sec sampling rate) 

– Need for sensor selection 

– Adaptive sampling rate 

• Latencies 
– 260 –  300 msec round trip delays 

• 24x7 data 
– Handle network failures 

• Access to site is not convenient 
– Architecture to accommodate remote configuration and  

management 

• Process automation 
– Customer requires update every 90 minutes 

12 
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Wind Turbine –  Edge System  

(at the Wind Farm site) 
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Edge System blocks 
• Data Collector 

– Software module to retrieve data from site SCADA systems 
• Support OPC DA and OPC UA systems 

• Java based –  multi‐threaded 

• Instantiate one per  turbine 

• Buffer system 
• To accommodate network failures, congestion 

• Memory and file‐system based –  configurable 

• Data Pusher 
• Socket based data transfer 

• Restart fast_sync on reconnection 

• Network Optimizer 
• Adaptive compression 

• Encryption option 

• Configuration and Management 

• Smart Edge Processing 
• Microservices –  sensor data processing and model processing 

14 
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Server Side 
‐ Addressing Scale, Open source, Security 
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Wind Turbine (test) site 

 
 
 
 
 

GE Wind Turbine –  1.6MW 
Tower height ‐ 80m, Rotor diameter –  82.5m  

Average wind speed –  8.5 m/s 

SCADA system –  OPC‐DA 
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Part 2: Day‐Ahead Wind Power Generation  

Forecasting Using Support Vector Machines 

 

Pierre Huyn 

1. Day‐Ahead Wind Power Generation Forecast 

• Forecast wind power generation 

– Every 90 minutes, produce 96 forecast values 

– For the next 24 hours, in 15‐minute periods, starting in the next 90  

minutes 

• Forecasting is an important core problem because 

– When feeding renewable energy to the grid, this is mandated 

– When trading renewable energy in the spot market, this is used to  

determine electricity pricing 

• Accurate forecast is very important 

• Accurate forecast is difficult due to weather unpredictability 

18 
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2. Observations From a Historical Data Sample 

19 

Calm 

Turbulent 

Challenge: predict future using history alone 
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3. Challenges and Opportunities 

 
  Capturing sudden and wild swings in weather is difficult  

when prediction produces average and not extreme  

behaviors 

  Mismatch between Weather data and Power data resolution: 

– Spatial: location and elevation 

– Temporal 

  Weather forecast data available at low resolution 

  Limited availability of historical data 

  Leverage day‐to‐day seasonality 

  Leverage year‐to‐year seasonality 

10 
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T Horizon h = 32 T+32 

4. Forecast Solution Approach Defined 

Depth(h) = 13 

5. Forecasting Framed as SVM Regression 

• Model for horizon h = 32 

• Depth = 13 for power history 

• Depth = 1 for windspeed  

history 

• pod(T): indexes period‐of‐day 
• woy(T): indexes week‐of‐year 
• 96 models independently  

built, minimize error  

propagation for long horizons 

22 

SVR32 

P̂33 

( pod T , woy  T  , WSO , PO, P–1, …, P–1 2) 
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6. What is and Why SVM Regression? 

• Supervised learning technique 

• Success in NL and biotech in the  

90’s, high‐dimensional data 

• Unlike deep learning techniques,  

optimal solution unique: convex 

• Efficient QP algorithms. 

• Support large number of predictors  

with minimal overfitting: built‐in  
regularization 

• Tunable: adjustable non‐linearity  
and regularization (C, Gamma) 

23 

x 

y 

Linear SVR: y = w.x + b  

Minimize |w|22 subject to  
containment constraint 

Support Vectors 
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7. Features Selection, Hyper‐parameters Tuning 

 
Models: P̂ h = SVRh(woy, pod, WSO , PO,…, Pd e pth  h –1 ) 

• Power input depth varies  

with horizon (tuning C only) 

• Period-of-Day 

• Week-of-Year 

• Use RBF Kernel in SVR  
Regression 

• Tuning Hyper-parameters C  

and Gamma using log grid  
search 

12 
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8. Model Evaluation and Optimization 

 
• Evaluation metrics: MAE  

error 

• Model trained on training  

dataset and evaluated on  

cross‐validation dataset 

• Error as a function of  

model complexity: input  

depth, hyper‐parameters 
• Split data set for cross‐  

validation: random vs.  

chronological 
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9. Forecast vs. Actual During a 14‐Day Test  
Period 

13 
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10. Forecast Error as a Function of Horizon 
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Short-range forecast  

More accurate 

Long-range forecast  

Less accurate, 

But not significantly so. 
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11. Error Distribution for Short/Long Horizons 

 
 
 
 

Longer tail on the left:  

forecasting tendency to  

under-estimate 
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12. Leveraging External Weather Forecast Data 

 
• Limitations of history‐only‐based forecasting: 

– Accuracy suffers under turbulent weather conditions 

– Long‐horizon data weakly correlated with history data 

• Estimate power generation as a function of weather  
forecast. Accuracy hinges on: 
– Accuracy of weather forecast 

– Proximity of external weather forecast location to turbines 

– Spatial resolution 

– Temporal resolution 

SVR32 
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13. Simplest Model: Weather Forecast Data Only 

 

 
( pod T , woy T , WˆSx33, WˆSy33) 

 
Wind Speed  

Vector Forecast 
 
 
 
 

 
P̂ 33 
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SVR32 
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14. Combining History with External  

Weather Forecast Data –  Accommodate 

New Data Easily 

( pod T , woy T , WSO , PO, P–1, …, P–12,WˆSx33, WˆSy33) 

 
Wind Speed  

Vector Forecast 
 
 
 
 

P̂ 33 
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15. Enhancing Forecast Accuracy With  

Weather Forecast Data 

 

 
3% Improvement 

 
 
 
 
 
 
 
 
 
 
 

Even low quality weather forecast data can  

enhance history-based power forecast 
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16. Dashboard 

Historic Data Forecasting Result 
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17. Forecasting Competition 

 
 

• 
 

• Technical Sponsor 

• Day-Ahead Forecast Competition using only  

historical data 

• Team Hitachi 3rd-Place Competition Winner 
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Conclusion 

 
• Hitachi R&D –  Big Data and Analytics based Applications for  

emerging digital energy 

• Renewable Energy is key and forecasting is a must 

• A scalable, secure, flexible platform to retrieve, store, and  

process real‐time data –  Energy IoT 

• Novel machine learning based Wind Turbine power  

forecasting approach and results 

• Validation of the approach and performance in a Wind  

Turbine Farm 
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