
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

Cyber-Resilience Enhancement of PMU Networks
Using Software-Defined Networking

Yanfeng Qu, Gong Chen, Xin Liu, Jiaqi Yan
Department of Computer Science

Illinois Institute of Technology
Chicago, USA

{yqu9, gchen31, xliu125, jyan31}@hawk.iit.edu

Bo Chen
Energy System Division

Argonne National Laboratory
Lemont, USA

bo.chen@anl.gov

Dong Jin
Department of Computer Science

Illinois Institute of Technology
Chicago, USA
dong.jin@iit.edu

Abstract—Phasor measurement unit (PMU) networks are in-
creasingly deployed to offer timely and high-precision measure-
ment of today’s highly interconnected electric power systems. To
enhance the cyber-resilience of PMU networks against malicious
attacks and system errors, we develop an optimization-based
network management scheme based on the software-defined net-
working (SDN) communication infrastructure to recovery PMU
network connectivity and restore power system observability. The
scheme enables fast network recovery by optimizing the path
generation and installation process, and moreover, compressing
the SDN rules to be installed on the switches. We develop a
prototype system and perform system evaluation in terms of
power system observability, recovery speed, and rule compression
using the IEEE 30-bus system and IEEE 118-bus system.

Index Terms—Phasor Measurement Unit, Grid Resilience,
Cyber-Security, Software-Defined Networking

I. INTRODUCTION

A reliable and sustainable power grid highly relies on
the successful operations of the wide-area monitoring system
(WAMS). Phasor measurement unit (PMU) networks are being
rapidly deployed in the WAMS to provide GPS-based time-
synchronized measurements of the power system against catas-
trophic events, system faults, and even cyber-attacks. A PMU
device is essentially a vector-measurement digital recorder
(e.g., voltage, current, and phase angles) with a sampling rate
between 30 to 240 Hz. The timely detection of anomaly states
also depends on a reliable underlying PMU communication
network, which connects multiple PMUs to the phasor data
concentrators (PDC) and ultimately, the control center for
exchanging measurement data and control messages.

However, PMU networks today are suffering from the
growing cyber-attacks both in numbers and sophistication,
which negatively affect the situational awareness in a power
system as well as the subsequent contingency analysis and
emergency response [1] [2]. Therefore, it is critical to make the
PMU networks attack-resilient, i.e., self-healing the network
connection to restore power system observability, when facing
compromised devices, broken links, and faulty measurements.
The conventional mechanisms based on spanning tree or
distributed routing algorithms can recovery a network from
link and node failures [3]. However, they take place at the data
link layer and network layer, which greatly restrict the ability

Self-Healing Scheme

Plan
Generation

Path
Construction

Rule
Compression

Detection

Path
Installation

anomaly states detected
(e.g., compromised PDC)

cyber attacks
occurred

recovery plan
obtained

PMU network
self-healed

time

SDN Controller SDN Switches

Fig. 1. Workflow of the PMU Network Self-Healing Scheme

of a self-healing scheme from reaching an optimal recovery
solution by not considering characteristics specific to PMU
networks and power systems.

Software-defined networking (SDN) is a promising solution
to enhance PMU network resilience. Unlike conventional
communication networks, SDN decouples the network con-
trol from the forwarding functions in network devices (e.g.,
switches and routers) and offloads the decision functions to a
logically centralized SDN controller. SDN also offers direct
programmability on the network devices for efficient network
control and flow management. Prior works [4], [5] leverage
those advantages to develop SDN-based applications to recov-
ery PMU network connectivity and restore the power system
observability against malicious cyber-attacks. In this work,
we utilize the global visibility and direct programmability
offered by SDN to develop an optimization-based network
flow management scheme to quickly self-heal a PMU network
against compromised or faulty devices. The contributions of
our work are threefold compared with the existing works:

• The scheme aims to achieve fast recovery time by opti-
mizing communication path installation;

• The scheme further reduces the recovery time with a
novel flow-based rule compression module;

• We develop a working prototype system on a container-
based network testbed and conduct an extensive evalu-
ation on recovery time, system observability, and rule
compression.

Figure 1 depicts the workflow of the PMU network self-
healing scheme. Our scheme consists of four steps. The
first three steps, plan generation, path construction, and rule
compression, are executed in order on the SDN controller,978-1-7281-6127-3/20/$31.00 ©2020 IEEE

IEEE SmartGridComm'20 1570657942

1

and the final step, path installation, is issued by the SDN
controller and executed on the SDN switches. Once a cyber-
attack event is detected, we obtain the anomaly states of the
PMU network as the inputs to our scheme (e.g., a list of
compromised PDCs). Note that the detection of various cyber-
attacks in PMU networks is important, but in this paper, we
mainly focus on the self-healing scheme after a successful
detection. The self-healing scheme now generates a list of
disconnected yet working PMUs with the goal of reconnecting
them to the appropriate PDCs and recovering the power system
observability. In this step, we do not have to reconnect all
the lost PMUs due to the measurement redundancy. The path
generation module then creates a hop-by-hop communication
path for each PMU-PDC connection subjecting to specific
communication network and power system constraints. The
paths are converted into per-switch SDN rules, and we then run
the rule compression module to combine multiple overlapping
rules into a single rule to further reduce the recovery time.
Finally, the rules are installed on the SDN switches to realize
the recovery plan and self-heal the PMU network.

We implement the self-healing scheme on an SDN con-
troller and evaluate the prototype system using communication
networks constructed from the IEEE 30-bus and 118-bus
systems. Our scheme successfully recovers the power system
observability for all test cases with fast recovery time. The
total recovery time includes the model computational time and
the recovery path installation time. With 10% of the PDCs
compromised, the model computational time is less than 87.6
ms for the 30-bus cases and 318.5 ms for the 118-bus cases.

we also empirically demonstrate the efficiency of the rule
compression module, which takes only 0.3 ms to 6 ms for
computation and decreases the recovery path installation time
by up to 45.5% for the 30-bus cases and up to 61.7% for the
118-bus cases. The number of rules to install is also reduced
by up to 42.9% of for the 30-bus cases and up to 59.0% for
the 118-bus cases.

The remainder of the paper is organized as follows. Sec-
tion II introduces the related work. Section III shows an SDN-
based resilient PMU network architecture with an illustrative
example. Section IV describes an optimization-based self-
healing scheme including plan generation, path construction,
and rule compression. Section V presents the experimental
setup and performance evaluation results. Section VI summa-
rizes the paper with future works.

II. RELATED WORK

Applying SDN technology to enhance power grid security
and resilience is an emerging research topic [6]–[9]. Recent
works include applications in substation automation [10], [11],
substation risk assessment [12], reliability evaluation [13],
quality-of-service optimization [14], fast failover mechanism
[11], [12], [15], power bot detection [16], and dynamic
resource allocation [17]. Researchers also construct several
SDN-enabled testing platforms including a transmission-level
co-simulation testbed [7] and hardware-in-the-loop testbeds

integrating power system simulator, communication network
emulator, and physical switches [8], [9], [18].

Existing works analyze the cyber resilience and security
of PMU networks [19], [20], but do not focus on designing
mitigation mechanisms by considering the constraints exclu-
sive to PMU networks. A self-healing scheme [3] is designed
using the conventional routing protocols to handle link failures
but not compromised hosts. A recent work [4] focuses on
using SDN to reconnect uncompromised PMU devices to
restore power observability. Another work [5] realizes the
PMU network self-healing through the centralized control
over a distributed routing protocol. They both exploit global
visibility and centralized control offered by SDN to optimize
the self-healing scheme. However, minimizing recovery time
is not the primary goal in their approaches. In this work, we
optimize the path installation and explore the rule compression
to further reduce the recovery time. This is important as many
power system operations are time-critical. Each SDN rule
contains information like source IP address, destination IP
address, port number, and link-layer information. Researchers
explore a general SDN rule compression technique with a
compression ratio between 70% and 99% [21]. In the context
of PMU networks, as a PMU typically connects to one PDC,
we can further reduce the optimization complexity by only
considering compression with destination IP addresses.

III. SDN-BASED PMU NETWORK ARCHITECTURE

We design an SDN-enable PMU network architecture, as
shown in Figure 2, to enhance network resilience. Mea-
surements of the underlying electrical system are captured
by PMUs, and then aggregated at PDCs, and eventually
transmitted to the control center through the communication
layer. We integrate the SDN technology into the system by
deploying a set of SDN-enabled switches with direct network
programmability in the communication layer and incorporating
an SDN controller into the existing control center facility.
The SDN controller provides the global network visibility
based on which we develop an optimization-based self-healing
scheme. Upon detection of compromised/faulty devices, the
scheme generates an optimal recovery plan including hop-by-
hop communication paths to reconnect the selected PMUs and
PDCs to restore the power system observability. The dynamic
network flow management capability offered by SDN also
allows us to quickly install the recovery plan to self-heal the
network. Additionally, we explore the SDN rule compression
technique to further reduce the recovery time.

Illustrative Example. We present a self-healing PMU net-
work over the IEEE 14-bus system to illustrate step by step
how the system can efficiently reconnect uncompromised but
disconnected PMUs to restore the power system observability.
Figure 3(a) depicts a communication network consisting of 6
switches, 4 PMUs, and 2 PDCs. PMU 2 and 6 send measure-
ment data to PDC 5, and PMU 7 and 9 send measurement data
to PDC 4. Assume an attacker compromises PDC 5, the PMU
measurements at bus 2 and 6 cannot be transferred to this PDC,
and thus the system observability is reduced at the control

2

Control Layer

Communication Network Layer

Device Layer (PDC, PMU)

Electrical Power System Layer

Application Layer

Flow
Management

Device
Configuration

Self-healing
Scheme

SDN-enabled layer

Fig. 2. An SDN-based self-healing PMU network architecture

center. Upon detection of the compromised PDC, our self-
healing scheme in the SDN controller is triggered to recovery
the PMU connection.

We first identify a set of disconnected PMUs and the
associated buses (i.e., PDC 5 in this example). We then
compute the set of PMUs to reconnect with the objective to
restore the power system observability. In this example, PMU
2 and PMU 6 are selected. We then compute the destination
PDC for each PMU yet to be connected (i.e., PMU 2 and
PMU 6 both connect to PDC 4). By meeting all constraints,
such as device capacity and communication bandwidth, we
generate a communication path for each PMU-PDC pair and
translate them into SDN rules for each SDN switch. To further
shorten the recovery time, we develop a rule compression
method to combine multiple SDN rules into a single one using
appropriate wildcards. In this example, we only need one new
rule < ∗, 10.0.4.1, k1 > to be installed on Switch 4. The rule
has a wildcard in the source IP address field, PDC 4’s IP in
the destination IP address field, and k1 in the out-port number
field. Finally, the SDN controller installs the updated rules,
preferably in parallel, on the switches to realize the recovery
plan as shown in Figure 3(b).

IV. SYSTEM MODELING AND PROBLEM FORMULATION

Table I summarizes the key notions used in this section and
the remainder of the paper. The power transmission network
is represented by a graph Gt = (B ∪ U , T), where B = {bi}
is the set of buses, U = {ui} is the set of PMUs, and T is
a connectivity matrix concatenated vertically from a |B|× |B|
matrix and a |B| × |U| matrix, and the element is defined by:

tij =

{
1, (bi and bj) or (bi and uj) are connected
0, otherwise

(1)

The communication network is represented by another
graph GC = (U ∪ D ∪ S, L), where each PMU connects to a
bus, D = {di} is the set of PDCs, and S = {si} is the set of
OpenFlow switches. L is a connectivity matrix concatenated
horizontally via the common columns |S| among a |U| × |S|
matrix, a |S| × |S| matrix, and a |D| × |S| matrix.

lij =

{
1, ui or si or di is connected with sj
0, otherwise

(2)

(a)

(b)

Fig. 3. (a) PMU network (b) The recovered PMU network assuming that
PDC 5 was compromised

A. Recovery Plan Generation

A PMU measures the electrical waves of a bus at which it
is placed and it can also estimate all the adjacent buses. We
define xij to be a set of decision variables:

xij =

{
1, if PMU ui sends synchrophasor data to PDC dj

0, otherwise

where ∀ui ∈ Ud and ∀dj ∈ D \ Dc.
Bus bi is observable if bi connects to a PMU (see Equation

4) or one of its adjacent buses bj connects a PMU (see
Equation 5). A power system is observable if all the buses
are observable, i.e., either directly or indirectly connected to
PMUs.

O = ∧|B|i Od
i ∨Oa

i (3)

where ∀i : |B|+ 1 ≤ i ≤ |B|+ |U|

Od
i = ∨|U|j tij ∧ (∨|D|k xjk) (4)

and ∀i : d ≤ i ≤ |B|

Oa
i = ∨|B|j tij ∧Od

j (5)

A recovery plan includes a map between a set of discon-
nected PMUs to working PDCs in order to recover the power

3

TABLE I
SUMMARY OF NOTATIONS

Indices and Sets
B Set of buses in the power system
U Set of PMUs in the network

Ud
Set of disconnected yet uncompromised
PMUs

D Set of PDCs in the network
Dc Set of compromised PDCs
S Set of SDN switches
Gt Power transmission network
Gc Communication network
L PMU, switch and PDC connectivity matrix
T Bus and PMU connectivity matrix

Parameters

z
Maximum number of rules allowed on
each switch

O Power system observability
Functions

A : U 7→ P(U)
Function that maps a PMU to its adjacent
PMUs

C : D 7→ Z+ Function that maps a PDC to its capacity
to connect with PMU

M : L 7→ R+ Function that maps a communication link
to its bandwidth

R : U 7→ R+ Function that maps a PMU to its required
bandwidth

W : R 7→ Z+ Function that maps a switch to its rule
capacity

Decision Variables

xij
Binary variable indication whether PMU i
connects to PDC j or not

yep
Binary variable indication whether edge e
belongs to path p or not

system observability. Our objective is to identify the minimum
number of PMUs to reconnect to PDCs

min
∑

ui∈Ud

∑
dj∈D\Dc

xij (6)

subjecting to the following constraints∑
dj∈D\Dc

xij + xA(i)j ≥ 1, ∀ui ∈ Ud (7)

∑
ui∈Ud

xij ≤ C(j), ∀dj ∈ D \ Dc (8)∑
dj∈D\Dc

xij ≤ 1, ∀ui ∈ Ud (9)

Assume that each bus is attached to one PMU, we revise
Equation 3 and obtain Constraint 7, which ensures that each
bus or one of its adjacent bus connects to a PMU. Constraint
8 guarantees that the reconnected PMUs do not exceed the
connection capacity of a PDC. Constraint 9 ensures that each
PMU transmits the measurement data to no more than one
PDC.

B. Communication Path Construction

After solving Equation 6, we obtain the optimal recovery
plan matrix X∗. We can view X∗ as a set of path P = {pij}
between PMU ui and PDC dj if x∗ij = 1. These paths are still
yet to be solved to generate the minimum number of SDN
rules. For computing the communication paths of the recovery

plan, we define another set of decision variables for e ∈ L and
pij ∈ P

yep =

{
1, if edge e belongs to the path of a recovery plan p
0, otherwise

We also define two auxiliary functions, I(pij , •) and
O(pij , •), which represent the in-degree and out-degree of
device k ∈ U ∪ D ∪ S in the path pij .

I(pij , k) =

∑

e∈{lmk=1|∀m∈U∪S}
yepij

, ∀k ∈ S∑
e∈{lmk=1|∀m∈S}

yepij
, ∀k ∈ D

O(pij , k) =

∑

e∈{lkm=1|∀m∈S}
yepij

, ∀k ∈ U∑
e∈{lkm=1|∀m∈D∪S}

yepij , ∀k ∈ S

We assume the SDN controller can distribute rules in
parallel to the network and each switch sequentially installs its
rules. The objective of the communication path construction
formulation is to minimize the installation time of SDN rules,
which can be formulated as the following min-max problem

min
∀pij∈P

max
∀sk∈S

{I(pij , sk)} (10)

subjecting to the following constraints

0 ≤ I(pij , sk), O(pij , sk) ≤ 1, ∀sk ∈ S, ∀pij ∈ P (11)
I(pij , dj) = 1, ∀pij ∈ P (12)
O(pij , ui) = 1, ∀pij ∈ P (13)∑

dj∈D

I(pij , dj) = 1, ∀pij ∈ P (14)

∑
ui∈U

O(pij , ui) = 1, ∀pij ∈ P (15)∑
∀pij∈X

yepij ×R(ui) ≤M(e), ∀e ∈ L (16)

∑
∀pij∈X

I(pij , sk) ≤W (sk), ∀sk ∈ S (17)

We can introduce an auxiliary variable z and add the
following constraint to solve the min-max problem:

z ≥ max
∀sj∈S

I(pij , j) (18)

Constraints 11 to 15 ensure that a path exists between a
PMU and a PDC. Constraint 11 ensures the path is loop-
freedom. Moreover, Constraint 12 and 13 ensure that the PMU
(source) and the PDC (destination) are included in the path.
For each path, Constraint 14 means the out-degree of PMU is 1
and Constraint 15 means the in-degree of PDC is 1. Constraint
16 guarantees that the PMU data traffic does not exceed the
link bandwidth. Finally, Constraint 17 ensures that the number
of SDN rules to install do not exceed the switch capacity.

4

C. SDN Rule Compression

After solving Equation 10, we get the list of PMUs to
reconnect with the detailed communication paths. The SDN
controller now generates a set of OpenFlow rules based on
these paths and then distributes them to the switches. Here, we
explore an OpenFlow rule compression technique to reduce the
rule installation time. Let a triplet (s, t, k) denotes a routing
rule, where s, t, and k indicate the source IP, destination IP,
and switch out-port of this flow. Given a default rule r(s, t, k),
we can use wildcards to merge those overlapping rules by
source g(s, ∗, k), by destination g(∗, t, k), or by both source
and destination g(∗, ∗, k). The binary decision variables are
r(s, t, k), g(s, ∗, k), g(∗, t, k), and g(∗, ∗, k). Each variable is
1 if selected and 0 otherwise. The objective function of the
rule compression problem is defined as follows:

min
∑
∀s,t,k

r(s, t, k) + g(∗, t, k) + g(s, ∗, k) + g(∗, ∗, k) (19)

In this work, we do not need to consider the case of g(s, ∗, k)
(i.e,. compression by source) since each PMU reconnects
to only one PDC. We also do not use g(∗, ∗, k) as it may
unintentionally make the attack flows spread over the network.
Therefore, we simplify the objective function and define the
recovery rule compression problem as follows:

min
∑
∀s,t,k

r(s, t, k) + g(∗, t, k) (20)

subjecting to the following constraints∑
∀k

g(∗, t, k) ≤ 1 (21)

r(s, t, k) + g(∗, t, k) ≥ 1, ∀(s, t, k) (22)
r(s, t, k) ∈ {0, 1}, ∀(s, t, k) (23)
g(∗, t, k) ∈ {0, 1}, ∀(t, k) (24)

The objective function in Equation 20 is to minimize the
total number of rules. Constraint 21 ensures only one wildcard
rule on each switch. Constraint 22 ensures to include every
rule. The binary variables r(s, t, k) and g(∗, t, k) are included
in Constraint 23 and 24. Using rule compression optimizes
the memory space utilization and saves the rule installation
time. However, it may takes extra computational time. We thus
propose a heuristic algorithm to compress rules as described
in Algorithm 1 with time complexity of O(n). In order not
to affect the original traffic flows, we always set the updated
rules containing wildcards with a low priority.

V. EVALUATION

We develop a prototype system in Mininet [22], a container-
based SDN emulator, and conduct extensive evaluation exper-
iments in terms of system observability restoration, recovery
time at different stages, and rule compression. The optimiza-
tion model described in Section IV is developed in POX, a
python-based SDN controller [23]. We use the GLPK package
[24] to solve the ILP problem.

Algorithm 1: Rule Compression
Input: Set of rules R
Output: Compressed rules Rc

initialize Rc, Hashtable H < (t, k), (s, t, k) >
for ∀(s, t, k) ∈ R do

if H.containsKey((t, k)) then
H.update((t, k), (∗, t, k))

end
else

H.insert((t, k), (s, t, k))
end

end
for ∀(t, k) ∈ H.keys() do

(s, t, k)← H.get((t, k))
add (s, t, k) to Rc

end

A. Experimental Setup

We evaluate the self-healing scheme using PMU networks
constructed from the IEEE 30-bus and 118-bus systems. One
PMU was attached to each bus in the transmission system.
Each PMU had an adjacent PMU set, which was determined
by the adjacent matrix of the transmission system. We applied
the minimum set cover problem and output the least number
of sets. PDCs and switches were then placed for each set.
Finally, we connected switches using a ring topology so that
each switch had a redundant link. We varied the number of
compromised PDCs ranging from 10% to 80%, and repeated
20 runs for each experiment.

B. Performance Evaluation

1) Plan Generation and Path Construction: We evaluate
the effectiveness of the generated recovery plan in two aspects:
(1) to what degree the power system observability is restored,
and (2) the cost of model computational time.

Power System Observability is represented as the percent-
age of observable buses in a power system. Figure 4 shows
the results collected on the IEEE 30-bus system and the IEEE
118-bus system. We observe that our self-healing scheme is
able to recover the full power system observability for all
cases. Without the self-healing scheme, the power system
observability keeps decreasing as the number of compromised
PDCs grows. The mean values of power system observability
can drop to 15.3% in the IEEE 30-bus system and 12.0% in
the IEEE 118-bus system with 80% compromised PDCs.

Model Computational Time is the time to solve the ILP
model including the plan generation and path construction
stages. Figure 5 shows the average computational times with
standard deviations for both the IEEE 30-bus and 118-bus
systems. In the 30-bus cases, the average computational time
ranges from 24.4 ms to 26.5 ms to generate a recovery
plan and ranges from 61.18 ms to 92.0 ms to construct
the communication paths. In the 118-bus cases, the average
computational time ranges from 52.5 ms to 106.1 ms to

5

(a) IEEE 30-bus system

(b) IEEE 118-bus system

Fig. 4. Power system observability with/without the self-healing scheme

(a) IEEE 30-bus system

(b) IEEE 118-bus system

Fig. 5. Computational time for plan generation and path construction

generate a recovery plan and ranges from 266.0 ms to 1280.9
ms to construct paths. With 10% of the PDCs compromised,
the total computational time is less than 87.6 ms for the 30-bus
cases and 318.5 ms for the 118-bus cases. Even with 80% of
the PDCs compromised, the total computational time is still
less than 116.7 ms for the 30-bus cases and 1351.5 ms for the
118-bus cases.

The path construction time increases with the number of
compromised PDCs because of the increasing number of com-
munication paths to reconnect. However, the plan generation
time is not greatly impacted by the number of compromised
PDCs, because the redundancy of PMU placement (i.e., we
only have to recover a subset of the PMUs to restore the full
power system observability).

(a) IEEE 30-bus system

(b) IEEE 118-bus system

Fig. 6. Total numbers of rules installed on switches with/without compression

2) Rule Compression: We evaluate the performance of rule
compression in terms of the total number of rules to install on
the switches and the rule installation time.

Total Number of Rules to install on the SDN switches were
measured before and after applying the compression technique,
and the results are shown in Figure 6. We observe that the
compression rate can reach up to 42.9% for the 30-bus cases
and up to 59.0% for the 118-bus cases. As the number of
compromised PDC grows, the total number of rules increases
from 67 to 240 without compression, and from 67 to 98
with compression. The compression module greatly reduces
the number of rules that the SDN controller needs to handle,
especially when the number of compromised PDCs increases.

In our experiments, we set up a relatively large number of
switches to form a ring topology, and therefore, the number
of paths to install on the same switch is considered small.
The rule compression technique can perform even better in
the scenarios where switches handle more traffic flows from
PMUs.

Rule Installation Time reflects how fast the self-healing
scheme realizes the recovery paths. The total time consists
of the time that the SDN controller generates and distributes
the rules and the time that the switches install the rules onto
the flow-entry tables. We repeated 20 experiments for every
recovery path with the same compromised PDC. The results
are plotted in Figure 7.

Without applying the rule compression, the rule installation
completes in about 8.4 ms to 12.6 ms for the 30-bus cases
and about 54.1 ms to 187.3 ms for the 118-bus cases, which
is about one order of magnitude faster compared with the
recovery plan generation and path construction time. The rule
compression module further reduces the time, e.g., 6.8 ms
for the 30-bus cases with 80% PDCs compromised. For the
118-bus cases, compression can save even more time, e.g.,
71.8 ms with 80% PDCs compromised, which saves 61.7%

6

(a) IEEE 30-bus system

(b) IEEE 118-bus system

Fig. 7. Rule installation time with/without compression

of the installation time when compression is not used. The
computational time (i.e., overhead) of the rule compression
algorithm only takes up to 538.6 µs for 30-bus cases and up
to 6.4 ms for 118-bus cases, thus it is beneficial to apply the
rule compression for most cases.

In addition, we also plot the maximum number of rules
to install on one switch, which is the objective function of
the path construction model, in Figure 7. The results show a
strong positive correlation to the rule installation time, which
is the desired behavior as designed by the path construction
ILP model.

VI. CONCLUSION AND FUTURE WORKS

We develop and evaluate a PMU network self-healing
scheme built on top of an SDN-based network architecture.

In the future, we will consider the interdependencies be-
tween communication networks and power systems into the
self-healing scheme. We also plan to extend the self-healing
scheme to micro PMU networks for distribution systems and
microgrids.

Acknowledgments. The authors are grateful to the support
by the Air Force Office of Scientific Research (AFOSR) under
Grant YIP FA9550-17-1-0240, the National Science Foun-
dation (NSF) under Grant CNS-1730488, and the Maryland
Procurement Office under Contract No. H98230-18-D-0007.

REFERENCES

[1] X. Jiang, J. Zhang, B. J. Harding, J. J. Makela, and A. D. Domı´nguez-
Garcı´a. Spoofing gps receiver clock offset of phasor measurement units.
IEEE Transactions on Power Systems, 28(3):3253–3262, 2013.

[2] R. Deng, P. Zhuang, and H. Liang. Ccpa: Coordinated cyber-physical
attacks and countermeasures in smart grid. IEEE Transactions on Smart
Grid, 8(5):2420–2430, 2017.

[3] G. Rétvári, F.Németh, R.Chaparadza, and R.Szabó. OSPF for imple-
menting self-adaptive routing in autonomic networks: A case study. In
John C. Strassner and Yacine M. Ghamri-Doudane, editors, Proceedings
of Modelling Autonomic Communications Environments, pages 72–85,
Berlin, Heidelberg, 2009. Springer.

[4] H. Lin, C. Chen, J. Wang, J. Qi, D. Jin, Z. T. Kalbarczyk, and R. K. Iyer.
Self-healing attack-resilient pmu network for power system operation.
IEEE Transactions on Smart Grid, 9(3):1551–1565, 2018.

[5] Y. Qu, X. Liu, D. Jin, Y. Hong, and C. Chen. Enabling a resilient
and self-healing PMU infrastructure using centralized network control.
In Proceedings of the 2018 ACM International Workshop on Security
in Software Defined Networks & Network Function Virtualization, page
13–18, 2018.

[6] N. Dorsch, F. Kurtz, H. Georg, C. Hägerling, and C. Wietfeld. Software-
defined networking for smart grid communications: Applications, chal-
lenges and advantages. In Proceedings of the 2014 IEEE International
Conference on Smart Grid communications (SmartGridComm), pages
422–427. IEEE, 2014.

[7] X. Dong, H. Lin, R. Tan, R. K. Iyer, and Z. Kalbarczyk. Software-
defined networking for smart grid resilience: Opportunities and chal-
lenges. In Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security, pages 61–68, 2015.

[8] L. Ren, Y. Qin, B. Wang, P. Zhang, P. B. Luh, and R. Jin. Enabling
resilient microgrid through programmable network. IEEE Transactions
on Smart Grid, 8(6):2826–2836, 2016.

[9] D. Jin, Z. Li, C. Hannon, C. Chen, J. Wang, M. Shahidehpour, and
C. W. Lee. Toward a cyber resilient and secure microgrid using software-
defined networking. IEEE Transactions on Smart Grid, 8(5):2494–2504,
2017.

[10] A. Cahn, J. Hoyos, M. Hulse, and E. Keller. Software-defined energy
communication networks: From substation automation to future smart
grids. In Proceedings of the 2013 IEEE International Conference on
Smart Grid communications (SmartGridComm), pages 558–563. IEEE,
2013.

[11] E. Molina, E. Jacob, J. Matias, N. Moreira, and A. Astarloa. Using
software defined networking to manage and control iec 61850-based
systems. Computers & Electrical Engineering, 43:142–154, 2015.

[12] H. Maziku and S. Shetty. Software defined networking enabled
resilience for IEC 61850-based substation communication systems.
In Proceedings of the 2017 International Conference on Computing,
Networking and Communications (ICNC), pages 690–694. IEEE, 2017.

[13] T. Pfeiffenberger and J. Du. Evaluation of software-defined networking
for power systems. In Proceedings of the 2014 IEEE International
Conference on Intelligent Energy and Power Systems (IEPS), pages 181–
185. IEEE, 2014.

[14] J. Zhang, B. Seet, T. Lie, and C. Foh. Opportunities for software-
defined networking in smart grid. In Proceedings of the 2013 9th
International Conference on Information, Communications & Signal
Processing, pages 1–5. IEEE, 2013.

[15] A. Sydney, D. S. Ochs, C. Scoglio, D. Gruenbacher, and R. Miller.
Using GENI for experimental evaluation of software defined networking
in smart grids. Computer Networks, 63:5–16, 2014.

[16] Y. Li, Y. Qin, P. Zhang, and A. Herzberg. SDN-enabled cyber-physical
security in networked microgrids. IEEE Transactions on Sustainable
Energy, 10(3):1613–1622, 2018.

[17] S. Al-Rubaye, E. Kadhum, Q. Ni, and A. Anpalagan. Industrial internet
of things driven by SDN platform for smart grid resiliency. IEEE Internet
of Things Journal, 6(1):267–277, 2017.

[18] C. Hannon, J. Yan, D. Jin, C. Chen, and J. Wang. Combining simu-
lation and emulation systems for smart grid planning and evaluation.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
28(4):1–23, 2018.

[19] R. L. Chen and J. Ruthruff. A scalable decomposition algorithm for
PMU placement under multiple-failure contingencies. In Proceedings
of the 2014 IEEE PES General Meeting, pages 1–5, 2014.

[20] M. He, V. Vittal, and J. Zhang. Online dynamic security assessment
with missing PMU measurements: A data mining approach. IEEE
Transactions on Power Systems, 28(2):1969–1977, 2013.

[21] M. Rifai, N. Huin, C. Caillouet, F. Giroire, D. Lopez-Pacheco,
J. Moulierac, and G. Urvoy-Keller. Too many SDN rules? compress
them with minnie. In Proceedings of the 2015 IEEE Global Communi-
cations Conference (GLOBECOM), pages 1–7, 2015.

[22] Mininet: An instant virtual network on your laptop (or other pc). http:
//www.mininet.org/.

[23] POX: a python-based sdn controller. https://github.com/noxrepo/pox.
[24] T. Finley. GLPK: GNU linear programming kit. http://tfinley.net/

software/pyglpk/.

7

