
A Distributed Virtual Time System on Embedded Linux
for Evaluating Cyber-Physical Systems

Christopher Hannon, Jiaqi Yan, Yuan-An Liu
Illinois Institute of Technology

Chicago, Illinois
{channon,jyan31,yliu301}@hawk.iit.edu

Dong Jin
Illinois Institute of Technology

Chicago, Illinois
dong.jin@iit.edu

ABSTRACT
Cyber-physical systems have a cyber presence, collecting and trans-
mitting data, while also collecting information and modifying the
physical surrounding world. In order to evaluate the cyber-security
of cyber-physical systems, simulation and modeling is a tool often
used. In this work, we develop a distributed virtual time system
that enables the synchronization of virtual clocks between physical
machines enabling a high fidelity simulation based testing platform.
The platform combines physical computing and networking hard-
ware for the cyber presence, while allowing for offline simulation
and computation of the physical world. By incorporating virtual
clocks into distributed embedded Linux devices, the testbed creates
the opportunity to interrupt real and emulated cyber-physical ap-
plications to inject offline simulated data values. The ability to run
real applications and being able to inject simulated data temporally
transparent to the running process allows for high fidelity exper-
imentation. Distributed virtual time enables processes and their
clocks to be paused, resumed, and dilated across embedded Linux
devices through the use of hardware interrupts and a common
kernel module. By interconnecting the embedded devices’ general
purpose IO pins, they can coordinate and synchronize through a
distributed virtual time kernel module with low overhead, under
50 microseconds for 8 processes across 4 embedded Linux devices.
We demonstrate the usability of our testbed in a power grid control
application.

KEYWORDS
Embedded Linux, Synchronization, Cyber-Physical Systems

ACM Reference Format:
Christopher Hannon, Jiaqi Yan, Yuan-An Liu and Dong Jin. 2019. A Dis-
tributed Virtual Time System on Embedded Linux for Evaluating Cyber-
Physical Systems. In SIGSIM Principles of Advanced Discrete Simulation
(SIGSIM-PADS ’19), June 3–5, 2019, Chicago, IL, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3316480.3322895

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6723-3/19/06. . . $15.00
https://doi.org/10.1145/3316480.3322895

1 INTRODUCTION
Embedded computers today are transformed from self-contained
systems to various cyber-physical systems (CPS) by sensing, moni-
toring, controlling our physical world. A sound evaluation of those
systems as well as the applications running on top of them is essen-
tial but highly challenging. As embedded computers monitor and
control mission critical physical processes in real-time (e.g., an elec-
trical power system), performing an evaluation on the actual system
is often disabled to avoid interference with normal system opera-
tions. Virtual testbeds are tools designed to address this challenge.
A capable testbed combines both physical and virtual components,
including but not limited to real embedded devices, virtual ma-
chines, emulated communication networks, simulation models of
physical processes, analytical models of background traffic, etc.

A key challenge in simulating CPS is to seamlessly combine the
physical and virtual worlds to conduct high-fidelity experiments, as
real components execute applications with the real world wall clock
and virtual components advance model states with a virtual clock.
One solution is to provide a notion of virtual time to the physical
processes so that their executions can be explicitly scheduled with
simulation models and advance together in virtual time. Virtual
time is a concept that was designed to enable multiple virtual ma-
chines to be multiplexed on a single physical hardware. We can
use virtual time to schedule sequentially executed processes so that
from their perspective they are being run in parallel. In simula-
tion and modeling, virtual time is a technique used to synchronize
emulated processes to make them execute in a reproducible way
and behave more like traditional simulation models [16–18], which
also enables simulation models to be integrated with emulation.
Furthermore, virtual time can also be used to slow down a running
process and thus increase the perception of resources [29, 30]. As a
result, emulated processes can be executed on hardware that has
fewer resources than required by the processes. For example, in
communication network emulation, bandwidth on a virtual link
can exceed the physical bandwidth of the hardware by slowing
down the processes’ perception of time by some time dilation factor
(TDF) [9].

A number of virtual time systems have been developed for differ-
ent types of virtual machines running on a single physical machine
(e.g., Xen [9], Linux container [18], and OpenVZ [13]). Taking a
set of processes and programs and using virtual time to schedule
their execution, one can enable fine-grained control over the ex-
ecution and interaction of processes. These sets of processes can
be merged with traditional simulation systems (e.g., communica-
tion networks [19, 30] and power grids [10]) using virtual time to
integrate high fidelity executing processes with simulation models.

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

37

https://doi.org/10.1145/3316480.3322895
https://doi.org/10.1145/3316480.3322895

Sensor

Control
Application

Actuator

Sensor

Control
Application

Actuator

Communication
Networking

Device

Physical Components Cyber Components

Networking
Application

Figure 1: Overview of a general cyber-physical system. Dis-
tributed virtual time enables the integration of the simula-
tion of the physical state with the emulation using real hard-
ware and processes of the control applications and commu-
nication networks.

In this work, we further enhance the capacity of a virtual testbed
by developing the first distributed virtual time system on embed-
ded Linux. The system enables efficient synchronization between
the simulation of the physical aspect of CPS and real hardware
computing devices running embedded Linux. Our contribution is a
distributed system architecture uniquely consisting of a common
virtual time Linux kernel module and three communication chan-
nels, one for virtual time synchronization using general-purpose-
input-and-output (GPIO) hardware interrupts, one for connecting
the embedded Linux devices, and one for interfacing with the phys-
ical system simulation that performs an offline computation. Rather
than integrate emulated processes with simulation models, our
work leverages the concept of virtual time to perform the reverse,
namely to take simulation systems and integrate them into em-
ulated systems. This distributed virtual time system enables the
creation of a CPS testbed that can run real emulated processes while
simulating the effects of the physical system.

Considering the electric power grid for example, sensors feed
data into control applications, which interact and in turn send
control signals back to actuators to modify the state for the cyber-
physical system. Figure 1 illustrates a general CPS. The left side
represents the physical component of the system while the right
side represents the cyber component of the system. The distributed
virtual time system enables the establishment of a high-fidelity
hardware-in-the-loop testbed, with which we can simulate the
state of the physical world including the sensors and actuators, and
inject the data into emulated control processes running across a
distributed platform.

Our implementation works for various embedded Linux devices
with GPIO programmability, such as the Banana Pi M1s, the Banana
Pi R1 Routers, and the Raspberry Pi devices. To demonstrate the

practicality of distributed virtual time, we measure the system over-
head with the modified kernel (e.g., modifying the gettimeofday
system call to enable processes to query their virtual clocks raises
the overhead from 11.8 to just 17.4 microseconds, while a page
fault takes over 100 microseconds) and evaluate the correctness
of virtual time across multiple hardware devices concerning clock
skewness and network application performance. To demonstrate
the usability of the distributed virtual time system, we integrate
the distributed virtual time testbed with a power grid simulator
and present a case study to evaluate the cyber-security of a voltage
stabilization application.

The rest of the paper is organized as follows, Section 2 provides
the background, the design of virtual time, and the synchronization
challenges. Section 3 shows in detail how to implement a distributed
virtual time system. In Section 4, we evaluate the correctness and
performance of our virtual time system. We present a use case of
our testbed in Section 5. In Section 6 we show related work in
combining simulation and emulation as well as other uses of virtual
time. Finally, we conclude with future work in Section 7.

2 VIRTUAL TIME DESIGN
Virtual time is a centrally coordinated system which interfaces
with running processes to provide an altered perception of time.
We design a virtual time system running in synchronization across
a distributed platform.

2.1 Background of Virtual Time in Testbeds
When a process registered with virtual time requests the current
time, the virtual time system transparently reports a virtual time.
When processes are placed in a paused state, they are not running
nor are their virtual clocks advancing. Upon resuming, processes
are placed in the running state and their clocks advance with the
virtual clock. Virtual time has two abilities, the first is to pause and
resume virtual-time-enabled processes and the second is to dilate
the running clock to either make a processes perception of virtual
time faster or slower than the real wall clock. Our work strongly
utilizes the first ability but supports the ability to scale a process’
perception as well.

The contribution of our work is the design of a physically dis-
tributed but centrally coordinated virtual time system for cyber-
physical systems. In order to synchronize the simulated and real
parts of the cyber-physical testbed, the pausing and resuming of
processes on real/emulated devices is necessary. The synchroniza-
tion problem is that emulation and real hardware applications are
running in wall-clock time while the physical components of the
system are simulated. The simulation uses a simulation clock which
may advance at a slower rate than the wall clock. For example, a
sensor can take a measurement very quickly in real life, but in simu-
lation, the state of the simulation may take much longer to advance.
By utilizing a virtual time system between running processes and
the operating system’s clock, the virtual time system can modify
processes’ perception of time transparently to the running process.
For CPS, virtual time can ensure the accuracy of data acquisition
protocols. As an example, sensor data reading frequency may be
rate-limited by the communication channel bandwidth. Virtual time

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

38

can ensure that the bandwidth remains consistent with real world
behavior.

When a process subscribed to virtual time requests the current
time, the operating system returns the process’ virtual time, which
is equal to the wall clock time less the time since the process was
started, less total time paused, scaled by the time dilation factor and
then added back to the time that the process started. For example,
given start timeTs , current wall clock timeTwc , time dilation factor
td f , and total cumulative time pausedTp , the process’s virtual time,
TVT is given by the formula:

TVT =
Twc −Ts −Tp

td f
+Ts

Therefore, when a process requests the current time, the process
receives the total time running (while not paused) scaled by the
dilation factor. Our design objective is to make this time function
transparent to any process so that no code modification is required
for a process to use virtual time.

2.2 Distributed Virtual Time
However, synchronization challenges emerge when applying vir-
tual time to processes running across distributed hardware. Figure 2
illustrates the desired behavior for a distributed virtual time system
with n devices. The x axis shows the time with respect to the wall
clock time. The black lines illustrate when a process and its clock
is advancing. When a process on any device, i.e., Device 1 requests
an offline computation from some external simulation source, all
processes across devices using virtual time should be paused. Simi-
larly, when the offline computation completes, all processes should
resume uniformly. At time T1, a virtual time enabled process on
Device 1 makes a synchronization request as shown by the red
solid arrow. This request triggers the virtual time system to pause
or freeze all the clocks and processes that are virtual time enabled
across all devices. At time T2, the processes and their clocks are
paused. Between times T 2 and T 3, the offline computation request

Device 1

Device 2

Device n

Wall Clock
Time

T1 T2 T3 T4

[Offline Computation]

Process Requests
Offline Computation

Process Clock and Execution
Paused or Resumed

Process Receives
Offline Computation

ΔTa ΔTb

ΔTa = T2 - T1 = Pause Overhead, ΔTb = T4 - T3 = Resume Overhead, T3 - T2 = Offline Computation

Time

Figure 2: A high level design of distributed virtual time syn-
chronization. When a virtual time process requests an of-
fline computation, processes across all devices are paused
and resumed uniformly.

is executed. Upon receiving a reply at time T3, a notification is
sent to the virtual time system on Device 1. At time T4, all vir-
tual time processes and their clocks resume. Ideally, ∆Ta and ∆Tb ,
the overheads of the pause and resume routines should be zero.
Additionally, the pause and resume operations (T2 and T3) must
occur across devices at the same wall clock time to ensure virtual
time synchronization. In Figure 2, the total virtual time that has
elapsed for the processes on Devices [1 : n] is the wall clock time
less T 4 −T 2, which is the total paused time.

In order to synchronize virtual time across multiple hardware
devices, a communication channel is needed to connect the virtual
time system on each device to distribute the pause and resume
signals. However, in order to maintain high accuracy, the com-
munication channel must have minimal latency. Shared channels,
such as Ethernet, have too large of an overhead and rely on system
scheduling. A dedicated link is ideal to prevent any congestion.
Additionally, since the cyber-physical system itself relies on a com-
munication network, this network must be disjoint from the virtual
time system’s communication channel ensuring accuracy. Finally, a
third communication channel is needed to interface with an exter-
nal compute engine for offline computations including simulating
the physical components of the CPS.

Our intuition for developing a distributed virtual time system is
to use hardware interrupts to coordinate and synchronize virtual
time across devices. Each device runs a common virtual time system,
which communicates to each other via hardware interrupts and
voltage signals. The design of the virtual time system must ensure
that any process on any device is able to pause the virtual time
across all devices in real time. The design of this virtual time system
must be highly responsive in order to ensure this requirement.
Hardware interrupts are very fast and can be set to call a handler
function upon changes on an incoming voltage to a physical pin
on the hardware device. Because many devices (e.g., sensors) in
cyber-physical systems are low power, we utilize embedded Linux
devices, which enables us to construct a low-cost hardware and
emulation testbed while maintaining high fidelity.

Device 1

Device 2

Device n

Physical System
Simulation and

Offline
Computation

GPIO Hardware
Interrupt Channel

Ethernet Channel

Wireless Channel

Virtual Time Interface

Figure 3: The architecture of the virtual time system enables
a virtual time channel, a channel for the testbed, as well as a
channel to interface with a source for simulating the physi-
cal component of the CPS. All physical devices are required
to be virtual time enabled.

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

39

Figure 3 illustrates our design of a virtual time enabled simula-
tion and emulation testbed. Devices can be machines that have a
cyber and physical presence or just a cyber presence. The devices
are Linux machines and are networked together through embedded
Linux routers. All the physical devices run an instance of the dis-
tributed virtual time system, and any of them can have a connection
to an external simulation and offline computation system.

Furthermore, our design of distributed virtual time must account
for multiple hosts making offline requests at the same time or nearly
at the same time. In Figure 4, we illustrate the desired behavior.
When processes request an offline computation at nearly the same
time, it can be possible that two requests are sent before the first
one pauses the system. For example, this scenario can occur when
sensors collect data at synchronized periodic increments. While vir-
tual time supports parallel requests, the power simulator executes
requests sequentially. If this occurs, we must ensure that the virtual
time enabled processes are paused correctly. All processes should
not be resumed until all pending events are finalized. Therefore, for
n processes pi on all the devices in the testbed, we define a binary
function S(p) such that S(pi) = 1 maps to a request for process pi ,
otherwise S(p) = 0. The pausing criteria becomes

n∑
i=0

S(pi) ≥ 1 (1)

while the resuming criteria is
n∑
i=0

S(pi) = 0 (2)

In Figure 4, at time T1, a request is created on Device 1. However,
at time T1′ ≤ T2, another request is created on Device n before
the virtual time system completes the pause routine. Therefore,
instead of resuming at time T3 as in Figure 2, the virtual time
system must enforce the system to resume at time T3′ when all
pending synchronization requests are completed.

3 IMPLEMENTATION
3.1 Distributed Virtual Time Enabled

Emulation
Our emulation testbed supports distributed virtual time. By design,
any physical host is allowed to play the role of the virtual time
master during experiment run time to initiate synchronization
requests (i.e., pause or resume the emulation) to all the running
hosts. We illustrate the system using a four-host scenario as shown
in Figure 5, where Host1 sends the synchronization request to the
other three hosts.

For example, Host1 issues the request to pause the distributed
emulation testbed; the request is handled by the virtual time Linux
kernel module (LKM); the OS kernel eventually converts it to a
hardware signal. In the case of pause, the kernel changes the state
on one of Host1’s general purpose input and output (GPIO) pins
to HIGH. This change outputs a voltage signal (the red signal in
Figure 5). Since all the hosts including the master Host1 are con-
nected to the voltage signal bus, they can read the voltage change.
Each host’s OS kernel has an interrupt registered to a rising/falling
voltage signal on two of its hardware GPIO pins (different from the
output pin). Depending on the type of the signal, the kernel triggers

Device 1

Device 2

Device n

Wall Clock
Time

T1 T2 T3’ T4

[Offline Computation]

Process Requests
Offline Computation

Process Clock and Execution
Paused or Resumed

Process Receives
Offline Computation

ΔTa = T2 - T1 = Pause Overhead, ΔTb = T4 - T3 = Resume Overhead, T3 - T2 = Offline Computation

Time
T3T1’

Figure 4: When two processes on different devices create
a synchronization event simultaneously, both virtual time
systems handle the request. The processes on all devices
should pause their clocks when receiving the synchroniza-
tion event, however, should only resume when all pending
offline computation events are completed. This is accom-
plished by utilizing voltage signals on a common bus.

a software interrupt that the virtual time LKM has registered with
an associated software routine. In the case of a rising voltage, the
triggered software interrupt instructs the virtual time module to
pause all processes subscribed to the virtual time system. Resuming
applications in virtual time work similarly except that a falling
voltage signal (the blue signal in Figure 5) is created by changing
the output pin’s state on the virtual time master from HIGH back
to LOW. The change in signal then triggers an interrupt on the
pins registered to the falling voltage. Due to the oscillations in the
electronic signal change, a debounce time of 20 microseconds is
required on the rising and falling interrupts. In our future work, we
will explore hardware debouncers to reduce this time. The hardware
interrupts are configured and triggered using the generic interrupt
controller (Corelink GIC-400) [1] which connects peripherals to
the A20 Allwinner CPU [2]. The rising and falling interrupts are
registered to separate pins due to this configuration.

Apart from initially sending the rising or falling voltage signal
to the bus, the virtual time master Host1 handles the signal on
the voltage bus in the same way as Host2, Host3, and Host4 do.
Therefore, no bias occurs at the virtual time master through any in-
advance pause/resume operations. In addition, any host in Figure 5
is allowed to take the role of the virtual timemaster to request pause
and resuming operations. Throughout the life of an experiment,
many hosts take turns to serve as the virtual time master as they
require an offline computation.

The design of the interrupts using rising and falling signals sat-
isfies the case described in Figure 4. When multiple requests are
created at the same time from distinct processes (across different
devices), multiple signals can be sent out simultaneously. However,
since all pins are connected to a common voltage bus, the rising
signal interrupt is only triggered once; Similarly, the falling signal
interrupt is only triggered when all output pins are changed from

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

40

Kernel

Virtual Time Module

Voltage Signal Bus

pause

resume

GPIO Pins

write read

Host1 (Master)

Kernel

Virtual Time Module

GPIO Pins

read

Host2

Kernel

Virtual Time Module

GPIO Pins

read

Host3

Kernel

Virtual Time Module

GPIO Pins

read

Host4

VT Cmds
Apps in

VT Apps in VT Apps in VT Apps in VT

Figure 5: Distributed-Virtual-Time Enabled Emulation Testbed Built on Four Embedded Devices.

HIGH to LOW. Conveniently, the entire distributed testbed will
initiate a pause at the moment of the first rising signal, equivalent
to the pause criteria (1). Moreover, the testbed will not resume un-
til the last signal changes to LOW triggering the falling interrupt
matching the resume criteria (2). As a result, the signal bus frees
the kernel module from having to deal with overlapping synchro-
nization requests.

3.2 Virtual Time Linux Kernel Module
Figure 6 depicts the detailed implementation of the virtual time
LKM, specifically for an embedded Linux systemwith GPIO support
(i.e., the Banana PI single board computer). The virtual time LKM
works in two phases, namely proactive mode and reactive mode.
In the proactive mode, virtual time LKM outputs a signal to the
underlying bus; in the reactive mode, a hardware signal is sent to
the virtual time LKM.

Controls in proactive mode are initiated from the user-space
commands performing the following operations: 1) register a pro-
cess in virtual time, 2) query the virtual time information for a
given process, 3) dilate the time of one or more processes, 4) pause
all processes registered in virtual time, 5) resume all processes reg-
istered in virtual time. After a process is registered in virtual time,
LKM makes the rest of the virtual time commands available to
the process. Regarding the query command (the purple arrow in
Figure 6), the virtual time system utilizes the sysfs subsystem to
return the values of all virtual-time-related variables of that process.
Regarding the dilate command, sysfs invokes dilate(pid, tdf),
which enables virtual time on a given process with a user-specified
time dilation factor tdf. Pause and resume commands work in the
same way (the orange arrow in Figure 6). For a pausing request,
the virtual time sysfs triggers a callback to output a HIGH voltage
signal on Pin 1 via GPIO signal management API. For a resume
command, the output voltage signal returns to a LOW one.

The proactive mode, however, only handles the part of work to
pause or resume the processes in virtual time. The other half is
accomplished in the reactive mode when the voltage signal sent by
the proactive virtual time LKM is received on Pin 2 and Pin 3. The

red arrow depicts how a rising signal triggers pause(). During the
initialization, the virtual time LKMmaps Pin 2’s GPIO to a software
interrupt number, irq. In addition, it registers the software interrupt
handler pause() for irq. Only upon detecting a rising signal on
Pin 2 will the GPIO signal management trigger the pre-mapped
software interrupt irq, which is handled automatically by the vir-
tual time LKM using the pause() handler. Algorithm 1 describes
how the system pauses the processes attached to the virtual clock.

Userspace Virtual Time
Commands

Signal Bus

resume()pause()

Virtual Time
sysfs

Software Interrupt
(IRQ) Handling

GPIO to IRQ
Mapping

dilate()

Pin 2 Pin 3

Virtual Time
LKM

+
Linux Kernel

GPIO
Hardware

GPIO
Signal Management

Pin 1

Processes in VT Userspace

Proactive Mode Reactive Mode

Rising Signal Triggers Pause

Falling Signal Triggers Resume

Query VT Info

Output Hardware Signals

Figure 6: GPIO Signal and Software Interrupt Based Virtual
Time Linux Kernel Module.

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

41

ALGORITHM 1: Pause/Resume Processes in Virtual Time.
Data: Key variables maintained by virtual time LKM:

procList , list of processes controlled by virtual time LKM.
tdf , time dilation factor.
f r zNow , the moment of pausing all processes in wall clock time.

1 Function pause()
2 for i ← 0 to length(procList) by 1 do
3 send SIGSTOP signal to procList [i] // Pause processes.

4 end
5 f r zNow ← __getnstimeofday() // Record wall clock time.

6 return
7 Function resume()

/* Calculate virtual time. */

8 duration ← (__getnstimeofday() − f r zNow)/tdf
9 for i ← 0 to length(procList) by 1 do

10 increase procList [i].f r eeze_past_nsec by duration
11 end
12 for i ← 0 to length(procList) by 1 do
13 send SIGCONT signal to procList [idx] // Resume processes.

14 end
15 return

The system sends SIGSTOP signals to all virtual-time-enabled pro-
cesses before querying the current wall clock time. In the case of
the resuming operation (shown in blue), the differences are 1) the
source is a falling voltage detected on Pin 3, and 2) the destina-
tion is another pre-registered software interrupt handler resume(),
listed in Algorithm 1, for a separate software interrupt number
irq′ , irq. Software interrupt handler resume() first calculates the
duration since the pause moment in virtual time and then updates
the variable f reeze_past_nsec for each process. This way, all pro-
cesses running on a single host are conceptually paused for the
same duration of virtual time. Then the SIGCONT signal commands
the kernel to wake up all processes registered in virtual clock. Even
if the moments to wake up are different for processes in procList ,
the perceived pause duration is identical among the processes. Our
signal-bus-based hardware design also simplifies Algorithm 1 as it
is not necessary for the software module to cope with the tangled
synchronization requests from multiple devices.

Our implementation works for various embedded Linux devices
including the Banana Pi M1s, the Banana Pi R1 Routers, and the
Raspberry Pi devices. Additionally, our solution is designed to be
compatible with any hardware that runs Linux and has the GPIO
programmability.

Barebone devices, such as 8- and 32-bit microcontrollers, are
also compatible but some system-specific modification is required
due to the lack of an operating system. Microcontrollers can enable
emulation of full sensor and actuator components of cyber-physical
systems. We leave this for future work.

3.3 Virtual Time Retrieval
In addition to the coordination of the virtual time LKM described
in Section 3.2, to correctly retrieve virtual time we also modify the
system calls that return time to a process. When a process requests
time through the gettimeofday() system call, the kernel returns
a virtual time if the requesting process is a virtual-time-enabled

process. We port the virtual time kernel in [29] to the ARM Linux
kernel 3.14. Our implementation behaves the same as the original
kernel with necessary modifications regarding the ARM instruction
set. The new virtual time kernel adds the file system entries to
the /proc/$PID directory to contain the virtual time metadata.
When a process calls gettimeofday(), the function checks the
virtual time metadata and returns the virtual time to a process. A
major advantage of this approach is that the virtual time retrieval
procedure is transparent to applications. The only requirement is
that the time source must use the monotonic clock representation.
The detailed kernel implementation is described in [29].

4 EVALUATION
In order to show the practicality of distributed virtual time, the
overhead needs to be taken into account. Additionally, one needs
to verify the correctness of the virtual time. The testbed used to
evaluate the virtual time kernel module is made from 8 Banana PI
devices. 4 devices are M1 single board computers and 4 devices
are R1 embedded routers. Banana PI devices have the A20 ARM
Cortex-A7 Dual-Core CPU with 1GB DDR3 Memory and a 1Gb
Ethernet controller.

4.1 Virtual time overhead
The overhead can be divided into two components: the overhead
added to the gettimeofday() system call and the overhead in
pausing and resuming processes. To measure the overhead of the
gettimeofday() system call, we employ the following two meth-
ods.

4.1.1 System Call gettimeofday(). The first way to measure over-
head is the function tracer ftrace, which enables fine-grained
measurements of kernel function latencies. ftrace, specifically the
function graph tracer, works by probing a function on both its entry
and exit using a dynamically allocated stack of return addresses,
which it overwrites to calculate latencies [24]. We compile the ker-
nel with the ftrace option to measure the overhead of virtual time
related system calls. Table 1 illustrates the system call progression
in and out of virtual time for the gettimeofday() system call. This
is the overhead a process experiences when querying the clock.
Virtual time clocks are transparent to the processes. A virtual time
is returned in place of a real time. Virtual-time-based timekeeping
in the gettimeofday() system call increases the kernel space over-
head from an average of 8.625 microseconds to 13.333 microseconds.
Seemingly virtual time adds substantial overhead in calculating the
offset from the real clock.

The function tracer ftrace only monitors the kernel function
sys_gettimeofday(). In order to measure the total time from the
user space call, another method is employed. We create a C pro-
gram that calls gettimeofday() 1,000,000 times and calculates the
average duration of the call for a process registered to virtual time
and a non-registered process. When not in virtual time, the average
overhead of a regular process calling gettimeofday() is 11.833
microseconds per call, while in virtual time is 17.387 microseconds.
For comparison, ext4_mark_inode_dirty() requires 58 microsec-
onds, unlock_new_inode() 36 microseconds, and writing 2.7 MB
to a file takes 975 microseconds with sys_write().

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

42

Virtual-time-enabled process
Time System Call

sys_gettimeofday() {
do_gettimeofday() {
getnstimeofday() {

0.250 us arch_counter_read();
ns_to_timespec() {

0.541 us ns_to_timespec.part.0();
3.041 us }

8.250 us }

+ 10.583 us }

+ 13.292 us }

Regular non-virtual-time-enabled process
Time System Call

sys_gettimeofday() {
do_gettimeofday() {
getnstimeofday() {

0.250 us arch_counter_read();
2.792 us }

5.333 us }

8.000 us }

Table 1: The duration of the function is shown on the return
from the call. The durations include the time of nested calls.
(Top) Function trace is for gettimeofday() system call for
virtual-time-enabled processes; The total time is 13.292 mi-
croseconds. (Bottom) Function trace is for regular processes
not registered to virtual time. The total time is 8.000 mi-
croseconds.

4.1.2 Linux Kernel Module Proactive Mode. As explained in the
previous sections, and illustrated in Figure 6, there is a proactive
mode and a reactive mode of the Linux Kernel Module (LKM).
In the proactive mode, a process writes to the virtual file system
to trigger a callback that changes the output on GPIO Pin 1. We
employ ftrace to measure the latency in the LKM including writ-
ing to the virtual file system. The main function in the kernel in
the proactive mode is sys_write(). This function takes on aver-
age 262.292 microseconds. The main functions sys_write() calls
are: sysfs_write_file() (204.5microseconds), which calls mode_-
store() (105.833 microseconds) and in turn either calls gpio_di-
rection_output() (47.250 microseconds) or gpio_direction_-
in() (38.833 microseconds) for pause and resume functions respec-
tively. The top level function writes a value to the virtual file system
/sys/VT/mode, which determines if pause or resume should be
called inside the LKM. Next mode_store() changes the state of the
GPIO Pin 1. A full trace of a proactive pause routine can be found
in the online repository due to the length.

4.1.3 Linux Kernel Module Reactive Mode. Tracing the reactive
mode of the LKM is more difficult as the function tracer is unable
to probe the entrance and exit of the interrupt functions. In order
to measure the overhead of the reactive component of the LKM,
we timestamp the entrance into and exiting the pause and resume

2 4 6 8 10 12 14 16

Total Number of Virtual Time Processes

50

100

150

200

250

300

O
ve

rh
ea

d
of

P
au

se
an

d
R

es
um

e
O

p
er

at
io

ns
(M

ic
ro

se
co

nd
s)

Pause Operation on 1 Banana Pi

Resume Operation on 1 Banana Pi

Pause Operation on 2 Banana Pis

Resume Operation on 2 Banana Pis

Pause Operation on 4 Banana Pis

Resume Operation on 4 Banana Pis

Figure 7: The overhead of pausing and resuming scales
linearly with the number of processes subscribed to vir-
tual time. Using more boards allows the parallelization
of virtual-time-enabled processes, which enables a linear
speedup as expected.

functions. For each process registered in virtual time, the LKM
sends a SIGSTOP or SIGCONT signal. Additionally, it writes some
timekeeping data to the processes /proc/$PID/ directory. Figure 7
illustrates the overhead of pausing and resuming virtual time pro-
cesses in the reactive mode of the LKM. The overhead of a single
machine, 2 machines, and 4 machines are plotted for up to 16 virtual
time processes with their 95% confidence intervals. The overhead
scales linearly with the number of virtual-time-enabled processes
for all scenarios. On a single machine, 16 virtual-time-enabled pro-
cesses take 282 microseconds to pause and 234 microseconds to
resume. Using more boards allows us to parallelize the pausing and
resume, which downscales the overhaed as shown in Figure 7.

4.2 Virtual Time Correctness
In addition to determining the latency imposed by virtual time, it
is also critical that the virtual time does not introduce unexpected
errors in applications. To evaluate the correctness of the distributed
virtual time system, it is important that the systems’ clocks do not
skew over time. Additionally, we evaluate the bandwidth between
two Banana Pi hosts in and out of virtual time to ensure that errors
are not introduced.

4.2.1 Clock Skewness. The clock skewness is the difference in
the value of time reported by two clocks at a given instance in time.
Two factors can contribute to the clock skewness. Firstly as in all
commodity systems, the onboard clock is not perfect, the clocks on
the Banana PIs will naturally drift with time. The Network Time
Protocol (NTP) can be used to correct drift errors. The second source
of clock skewness is introduced by the virtual time system. Since it
is infeasible to query two clocks simultaneously with high fidelity
to determine the clock skewness, we employ an indirect method.
The virtual time is given by the wall clock time minus paused

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

43

0 10 20 30 40 50 60

Sequence of Pause/Resume Operations Indexed in Time Order

−2.0

−1.5

−1.0

−0.5

0.0

0.5

C
um

al
at

uv
e

C
lo

ck
S

ke
w

ne
ss

(M
ill

is
ec

on
ds

)

Pi 0 (Reference)

Pi 1

Pi 2

Pi 3

Figure 8: The processes are periodically paused and resumed
using the virtual time system. We measure the skewness
in milliseconds on the y-axis and plot the index of the
pause/resume operations on the x-axis. The processes are
paused and resumed 64 times. The skewness of the clocks
over time remains within acceptable limits in comparison
with typical clock skewness. The skewness is measured by
querying the cumulative paused time of each virtual-time-
enabled process.

time, and one can query the paused time while the virtual time
processes are running. Additionally, paused time advances only
when processess are paused and resumed. To evaluate the clock
skewness, we apply the pause and resume operations on 4 virtual-
time-enabled processes across 4 Banana Pi devices. Each process
within a device shares the same virtual time offset. Each device
takes its turn as themaster node shown in Figure 5 in a round robin
order. After each resume operation, the cumulative paused time is
recorded by querying the virtual time interface. In Figure 8, we plot
the skewness of the virtual time clocks with respect to an arbitrary
virtual time Pi as the reference. The results show that the clocks do
skew over time but that they remain within a close range after 64
pause and resume operations. In [20], the authors examine clock
drift over Internet-of-things devices including Raspberry Pi devices,
which are similar to the Banana Pi devices used in our work. The
authors conclude that with their implementation they can maintain
a clock accuracy of within 15 milliseconds. Using NTP, the clock
skewness we observe in virtual time remains tolerable. Our future
work involves consideration of out-of-band clock synchronization
algorithms for the virtual clocks similar to NTP for the processors
in the wall clock.

4.2.2 Network Performance in Virtual Time. In order to verify
the correctness of our virtual time system, we measure the perfor-
mance of a common networking application in and out of virtual
time. We connect two Banana Pi hosts together via Ethernet and
run iperf3 in TCP mode. In the first case, we run iperf for 30 sec-
onds with processes not in virtual time. Although the network

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (Seconds)

200

300

400

500

600

ip
er
f
T
hr
ou
gh
pu
t
(M

bp
s)

Baseline (no Pause/Resume)

Pause Duration=1 s, Interval=1 s

Figure 9: We use iPerf to measure the bandwidth between
two hosts. This graph shows that the performance of the
networking application iPerf is correct when a process is in
virtual time.

interface is rated for 1Gbps, we see that the practical limit is closer
to 450Mbps. In the second case, we add the iperf processes on both
hosts to virtual time and periodically pause and resume from the
iperf client. The virtual time system is completely transparent to
the iperf applications. The client host is paused every 1 second for
a duration of 1 second. The iperf test is also run for 30 virtual time
seconds, which takes 60 wall clock seconds. The bandwidth we
observe in Figure 9 is similar to the base case where processes are
not using virtual time.

5 CYBER-PHYSICAL SYSTEM USE CASE
One of the largest cyber-physical systems is the electric power grid,
which is compromised of many physical components including gen-
erators, transformers, loads, capacitors, etc. Due to the emergence of
distributed and renewable generation such as solar power and wind
generation, maintaining the stability of the electric power grid is be-
coming increasingly important and expensive.When electric energy
generation is dynamic due to fluctuations in the physical environ-
ment, electric grid operators must implement appropriate strategies
including demand response [25], virtual power plants [23], energy
storage systems [3], etc. These techniques require greater observ-
ability and controllability, which in turn, requires more extensive
communication infrastructure within the power grid.

5.1 Voltage Stability Application
We demonstrate the usability of our virtual-time-enabled testbed by
evaluating the cyber-security of a voltage stabilization application.
In order to maintain grid stability, an actuator compensates for the
changes in the dynamic generation in real-time. It consists of an
energy storage device and a control system, and works as follows.
A sensor collects voltage and frequency data from the distributed
energy resource in the electric power grid. It transmits the data to
the actuator’s control system that determines the required settings

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

44

671

646 645 632 633 634

675692

680652

684611

650

Figure 10: 13-Bus Distribution System

for the energy storage device. If there is an excess of energy being
produced, the control system will reduce the discharge rate of the
energy storage device. If the excess is large, the energy storage
device will switch from discharge to charge mode to consume
energy and replenish its storage. On the other hand, if the energy
produced from the generator is low, the energy storage device will
supplement the grid with power.

In this use case, we consider the voltage stabilization application
run in the IEEE 13-bus power system [15] illustrated in Figure 10.
The power system is composed of busses, which are nodes in the
power system topology, such as substations which distribute power
to loads to residential communities. Busses also connect generators
to the power grid, such as solar, wind, and hydro resources. The
IEEE 13-Bus test case is used with added dynamic loads at Bus 611,
Bus 652, and Bus 692. A dynamic generator is added at Bus 634 and
an energy storage device is added at Bus 675. The point of common
coupling to the transmission network is at Bus 650. The base system
voltage is 2.4 kV provided from this bus.

The cyber components are run on our distributed virtual time
testbed while the physics of the power system is simulated. We
adopt a linear communication network topology to connect the
hosts in the control application. Figure 11 illustrates the linear
communication network we created using the Banana Pi hosts
and routers to emulate the cyber-components of the system. The
energy storage device (Host 1) is connected to switch s1 while
the sensor measuring generation output (Host 2) is connected to
switch s4. All hosts are additionally connected to a power grid
simulator, OpenDSS [4, 21], through a separate network to simulate
the physical state of the system. The power simulator is run on
a Windows 10 virtual machine with 8 GB of memory and four 4
GHz cores. The sensor retrieves voltage, frequency, and current
data from the power simulator, and the actuator changes the state
of the system by modifying the state of the energy storage device.
The simulator advances when either the sensor requests data or
when the energy storage device changes the output state. The
simulator updates and advances its state up to the virtual clock
time at a millisecond time step. Emulation experiment takes up to
10 times as long as thewall clock advances, due to the computational
complexity of both calculating the state changes and sampling the
circuit properties of the electric power system.

When the sensor determines it is time to retrieve a value from the
power simulator, it sends its request to a management process that

makes the call to the virtual time module. The management process
interfaces with the power simulation server to relay the request.
When the request is fulfilled, the management process places the
sensor data in the sensor process’s memory. The final step is to
interact with the virtual time system to resume the processes as in
Figure 6.

The blue line in Figure 12 shows the operation of the power
grid under the normal behavior. The upper right plot shows the
variability in the generation of the wind turbine over time in appar-
ent power. The lower right plot illustrates the functionality of the
voltage stability application over 90 seconds. The energy storage
device charges for a short period between 18 and 21 seconds while
discharging at a variable rate for the remainder of the experiment.
Since there still remains randomness in the quantity of power con-
sumed by loads, there are some voltage fluctuations as can be seen
in the left two figures, which illustrates the voltage at Bus 680 and
Bus 646 in the power system. However, the voltage does not deviate
significantly from the baseline of 2400 Volts.

5.2 Cyber-Attacks on Power Grid
We demonstrate how a cyber-attack can affect the voltage stabil-
ity of the power system, and impact the security of the power
application. We make the assumption that a malicious actor has
access to a compromised device on the network. Using dsniff [26],
the attacker floods the ARP tables of the devices on the network
in order to 1) convince the sensor that the attacker is the energy
storage device’s controller and 2) convince the energy storage de-
vice’s controller that it is the sensor. Equivalently, the attacker is
able to eavesdrop on all communication between the sensor and
the controller. Furthermore, by removing the compromised host’s
network port from promiscuous mode, the attacker can create a
denial-of-service (DoS) attack preventing network traffic from rout-
ing between the honest hosts. In Figure 12, the red curves illustrate
the case when the attacker performs a DoS attack at time 22.5 sec-
onds. After this point, the communication channel between Host 1
and Host 2 is severed. Because the energy storage device is unable
to receive new control signals, it maintains its state of discharging.
The effects of the DoS attack can be seen in the figures on the left.
At Bus 680, the voltage deviates 3.33 percent from nominal to 2320
volts. If the grid experiences instability for a prolonged period of
time, the frequency of the power system will deviate, which causes
larger generators to protectively shut down, further contributing
to voltage instability and power outages. Because of the magnitude
of the power deficit, the voltage drop at the busses will follow the
generator’s output.

After an attacker has access to the network, and is able to eaves-
drop on real-time traffic, there is the potential for spoofing attacks,
replay attacks, false data injection attacks, and more. Spoofing at-
tacks can impersonate traffic to send data, configuration, or even
control messages to cyber-physical devices in the grid, potentially
opening relays or putting the grid in an unstable state. Replay
attacks enable the attacker to resend network packets that have
the potential to change the state of the system. Even encrypted
packets have a potential to become susceptible to this family of
attacks. Furthermore, by modifying packets in transit, applications

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

45

s1 s2 s3 s4

Host 1 Attacker Host 2
Energy Storage Device Sensor

Figure 11: The communication network used in the power
grid application.

can become victims to false data injections that force control appli-
cations to make improper decisions. There exist preventative and
reactionary measures to prevent such attacks. For example, having
a static routing policy at the switch level can prevent ARP spoof-
ing and poisoning attacks. Encryption under proper configuration
can mitigate eavesdropping, and spoofing attacks. The more cyber
components that are adopted, the more cyber security plays a role
in creating resilient and robust systems.

In summary, we demonstrate the role of distributed virtual time
in a physical testbed equipped with simulation modeling using a
voltage stability application. The distributed virtual time is critical
because simulating the actuator’s control system is computationally
intensive and cannot be performed in real time. With distributed
virtual time, it runs in synchrony with the physical networking
system, which is a must-have for reproducing various attacks on
power grid launched from its underlying networking layer, and for
evaluating possible countermeasures.

6 RELATEDWORK
Research work on virtual time in network emulation can be gener-
ally classified into two categories based on the application objec-
tives. The first objective is to improve the scalability and fidelity
of network emulation testbeds. They typically adopt the virtual
time technique to uniformly scale the emulation entity’s perception
of time by a specified factor. It was first introduced as time dila-
tion in [9], and has been adopted to various types of virtualization
techniques (e.g., virtual machines, virtual nodes, Linux containers)
and integrated with a handful of network emulators [5, 6, 8, 18, 30].
For example, VT-Mininet [30] used time dilation to virtually scale
up the system resources on a single commodity machine to sup-
port high-fidelity analysis of large-scale software-defined networks.
TimeKeeper [17] studied how time dilation enables "moderate hard-
ware" to emulate a smart grid control network that requires "pow-
erful hardware." In addition, [7] explored means to minimize the
running time of dilated network emulation experiments based on
the historical average resource requirements of virtual nodes.

The second objective is on the temporal integration of network
emulation and simulation. Several hybrid testing systems that in-
tegrate network emulation and simulation have adopted this ap-
proach [12, 14, 18, 28]. For example, [11] combined a power distribu-
tion system simulator with an SDN emulator to support evaluation
of communication network applications and their impacts on corre-
sponding power systems. The synchronization of the two systems

is achieved via freezing (and then resuming) Linux containers in-
cluding their own virtual clocks. By embedding Linux processes in
virtual time, TimeKeeper [18] successfully integrated two network
simulators (ns-3 and S3F) to a network emulator with negligible
modification. SliceTime [28] used a common barrier to block both
simulation processes and virtual machines in emulation until both
systems complete a rational time slice.

Distributed virtual time relies on software triggering hardware
interrupts to coordinate and synchronize between cyber and physi-
cal simulation systems. Interrupts are also used in simulation sys-
tems including parallel systems to preempt events [22]. However,
the previous uses of interrupts are used to synchronize more effi-
ciently in optimistic simulation while our use is to uniformly halt
the cyber system.

Distributed virtual time facilitates the integration of simulation
to emulated or physical hardware based testbeds that are temporally
transparent to the emulated processes. This paper presents the first
working virtual time system that is synchronized across multiple
physical devices.

7 CONCLUSION
Planning and evaluation of cyber-physical systems requires high-
fidelity simulation and emulation testing platforms. Virtual time
is a powerful technique for integrating simulation and emulation
models. In this paper, we propose a distributed version of virtual
time across multiple embedded Linux devices, which are essential
components of a cyber-physical system testbed. Through the use of
hardware interrupts across a common voltage bus, multiple embed-
ded Linux devices can be synchronized in virtual time. Each device
runs a Linux kernel module that supports distributed virtual time
for processes across devices. We show how we minimize system
overhead in pausing and resuming virtual time processes. Addi-
tionally, we show that the performance of the iperf networking
application remains the same when using virtual time. Through
a use case, we demonstrate the usability of a distributed virtual-
time-enabled testbed for evaluating the cyber-security of a voltage
control application in the electric power grid. In our future work,
we will further evaluate cyber-physical system operations using the
testbed supporting distributed virtual time. Specifically, we would
like to evaluate the impact of disruptions in the communication
network for frequency adjustment control applications in the elec-
tric power grid as this is a cyber-physical system application that
utilizes real-time sensing and actuation.

ACKNOWLEDGMENT
This work is partly sponsored by the Air Force Office of Scien-
tific Research (AFOSR) under Grant YIP FA9550-17-1-0240, the
National Science Foundation (NSF) under Grant CNS-1730488, and
the Maryland Procurement Office under Contract No. H98230-18-D-
0007. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of AFOSR, NSF, and the Maryland
Procurement Office.

REFERENCES
[1] Allwinner Technology Co., Ltd. 2013. CoreLink GIC-400 Generic Interrupt

Controller: Technical Reference Manual (1.0 ed.). Allwinner Technology Co.,

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

46

0 10 20 30 40 50 60 70 80 90

Time - Seconds

2320

2340

2360

2380

2400

V
ol

ta
ge

-
V

ol
ts

Bus 680 Voltages

Base Case

Denial of Service

0 10 20 30 40 50 60 70 80 90

Time - Seconds

2360

2370

2380

2390

2400

2410

2420

V
ol

ta
ge

-
V

ol
ts

Bus 646 Voltages

Base Case

Denial of Service

18 36 54 72 90

Time - Seconds

920

1150

1380

1610

1840

2070

2300

A
p

p
er

en
t

P
ow

er
-

W
at

ts

Generator Output

0 20 40 60 80

Time - Seconds

0

200

400

600

800

P
ow

er
-

W
at

ts

Energy Storage: Phase 1

Base Case

Denial of Service

Figure 12: Left: voltage of the power system at bus 680 (Up) and bus 646 (Down). Top Right: The apparent power in Watts
generated by the wind turbine. Bottom Right: The energy storage device’s supplied power and load.

Ltd. http://infocenter.arm.com/help/topic/com.arm.doc.ddi0471a/DDI0471A_
gic400_r0p0_trm.pdf.

[2] ARM 2011. A20 User Manual (r0p0 ed.). ARM. http://dl.linux-sunxi.org/A20/
A20UserManual2013-03-22.pdf.

[3] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. PortilloGu-
isado, M. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso. 2006. Power-Electronic
Systems for the Grid Integration of Renewable Energy Sources: A Survey.
IEEE Transactions on Industrial Electronics 53, 4 (June 2006), 1002–1016. https:
//doi.org/10.1109/TIE.2006.878356

[4] Roger C Dugan. 2013. Reference Guide, The Open Distribution System Simulator.
(2013).

[5] M.A. Erazo, Yue Li, and J. Liu. 2009. SVEET! a scalable virtualized evaluation envi-
ronment for TCP. In Proceedings of the 2009 Testbeds and Research Infrastructures
for the Development of Networks Communities and Workshops. IEEE Computer
Society, Washington, DC, USA, 1–10.

[6] A. Grau, K. Herrmann, and K. Rothermel. 2011. NETbalance: Reducing the
Runtime of Network Emulation Using Live Migration. In Proceedings of the
20th International Conference on Computer Communications and Networks. IEEE
Computer Society, Washington, DC, USA, 1–6.

[7] Andreas Grau, Klaus Herrmann, and Kurt Rothermel. 2012. Scalable Network
Emulation - The NET Approach. Journal of Communications 7, 1 (January 2012),
3–16.

[8] Andreas Grau, Steffen Maier, Klaus Herrmann, and Kurt Rothermel. 2008. Time
Jails: A Hybrid Approach to Scalable Network Emulation. In Proceedings of the
22nd Workshop on Principles of Advanced and Distributed Simulation. IEEE Com-
puter Society, Washington, DC, USA, 7–14.

[9] Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex C. Snoeren, Amin Vahdat,
and Geoffrey M. Voelker. 2005. To Infinity and Beyond: Time Warped Network
Emulation. In Proceedings of the 20th ACM Symposium on Operating Systems
Principles. ACM, New York, NY, USA, 1–2.

[10] Christopher Hannon, Jiaqi Yan, and Dong Jin. 2016. DSSnet: A Smart Grid
Modeling Platform Combining Electrical Power Distribution System Simulation
and Software Defined Networking Emulation. In Proceedings of the 2016 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS
’16). ACM, New York, NY, USA, 131–142. https://doi.org/10.1145/2901378.2901383

[11] Christopher Hannon, Jiaqi Yan, and Dong Jin. 2016. DSSnet: A Smart Grid
Modeling Platform Combining Electrical Power Distribution System Simulation
and Software Defined Networking Emulation. In Proceedings of the 2016 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS
’16). ACM, New York, NY, USA, 131–142. https://doi.org/10.1145/2901378.2901383

[12] Christopher Hannon, Jiaqi Yan, Dong Jin, Chen Chen, and Jianhui Wang. 2018.
Combining Simulation and Emulation Systems for Smart Grid Planning and
Evaluation. ACM Trans. Model. Comput. Simul. 28, 4, Article 27 (Aug. 2018),
23 pages. https://doi.org/10.1145/3186318

[13] Dong Jin, Yuhao Zheng, Huaiyu Zhu, David M Nicol, and Lenhard Winterrowd.
2012. Virtual time integration of emulation and parallel simulation. In Proceedings
of the 2012 ACM/IEEE/SCS 26thWorkshop on Principles of Advanced and Distributed
Simulation. IEEE Computer Society, 201–210.

[14] Dong Jin, Yuhao Zheng, Huaiyu Zhu, David M. Nicol, and Lenhard Winterrowd.
2012. Virtual Time Integration of Emulation and Parallel Simulation. In Pro-
ceedings of the 2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and
Distributed Simulation. IEEE Computer Society, Washington, DC, USA, 201–210.

[15] W. H. Kersting. 2001. Radial distribution test feeders. In 2001 IEEE Power En-
gineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194),
Vol. 2. 908–912 vol.2. https://doi.org/10.1109/PESW.2001.916993

[16] Jereme Lamps, Vladimir Adam, David M. Nicol, and Matthew Caesar. 2015.
Conjoining Emulation and Network Simulators on Linux Multiprocessors. In
Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Dis-
crete Simulation (SIGSIM PADS ’15). ACM, New York, NY, USA, 113–124. https:
//doi.org/10.1145/2769458.2769481

[17] Jereme Lamps, Vignesh Babu, David M. Nicol, Vladimir Adam, and Rakesh Kumar.
2018. Temporal Integration of Emulation and Network Simulators on Linux
Multiprocessors. ACM Trans. Model. Comput. Simul. 28, 1, Article 1 (Jan. 2018),
25 pages. https://doi.org/10.1145/3154386

[18] Jereme Lamps, David M. Nicol, and Matthew Caesar. 2014. TimeKeeper: A
Lightweight Virtual Time System for Linux. In Proceedings of the 2Nd ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM PADS
’14). ACM, New York, NY, USA, 179–186. https://doi.org/10.1145/2601381.2601395

[19] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop:
rapid prototyping for software-defined networks. ACM Press, 1–6. https://doi.
org/10.1145/1868447.1868466 01341.

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

47

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0471a/DDI0471A_gic400_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0471a/DDI0471A_gic400_r0p0_trm.pdf
http://dl.linux-sunxi.org/A20/A20 User Manual 2013-03-22.pdf
http://dl.linux-sunxi.org/A20/A20 User Manual 2013-03-22.pdf
https://doi.org/10.1109/TIE.2006.878356
https://doi.org/10.1109/TIE.2006.878356
https://doi.org/10.1145/2901378.2901383
https://doi.org/10.1145/2901378.2901383
https://doi.org/10.1145/3186318
https://doi.org/10.1109/PESW.2001.916993
https://doi.org/10.1145/2769458.2769481
https://doi.org/10.1145/2769458.2769481
https://doi.org/10.1145/3154386
https://doi.org/10.1145/2601381.2601395
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466

[20] Sathiya Kumaran Mani, Ramakrishnan Durairajan, Paul Barford, and Joel Som-
mers. 2018. An Architecture for IoT Clock Synchronization. In Proceedings of the
8th International Conference on the Internet of Things (IOT ’18). ACM, New York,
NY, USA, Article 17, 8 pages. https://doi.org/10.1145/3277593.3277606

[21] Davis Montenegro, Roger Dugan, Robert Henry, Tom McDermott, and wsun-
derm1. 2016. OpenDSS Program, SOURCEFORGE.NET. http://sourceforge.net/
projects/electricdss. (2016). [Last accessed January 2016].

[22] Alessandro Pellegrini and Francesco Quaglia. 2017. A Fine-Grain Time-Sharing
Time Warp System. ACM Trans. Model. Comput. Simul. 27, 2, Article 10 (May
2017), 25 pages. https://doi.org/10.1145/3013528

[23] D. Pudjianto, C. Ramsay, and G. Strbac. 2007. Virtual power plant and system
integration of distributed energy resources. IET Renewable Power Generation 1, 1
(March 2007), 10–16. https://doi.org/10.1049/iet-rpg:20060023

[24] Steven Rostedt. 2017. ftrace - Function Tracer (4.13 ed.). Red Hat Inc.
https://www.kernel.org/doc/Documentation/trace/ftrace.txt.

[25] Pierluigi Siano. 2014. Demand response and smart gridsâĂŤA survey. Renewable
and Sustainable Energy Reviews 30 (2014), 461 – 478. https://doi.org/10.1016/j.
rser.2013.10.022

[26] Dug Song. 2001. dsniff. (Dec. 2001). Retrieved Janunary 21, 2019 from https:
//www.monkey.org/~dugsong/dsniff/

[27] The Friends-of-Fritzing foundation. 2018. Fritzing. (Feb. 2018). Retrieved Janunary
10, 2019 from http://fritzing.org

[28] Elias Weingärtner, Florian Schmidt, Hendrik Vom Lehn, Tobias Heer, and Klaus
Wehrle. 2011. SliceTime: A Platform for Scalable and Accurate Network Emula-
tion. In Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation. USENIX Association, Berkeley, CA, USA, 253–266.

[29] Jiaqi Yan and Dong Jin. 2015. A Virtual Time System for Linux-container-based
Emulation of Software-defined Networks. In Proceedings of the 3rd ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (SIGSIM PADS ’15). ACM,
New York, NY, USA, 235–246. https://doi.org/10.1145/2769458.2769480

[30] Jiaqi Yan and Dong Jin. 2015. VT-Mininet: Virtual-time-enabled Mininet for
Scalable and Accurate Software-Define Network Emulation. In Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research
(SOSR ’15). ACM, New York, NY, USA, Article 27, 7 pages. https://doi.org/10.
1145/2774993.2775012

APPENDIX
Figure 13 illustrates how the GPIO pins are connected to form the
signal bus. The number of GPIO pins required for distributed virtual
time is 3 regardless of the number of boards in virtual time. The
Raspberry Pi devices have a similar pinout to Banana Pi devices.

Figure 13: Three GPIO pins are used on each machine in the
distributed virtual time testbed. In the schematic shown are
two Raspbery Pi 3Model Bs. The figure was drawn using the
fritzing tool [27].

Session on HPC and Parallel Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

48

https://doi.org/10.1145/3277593.3277606
http://sourceforge.net/projects/electricdss
http://sourceforge.net/projects/electricdss
https://doi.org/10.1145/3013528
https://doi.org/10.1049/iet-rpg:20060023
https://doi.org/10.1016/j.rser.2013.10.022
https://doi.org/10.1016/j.rser.2013.10.022
https://www.monkey.org/~dugsong/dsniff/
https://www.monkey.org/~dugsong/dsniff/
http://fritzing.org
https://doi.org/10.1145/2769458.2769480
https://doi.org/10.1145/2774993.2775012
https://doi.org/10.1145/2774993.2775012

	Abstract
	1 Introduction
	2 Virtual Time Design
	2.1 Background of Virtual Time in Testbeds
	2.2 Distributed Virtual Time

	3 Implementation
	3.1 Distributed Virtual Time Enabled Emulation
	3.2 Virtual Time Linux Kernel Module
	3.3 Virtual Time Retrieval

	4 Evaluation
	4.1 Virtual time overhead
	4.2 Virtual Time Correctness

	5 Cyber-Physical System Use Case
	5.1 Voltage Stability Application
	5.2 Cyber-Attacks on Power Grid

	6 Related Work
	7 Conclusion
	References

