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1. INTRODUCTION
The growth in grid modernization highly relies on the successful convergence of util-
ity’s operations technology (OT) networks and advanced information technology (IT)
systems. Applying software-defined networking (SDN) technology to OT networks is
an emerging research topic with the goal of boosting control efficiency and attain-
ing secure and reliable operation. Recent works include applications in substation au-
tomation, Cahn et al. [2013], Molina et al. [2015], reliability evaluation, Pfeiffenberger
and Du [2014], quality of service (QoS) optimization, Sydney et al. [2014], Goodney
et al. [2013a], Dong et al. [2015], fast failover mechanism, Sydney et al. [2014], Molina
et al. [2015], resilience enhancement, Ren et al. [2016], evaluation under SDN con-
troller failure, Ghosh et al. [2016], and an energy sector SDN-enabled Ethernet switch,
Schweitzer Engineering Laboratories [2014].

Figure 1 depicts a smart grid with an SDN-based communication infrastructure.
SDN is a programmable, open-source approach, to designing, building, and managing
networks, onf [2015]. It decouples network control from forwarding logic in network
devices and offloads its functions to logically centralized SDN controller(s). SDN of-
fers global network visibility, which enables detailed system virtualization; SDN of-
fers direct network programmability, which facilitates efficient network management
and traffic engineering; SDN offers the centralized control of communication networks,
which would be integrated with existing power grid control applications to allow more
intelligent security and network applications to blossom, such as system-wide configu-
ration verification and context-aware detection systems. However, incorporating SDN
into critical control systems is also very challenging. Challenges stem from (1) the
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continuous operation of physical processes is extremely important, (2) such systems
must operate to meet real-time deadlines, and (3) new designs must integrate with
many resource-constrained legacy devices. Therefore, a high-fidelity and scalable test-
ing platform is needed to evaluate SDN-based technologies and their impact on the
power grid systems before deployment on real systems.
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Fig. 1. A Multi-Layered SDN-enabled Smart Grid

We present Distribution System Solver Network (DSSnet), a testbed incorporating
an electrical power distribution system simulator and an SDN-based communication
network emulator, Hannon et al. [2016]. Traditional emulators execute real programs
with reference to the system clock to advance experiments, while simulators execute
models to advance experiments with reference to the simulation’s virtual clock. To
ensure the correct and efficient synchronization of time and events between the two
systems, DSSnet leverages a prior container-based virtual time system in Linux ker-
nel, Yan and Jin [2015a]. Previous work concentrates on the development of virtual
time for the hosts or containers of the emulation, and the synchronization of simu-
lation and emulation systems. In this paper, we enhance the scalability, fidelity, and
usability of DSSnet in order to provide a feature-full testbed and smart grid develop-
ment platform in order to enable smart grid researchers to access to better tools for
planning and evaluation of future grid infrastructures.

— We integrate the Open Networking Operating System (ONOS) Berde et al. [2014]
to manage the communication network. ONOS supports a distributed controller en-
vironment, which significantly increases the size of network experiments that one
can emulate. This feature also enables the study of resilient controllers, a key com-
ponent for deploying an SDN-enabled smart grid in practice. ONOS also provides
many unique features to enhance the usability of DSSnet, such as host-to-host in-
tents, multi-path forwarding, reactive forwarding, and traffic statistic monitoring.
We extend the virtual time system in DSSnet to provide an API to enable such inte-
gration. We also utilize ONOS’s native GUI for customization and visualization of an
experimental network.

— We extend the virtual time support to Open vSwitch, Pfaff et al. [2015], the under-
lying SDN switch implementation in Mininet, for fidelity and performance improve-
ment of DSSnet. This feature ensures the consistency among all components of DSS-
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net using virtual time. We demonstrate the improvement in fidelity with forwarding
applications running on the SDN switches, such as spanning tree protocols (STP and
RSTP), as well as the effect of STP on power system (see Section 5). Additionally, we
extend DSSnet with the capability of real-time process monitoring of all the virtual-
time-specific states.

— We perform fidelity evaluation of the enhanced DSSnet. We also demonstrate the
usability of DSSnet with a new case study analyzing the effectiveness of a demand
response application in an SDN enabled network undergoing link failure.

In the remainder of the paper, Section 2 presents the related work and shows the dif-
ferences of DSSnet with those existing tools. Section 3 describes the system design and
how it addresses the synchronization challenges across the two core systems. Section
4 presents the virtual time system implementation. Section 5 evaluates the system
performance. Section 6 demonstrates a demand response application that illustrates
the features and benefits of DSSnet. Finally, Section 7 concludes the paper with future
work.

2. MOTIVATION AND RELATED WORK
2.1. Combining Power with Communication
The power grid is composed of power generation, transmission, distribution and loads.
Traditionally, power is generated in mass quantities from hydro, coal, nuclear, and gas
sources. The power is then transmitted at high voltages to distribution systems where
the power is distributed to residential and commercial consumers. As the power grid
is moving towards a smarter grid, the efficient energy management is increasingly
dependent on the underlying communication network supporting reliable information
transfer among the various entities in the grid.

With distributed power generation—such as solar and wind energy—and more stor-
age technology, there is a need for understanding the state of the power network in
real time. A challenge with the integration of such generation, is the uncertainty and
intermittency of the availability of power generation. In order to combat this challenge,
there needs to be an infrastructure that allows for the monitoring and control of the
system state. To do this effectively, requires a reliable and resilient communication
network.

Researchers have developed systems to co-simulate the power and network compo-
nents of the smart grid Godfrey et al. [2010], Montenegro et al. [2012], Dufour and Be-
langer [2014], Lin et al. [2012], Hopkinson et al. [2006], Ciraci et al. [2014b], [2014a].
Mets et al. [2014] surveys the existing technologies and motivations for co-simulation.

In Montenegro et al. [2012], a system is proposed using OpenDSS to allow for send-
ing real-time signals to hardware integrating with electric power simulation. Real time
simulators are used for hardware-in-the-loop simulations, allowing for simulation-
emulation closer to the real system, Dufour and Belanger [2014]. This gives high fi-
delity, but requires power equipment and often specific simulator hardware. Using a
network emulator we make the system closer to that of real hardware deployment, but
without the cost or complexity associated with real hardware.

In Lin et al. [2012], the authors create a co-simulation between PSLF and ns-2. They
use a global event-driven mechanism for sending synchronization messages between
the two simulators. In simulation, events are sorted by time stamps, typically in a
priority queue. To enforce the temporal order of events, we take inspiration from the
global event queue, and adapt this strategy to integrate the network emulation with
the distributed power simulation in DSSnet.

EPOCHS Hopkinson et al. [2006] uses commercial power simulators to co-simulate
network and power systems through the use of agents. This platform uses agents to ef-
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fectively co-simulate power and communication elements. The authors define agents as
having the properties of autonomy and interaction and exhibit properties of mobility,
intelligence, adaptivity and communication. In DSSnet, our models run real processes
in the network emulation. This allows for us to make use of agents as entities that
exist in both systems.

FNCS, Ciraci et al. [2014b] is a federated approach for co-simulation of power and
electrical simulators by combining multiple power simulators, both distribution and
transmission and use ns-3 as a communication simulator. In Ciraci et al. [2014a], the
same authors improve the synchronization between systems that we take inspiration
from in our implementation in Section 4. The difference is that DSSnet is focused on
network emulation which has different synchronization challenges due to the inherent
difference between the execution mechanisms in simulation and emulation.

There are two main features that set our design apart from the existing tools. The
first is that we are using a network emulator rather than a simulator. The emula-
tor allows for higher fidelity by executing real networking programs. To the best of
our knowledge, our testbed is the first to combine electric power simulation and com-
munication network emulation. The second is that our network emulator supports
SDN-based networks.

2.2. Software-Defined Networking in Utility
Software-defined networking (SDN) is an emerging network technology that separates
the data plane from the control plane. The benefit of this is the enhanced ability to
have a global view over the network and be able to program network switches to pro-
vide functions that were previously too laborious and impossible to do. SDN allows
for complex network functions to be created by adjusting network paths and flows in
real time — reactively and proactively. This technology can help solve security issues
and increase performance in many networks such as data centers, and even in energy
infrastructure. However, SDN is not widely used yet and does not solve all problems
out of the box.

In Ren et al. [2016] the authors utilize a hardware in the loop testbed to evaluate
an SDN framework developed for a microgrid. The limitation of their work is in the
synchronization of simulation to hardware and scalability associated with hardware
requirements. We aim to create a purely software based approach to enable scalable,
customizable, and fast development of smart grid SDN applications.

In Kim et al. [2014], SDN is proposed to allow for scalable deployment of utility
applications. The authors show how SDN can provide network functions to simplify
publisher-subscriber roles in intelligent electrical devices (IED) including in phasor
measurement unit networks, however this work is limited to communication networks.

In Dong et al. [2015], the authors propose a system that combines an SDN emula-
tor with an off-the-shelf high voltage solver. The difference between the system they
propose and ours is that we are focused on combining open source tools and that our
simulator is for low voltage distribution networks.

In Goodney et al. [2013b], SDN is utilized to increase the performance of SCADA
networks. In our testbed, we have also modeled SCADA network elements, which can
be used to explore how cyber attacks can impact the power grid using different com-
munication models.

In Sydney et al. [2014] the authors analyze utility communication networks for sit-
uational awareness including during blackouts. Through the use of a hybrid power
and communication system, situational awareness can be enhanced to increase the
resilience of the grid.

Additionally, there has been work to bring existing power grid network protocols
such as GOOSE and IEC 61850 into SDN networks Molina et al. [2015]. Our testbed
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Fig. 2. DSSnet system architecture diagram. Note that the power simulator runs on a Windows machine
and the network emulator runs on a Linux machine.

can be used to emulate IEC 61850 based communication with the advantage of ana-
lyzing the effects in the power simulator.

To summarize, our system is built on top of a network emulator rather than the
existing works of network simulation for high fidelity analysis in the context of smart
grid, and the emulator we use supports SDN-enabled software switches and protocols.

3. SYSTEM DESIGN
DSSnet integrates a distribution power system simulator, OpenDSS, Montenegro et al.
[2016], with a network emulator, Mininet, Lantz et al. [2010], using virtual time. The
system has the following features:

— Power Flow Studies
— SDN-based Communication Network Modeling
— Smart Grid Control Applications
— ONOS-Enabled Controller Integration
— Virtual-Time-Enabled Network Emulation

DSSnet is composed of five main components: the communication network emulator,
the electrical power simulator, a network coordinator for interfacing with the network
and the virtual time system, a power coordinator for interfacing and controlling the
simulator, and a virtual time system which manages time and ensures synchronization
in DSSnet. Figure 2 depicts the architecture of DSSnet with emphasis on the extended
features from our previous work, Hannon et al. [2016].

3.1. System Design Architecture
3.1.1. System Components. The network emulator in DSSnet contains software

switches that emulate the function of real SDN switches. In DSSnet, the hosts rep-
resent intelligent electrical devices (IEDs) in a power network, and each host has its
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own virtual network ports. Hosts in the emulation have their own namespaces, Lantz
et al. [2010] and can run real processes to model IEDs. Any element in the power net-
work that has a communication requirement is modeled in the emulation, including
SCADA elements, such as sensors and phasor measurement units (PMU), and even re-
lays and generators. In the network, some hosts interact with the simulator indirectly
through other models, such as data collection and storage systems, state estimation
applications, voltage and frequency adjustment controllers.

DSSnet models define the power network through elements, such as lines, trans-
formers, relays, meters (sensors), loads, capacitors, and generators. The purpose of the
power simulation is to simulate the behavior of utility distribution systems. Functions
of the power simulator include power flow snapshot, harmonic study, fault studies, load
modeling, and solving dynamic time step power flow, Dugan [2013].

The network topology and the IED models are loaded through the network coordi-
nator to configure network properties. The role of the network coordinator is also to
interface with the network emulator for synchronization between the communication
and power systems. When the coordinator receives a synchronization request, it inter-
faces with the power coordinator and with the virtual time system to control DSSnet’s
virtual clock. Start-up options for the network coordinator include: controller selection,
virtual time options, paths for configuration files, Open vSwitch options for emulated
switches, logging and debugging options.

The power coordinator interfaces with the power simulator and the network coor-
dinator. The power coordinator provides an API to modify and extract values in the
simulator. A role of the module is to advance the simulation clock to the time stamp
of the current event request from the emulator, and to solve the power flow at that
time. Currently, the power coordinator supports dynamic loads, generators, and energy
storage devices through configuration files. Additionally, DSSnet supports controllable
loads, generators, energy storage devices, and relays. The API also provides support for
faults, sensor readings of voltage, current, and power values. The power coordinator
also supports trace-based simulation from predefined synchronization events allowing
for debugging, testing, and replays for previous DSSnet runs.

Switches in the emulation are modeled with Open vSwitch, Pfaff et al. [2015]. Open
vSwitch is a software switch which runs on top of the networking hardware. It consists
of a user-space server, a database (ovs-db) maintaining settings and configuration, and
a kernel module for performance enhancement. Open vSwitch creates a bridge for each
switch in the emulation. The ports of the emulated switch as well as configuration are
maintained by the ovs-db. When a packet is sent between hosts, the Open vSwitch
server processes the packet to establish a micro-flow in the kernel module, querying
the ovs-db if necessary. The kernel module ensures that subsequent packets will be
processed in the kernel (while the flow exists) thus avoiding laborious context switch-
ing. The emulation essentially provides a high-level abstraction to configuring bridges
and namespaces for switches and hosts.

There are drawbacks to using emulation. With each host running its own processes
and having its own virtual network adapter, the system becomes more complex, mak-
ing debugging a challenge. In order to make debugging easier, we create a GUI tool
extended from htop presented in the following section. Most importantly, an emula-
tion system cannot scale as large as a simulation system can due to the virtualization
of hosts that require many resources. Our future work includes the development of
distributed emulation to achieve better scalability, with reference to a prior work on
the distributed OpenVZ-based network emulator Zheng et al. [2013].

3.1.2. ONOS. Extended from our previous work, DSSnet now incorporates ONOS
Berde et al. [2014], the Open Network Operating System. In order to integrate ONOS
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into DSSnet, we emulate both the data plane network that consists of the hosts in
DSSnet and the switches that connect them, as well as the control plane that consists
of multiple ONOS instances. Each ONOS instance maintains the same state. Inter-
controller communication through the ONOS design enforces this consistent state.
Therefore, the distributed SDN controller environment can be treated as a single en-
tity from a logical control standpoint, allowing for scalability in processing requests
from many switches, as well as reliability and resiliency in case of controller failure.

ONOS provides many features that enable DSSnet to better evaluate the SDN’s role
in the power grid. ONOS includes a distributed controller environment, which enables
scalability in managing many switches, and provides resiliency by allocating backup
controllers. Additionally, ONOS provides many out of the box applications, such as
host-to-host intents, reactive forwarding and flow statistic collection. The ONOS GUI
further helps to debug and configure DSSnet’s emulator component.

3.1.3. Virtual Time System. Unlike simulation, the emulation clock elapses with the real
wall clock. Therefore, pausing the emulation requires more than just stopping the ex-
ecution of the emulated entities, but also the pausing their clocks. Virtual time can be
used to achieve this goal Lamps et al. [2014], Yan and Jin [2015a]. We choose to extend
the work of Yan and Jin [2015b], in which virtual time support is included in Mininet.
However, their motivation is different from ours.

In general, virtual time has at least two categories of application. The first one is to
slow down emulation so that it appears to emulated entities that they have sufficient
virtual resources. Slowing down execution also alleviates the problems caused by re-
source multiplexing. The work in Yan and Jin [2015b] and Yan and Jin [2015a] fall into
this category. Another usage of virtual time is for emulation-simulation synchroniza-
tion. In DSSnet, we assign every container a private clock, instead of using the global
time provided by the Linux OS. In addition, we assign virtual clocks for Open vSwitch
processes. The containers now have the flexibility to slow down, speed up or stop their
own clock when synchronizing with the simulator.

However, the emulator needs to manage the consistency across all containers. This
is achieved by a centralized timekeeper in Lamps et al. [2014], and by a two-layer
consistency mechanism in Yan and Jin [2015a]. A more flexible virtual time system
implemented by Yan and Jin [2015a] avoids this problem as emulation takes charge of
this responsibility. In practice, the emulator configuration guarantees that all contain-
ers are running with one shared virtual clock; Similarly, the container leverages the
Linux process hierarchy to guarantee that all the applications inside the container are
using the same virtual clock. The two-layer consistency approach is well-suited to this
work for pausing and resuming because:

(1) All hosts, controllers, and switches should be paused or resumed when we stop or
restart the emulation.

(2) All applications running on a host should be paused or resumed when we stop or
restart the emulation.

The first task is done by the network coordinator. The second task is implemented
based on the fact that processes inside a container belong to the same process group.

3.2. Synchronization
A key challenge in DSSnet is the synchronization between connecting the emulated
communication network and the simulated power system. The root cause is that two
different clock systems are used to advance experiments. Ordinary virtual-machine-
based network emulators use the system clock, and a simulator often uses its own
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Fig. 3. The execution of DSSnet is shown with respect to the wall clock. The network emulation runs
concurrently with the power simulation, and is not paused which allows for synchronization errors to occur,
when requests arrive before the responses are sent, e.g., R1 occurs after E2. The shaded box highlights the
location of the error.

virtual clock. This difference would lead to causality errors as shown in the following
example.

In Figure 3, there are three cross-system events (Ei), each with a response (Ri). E1

occurs before E2, however, E2 may require information from R1. Since the response
occurs after the second event, the global causality is violated, and thus reduces experi-
ment fidelity. An example of E1 is a request to retrieve power flow values while E2 sets
the value of a discharging battery based on the value returned previously. Since the
reply R1 occurs after E2 this can introduce an error. Furthermore, such errors can be
accumulated if the simulation remains out of synchronization with the emulation.

Network 
Emulation

Power 
Simulation

Synchronization Event  

Wall Clock
Time t0

Time

DSSnet
Perceived Time

tE_2

tS_1

tS’_1 tS’_2

tE_3tE_1

tS_2

tEi    emulation time (wall clock time)

tE_1 tE_2 tE_3

tSi    execution time of simulation (wall clock time)

tS’i   time simulator returns after synchronization event

Fig. 4. The execution of DSSnet is shown with respect to its own perceived time, i.e., the sum of the emula-
tion execution time (can be dilated or not dilated) and the virtual time elapsed in simulation. The network
emulation is paused to allow for the simulation to catch up to the emulation— this also ensures synchro-
nization errors in the previous example do not occur.

To address this issue, we develop a virtual time system in Mininet with the new
capability to pause the emulator without advancing the emulation virtual clock, while
the simulator is running. We adopt this idea, since the experiment advancement in
DSSnet is designed to be driven by the emulation. This means that synchronization
requests are originated at the emulator. Before the coordinators permit the simulator
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to advance over a time interval [a,b), we first ensure that all processes in the emula-
tor have advanced their own clocks to at least time b, to ensure that all input traffic
that arrives at the simulator with timestamps in [a,b) are obtained first. The emula-
tion system is driven by a virtual system clock, therefore, the simulation system will
not advance past the virtual clock time of the emulation. While the inverse does not
hold, the emulation is permitted to advance beyond the simulation. This is acceptable
because all synchronization events are originated from the emulator.

Figure 4 shows the execution of the DSSnet. The total execution time (equation 1) is
the total time the emulation is running plus the sum of the time spent executing the
simulation. DSSnet’s clock, the overall clock of both systems, (equation 2) is equal to
the total time of the emulation plus the sum of the returned simulation virtual times.
In this illustrative scenario, we do not include factors like synchronization overhead,
parallel execution based on simulation and (possibly) emulation look-ahead, and time
dilation effects in emulation virtual time, for simplicity.

Timewall clock =
∑

tE i +
∑

tS i (1)

TimeDSSnet =
∑

tE i +
∑

tS′ i (2)

ret =
tS′ i

tS i
(3)

where ret’s value range is

— (1,∞) if the power simulation takes longer time to execute than the real time; Thus,
emulation virtual time is essential for synchronizing the two systems

— (0,1] if the power simulation takes less or equal time to execute than the real time,
i.e., with real-time simulation capability

— 0 if the power simulation time is not considered by the emulation; for instance,
recomputing voltage and current change along power lines at nearly light speed.

Synchronization events occur when either system influences the other. One opti-
mization is to divide the global queue into two queues, because synchronization events
can be created in two ways: Non-Blocking Events and Blocking Events. For each type
of event, we design a queue sorted by time stamps to organize the requests. The non-
blocking event queue contains premeditated synchronization events and events that do
not require a response to the communication network. For example, the non-blocking
event queue can be used to pass messages to the simulation to sample the power flows
with meters at periodic intervals. Other examples are power events such as line faults
that occur at a specific time. Non-blocking events enable the power simulator and com-
munication network emulator to run in parallel as the event is defined not to have a
direct impact on the communication network. The IEDs are able to influence the power
simulation by sending a synchronization event message using the blocking queue. Ex-
amples of these classes of synchronization events are that PMUs requesting values
from the power simulation and controllable loads changing power values or turning on
or off.

We have revisited the design of our synchronization queues. Because many net-
worked power devices (e.g., sensors) frequently synchronize at the same time in re-
lation to each other, there are often multiple events arriving simultaneously into the
queues. When this occurs, we synchronize these events as a batch to the power coor-
dinator. This reduces the overhead of blocking events, and prevents the unnecessary
overhead of pausing and resuming the emulation.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 0.

Page 9 of 24 Transactions on Modeling and Computer Simulation

https://mc.manuscriptcentral.com/tomacs



0:10 C. HANNON et al.

t4

Network 
Emulation

t1 t3 t5

Power 
Simulation

Synchronization Event  

Wall Clock
Time t0 t6

Time

t2

E1 E2
R2R1 E3

R3

Fig. 5. E1, and E3 are non-blocking synchronization events and E2 is a blocking synchronization event
from an IED. The network emulation is not paused unless an event in the blocking queue occurs, i.e., the
one that requires a response to the communication network. The shaded box represents the portion of the
experiment that is running in parallel.

By using the non-blocking event queue, we can speed up the overall execution time.
In other words, we do not need to pause the emulation for non-blocking events (E1

and E3 in Figure 5). However, if a blocking synchronization event (E2 in Figure 5)
occurs before the response R1, then the emulation is paused at t2, i.e., the time stamp
of E2. The emulation is resumed at t4, when response R2 is returned. In this work, we
demonstrate the advantage of having a non-blocking queue with sample events. How
to classify the events is not a focus for this paper. In addition, the container-based
emulation system introduces opportunities for offering real application specific look-
aheads to improve the parallelism performance, which we will explore as our future
work.

4. IMPLEMENTATION
DSSnet combines OpenDSS, an electrical power distribution system solver simulator,
Mininet, an SDN emulator, and ONOS, a distributed SDN controller with the use of a
virtual time system. This section mainly presents implementation details of the virtual
time system, which integrate the simulation and emulation systems.

We extend our prior work on time-dilation-enabled Mininet Yan and Jin [2015b]
with the capability to pausing and resuming emulation. The emulation clock runs x
times slower than the wall clock during the experiment execution with a time dilation
factor of x. To address the synchronization problem discussed in Section 3, we develop
two routines freeze and unfreeze in the virtual time system. Specifically, we utilize
the signal mechanism in the Linux kernel to stop both the process execution and the
timing information passage.

4.1. Freeze/Unfreeze Implementation
To track virtual time using the OS software clock, we add several new fields into the
process descriptor task struct, including

— freeze start ns represents the start time to freeze a process.
— freeze past ns represents the cumulative frozen time of a process.
— physical past ns represents the elapsed wall-clock time.
— virtual past ns represents the elapsed virtual time.

The algorithms to dilate time and freeze/unfreeze processes are presented in Yan
and Jin [2015a] and Hannon et al. [2016]. In this paper, we made several changes
so that freezing and time dilation work simultaneously. Algorithm 1 shows the pro-
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cedure to enable, disable and update the time dilation. A trick scenario is that
when both old and new time dilation factor (TDF) have non-zero values, setting TDF
may occur during the emulation execution. To handle this scenario, we implement
SwitchDilationTimekeeping to calculate the wall clock time offset by subtracting both
the physical elapsed time (line 4) and the elapsed time that a process is in the frozen
state (line 5). After dilating the time offset with the old time dilation factor, the system
resets the starting point of both the virtual time and the physical time.

ALGORITHM 1: Set Time Dilation Factor
Data: Process tsk, time dilation factor tdf

1 Function SwitchDilationTimekeeping(tsk, old tdf, new tdf)
2 now ← wall clock time in nanoseconds
3 ∆ppn ← now − tsk.physical start nsec
4 ∆ppn ← ∆ppn − tsk.physical past nsec
5 ∆ppn ← ∆ppn − tsk.freeze past nsec
6 ∆vpn ← ∆ppn/old tdf
7 tsk.virtual past ns← tsk.virtual past ns + ∆vpn

8 tsk.virtual start ns← now
9 tsk.physical start ns← now

10 tsk.physical past ns← 0
11 tsk.dilation← new tdf
12 return
13
14 Function SetDilation(tsk, new tdf)
15 old tdf ← tsk.dilation
16 if new tdf = old tdf then
17 return 0
18 else if old tdf = 0 then
19 InitVirtualTime(tsk, new tdf)
20 else if new tdf = 0 then
21 ExitVirtualTime(tsk)
22 else if new tdf > 0 then
23 SwitchDilationTimekeeping(tsk, old tdf, new tdf)
24 else
25 return -EINVAL
26 end
27 foreach child of tsk do
28 SetDilation(child, new tdf)
29 end
30 return

4.2. User-space Interface to Virtual Time
The virtual file system provides an interface between the kernel and the user space,
and is an ideal location to place the interface to virtual time. Under each process’s
directory in /proc, we expose the virtual time related variables via the following file
entries:

— /proc/$pid/dilation. This entry allows us to enable/disable the virtual time of a
process and to set the TDF value.

— /proc/$pid/freeze. This entry allows us to freeze/unfreeze a process $pid; It also
indicates whether a process is frozen.
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— /proc/$pid/fpt, vpt and ppt. The three entries indicate the values of
freeze past ns, virtual past ns and physical past ns of a process.

We make a clear distinction between regular processes and virtual-time-enabled pro-
cesses. The /proc/$pid/freeze entry is valid only if /proc/$pid/dilation already has
a non-zero value. The emulator can place a container in virtual time by writing 1000
to /proc/$pid/dilation. This turns on the per-container freezing capability without
unnecessarily modifying the clock speed.

DSSnet frequently queries the virtual time variable entries for debugging or moni-
toring purpose. We extended htop, Muhammad [2016], a popular process viewing tool
for Unix-family systems, to monitor all the virtual time related variables in real time,
including physical past time (PPT), virtual past time (VPT), freeze past time (FPT),
time dilation factor (TDF) and freeze status (FRZ) of each process, as depicted in Fig-
ure 6. This tool can verify whether a set of virtual hosts share the same TDF to ensure
that their virtual time is consistent (e.g., all the frozen process in Figure 6 has the same
FPT). In the case of synchronization events, FPT offers a good estimate of the synchro-
nization overhead. Users can log the resource utilization information (e.g., CPU usage
and IO rate) as well as the virtual clock information. The tool also enables us to adjust
TDF when the emulation system load is too heavy to preserve the temporal fidelity.
We have open-sourced the virtual time monitoring tool to facilitate the usage of the
virtual time system Yan [2016].

In addition, we develop two user-space utility programs freeze all procs and
dilate all proc for freezing and time-dilating processes. Both programs support par-
allel execution. freeze all procs spawns one pthread for each network host and
writes the freezing/unfreezing flag to the /proc/$pid/freeze entry. This optimization
significantly reduces the execution overhead in large-scale network settings. Users
can also create their proxies in Mininet by referencing net.dilateEmulation() and
net.freezeEmulation().

4.3. Open vSwitch in Virtual Time
In order to guarantee that the emulated switches are embedded in virtual time, we
modify the source code for Open vSwitch library.

The reason is that flows installed on the switches must ensure correct timeouts
with respect to their virtual clocks. Additionally, traffic statistics and network pro-
tocols must use their virtual clocks to maintain consistency. Specifically, we force Open
vSwitch to use the gettimeofday system call, which in turn ensures that Open vSwitch
daemon, i.e., ovs-vswitchd and ovs-db, use virtual clocks. We also include their pro-
cess IDs when calling freeze all procs from Mininet. The motivation for requiring
switches to be in virtual time is presented in Section 5.3 in more details.

5. SYSTEM EVALUATION
5.1. Virtual Time System Overhead in Network Emulation
As described in Section 3, the synchronization between the power simulator and the
network emulator requires us to freeze and unfreeze all emulated hosts. These opera-
tions bring overhead to synchronization. The overhead is not tolerable when the scale
of the networking system grows to hundreds of emulated hosts on a single physical ma-
chine, which is quite common in practice Lantz et al. [2010]. Note that the overhead
to freeze/unfreeze processes does not affect the emulation temporal fidelity, which is
evaluated in the next section.

We measured the overhead of our pthread-based implementation by repetitively
freezing and unfreezing emulated hosts. We varied the number of hosts as 10, 50, 100,
250, 500 in Mininet. For each setting, we repeated the freezing and unfreezing opera-
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Fig. 6. vthtop: real-time monitoring of per-process virtual-time-related information

tions for 1000 times, and computed the overhead as the duration from the moment the
coordinator issues a freezing/unfreezing operation to the moment that all hosts are ac-
tually frozen/unfrozen. We added the overhead of freezing operation and the overhead
of the associated unfreezing operation, and plotted the CDF of the emulation overhead
in Figure 7.

We observe that more than 90% of the operations take less than 100 milliseconds in
the 500-host case. For all other cases, more than 80% of the operations consume less
than 50 milliseconds. We also observe the average overhead time grows linearly as the
number of hosts increases in Figure 8. The error bars indicate the standard deviations
of the overhead time, which are caused by the uncertainty of delivering and handling
the pending SIGSTOP and SIGCONT signals.

5.2. Accuracy Evaluation
End-to-end throughput and latency are two important network flow characteristics. In
this section, we use these two metrics to evaluate the communication network fidelity.
We created two emulated hosts connected via an Open vSwitch in Mininet. The links
are set to 800 Mbps bandwidth and 10 µs latency. iperf, Gates and Warshavsky [2014]
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Fig. 8. Average Network Emulation Overhead

was used to measure the throughput, and ping, Hideaki [2015], was used to measure
the round-trip-time (RTT) between the two hosts.

5.2.1. End-to-end Flow Throughput. We used iperf to transfer data over a TCP connec-
tion for 30 seconds for throughput testing. In the first run, we advanced the experi-
ments without freezing the hosts. In the second run, we froze the emulation for 1 sec-
ond, and repeated the operation every 1 second for 64 times during the data transmis-
sion. We coupled the two experimental results and reported the average throughputs
between the 11th second and the 30th second in Figure 9. The error bars represent the
99% confidence interval of the throughputs.
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We observed that the average throughputs of the “interrupted” emulation matches
well with the baseline results. However, pausing emulation introduces around 11% –
18% deviation. Several sources lead to this deviation. First, while we explicitly gener-
ate SIGSTOP and SIGCONT signals to the containers, those signals are only in the pend-
ing state. The actual deliveries depend on the OS scheduler, and the deliveries usually
occur when exiting from the interrupt handling. Second, the actual freezing duration
depends on the accuracy of the sleep system call. Sleeping for one second has a deriva-
tion about 5.027 milliseconds on the testing machine, Dell XPS 8700 with Intel Core
i7-4790 3.60 GHz processor.
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Fig. 9. TCP Flow Throughput Comparison, 800 Mbps Bandwidth and 10 µs Link Latency

5.2.2. End-to-end Flow Latency. To evaluate the end-to-end flow latency, we issued 1000
pings with and without freezing the emulator. We skipped the first ping in the results
to exclude the effect of ARP and the switch rule installation from the SDN controller.
Figure 10 plots the CDF of the round trip time (RTT) for both sets of ping experiment.
We observed the two lines are well matched in the case of 10 µs link delay, and paus-
ing the emulator does not affect the distribution of RTT. About 80% ping packets are
received around 0.2 ms.

When we increased the link latency to 1 millisecond, the observed RTTs in the freez-
ing emulation case were around 1 ms slower than the non-freezing case. One solution is
to reprogram the hrtimer, but if the target kernel only supports low resolution timers,
we need to search in the complicated time-wheel structure, otherwise we can search in
a red-black tree. Another approach is to explore the emulation look-ahead to increase
the synchronization window size, and thus reduce the synchronization frequency be-
tween the two systems. We will leave those enhancements as our future work.

5.3. Open vSwitch Virtual Time Evaluation
We make Open vSwitch (OVS) support virtual time by modifying how OVS queries
the system clock. In this section, we demonstrate how the virtual-time-enabled OVS
improves the temporal fidelity of DSSnet by studying the convergence time of the span-
ning tree protocol with and without virtual time, and its effect on the power simulator.
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Fig. 10. Ping Round-Trip-Time Comparison, 800 Mbps Bandwidth and 10 µs Link Latency

5.3.1. Spanning Tree Protocol. OVS can run the distributed spanning tree protocol (STP)
802.1D. In STP, the switches collectively compute a spanning tree in a network to
prevent loops. The switches elect a root node by selecting the switch with the lowest
priority, breaking ties by comparing MAC addresses. The switches then compute the
lowest cost from their nodes to the root node. Lowest cost paths are kept while higher
cost paths are put into a blocking state to prevent forwarding traffic in a loop. Ports in
STP can be in one of the following states: blocking, listening, learning and forwarding.
When the topology changes, i.e., through a link failure, a blocking port transitions to
forwarding state to maintain the complete spanning tree. The re-convergence process
goes through three stages in the switches: link failure detection, transition to the lis-
tening state, and transition to the learning state. For example, if we set the Max Age
to 20 seconds, Message age to 2 seconds, Forward T ime to 15 seconds, then the total
time for re-convergence is, Lapukhov [2009].

Max Age−Message Age+ 2 ∗ Forward T ime = 48 seconds

5.3.2. Convergence Time in Spanning Tree Protocol. Because the STP protocol runs on the
switches, the re-convergence time will be affected by the virtual clock. To evaluate the
effect, we set up the experiment by using two hosts: h1 sends UDP packets to h2. Upon
receiving the packet, host 2 timestamps the packet and prints the header. The network
topology is a loop topology depicted in Figure 11.

h1 h2

Fig. 11. Ring Network Topology. Blocking ports are denoted by the dashed line. When the primary path
experiences a link failure, the blocking ports transition to forwarding ports per STP.
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Fig. 12. Open vSwitch (OVS) in and out of virtual time. In the base case, we determine that it takes approx-
imately 48 seconds to re-establish communication between the hosts with pausing of the processes. Without
OVS in virtual time, we pause OVS and the host processes at an interval of 100 ms for a duration of 100
ms. Since OVS does not use the same clock as the hosts, it appears to re-establish the communication in
24 seconds DSSnet time (i.e., 48 seconds wall-clock time). This causes an error with respect to the baseline
case. By including OVS in virtual time, we observe the proper convergence time of 48 seconds.

Figure 12 shows the effects of STP convergence with OVS in and out of virtual time.
By causing a link down event simulating a link failure on the primary path, the ports
that are in blocking state must transition to forwarding states to re-establish the span-
ning tree. The OVS bridges are used with the default spanning tree settings. In the
base case, we run OVS without virtual time and we do not create any synchronization
events to freeze the emulation. In this case, it takes approximately 48 seconds to re-
establish communication between the hosts, measured by the timestamps of captured
UDP traffic. When we pause the emulation for a duration of 100 ms at an interval of
100 ms and do not use the virtual time for OVS, we observe a perceived convergence
time of approximately 24 virtual time seconds. This is because the virtual time in the
hosts is equal to half the wall clock time due to the pause and resuming of the em-
ulation. However, when we put the OVS processes into virtual time, we observe the
correct behavior of approximately 48 seconds to re-establish the traffic path.

5.3.3. Effect on the Power Simulator. We consider a simple demand response application
consisting of a controllable energy storage device and a wind turbine. The wind tur-
bine acts as a dynamic power generator, while the energy storage device charges and
discharges power to stabilize the voltage of the system. Using the same ring topology
in Figure 11, we send traffic from a sensor monitoring the dynamic generation, to the
energy storage device at an interval of 100 ms that computes its discharge rate to
maintain system stability.

In Figure 13, we can see how the power system is affected by the inaccuracies in
the STP convergence time. The base case shows the correct operation of the system
under normal operating conditions without a link failure. In the case we have put
OVS processes in virtual time, we see that after the link failure, the energy storage
device receives new messages at about t = 67 seconds to re-establish the voltage of
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Fig. 13. Effect of STP on Power System: The time uses DSSnet’s clock. In the base case, we show the correct
operation of the system without link failure. In the case of OVS in virtual time, we observe system instability
until the communication network re-converges around t = 67 seconds. In the case without virtual time, we
see that the network improperly re-converges prematurely. The wall clock time between the link failure and
the re-convergence in the case of no virtual time for OVS (i.e., WC ∆T ) is equal to the virtual time for the
case with virtual time (i.e., VT ∆T ), and WC ∆T =VT ∆T .

the system. This result corresponds to the previous experimental data in Figure 12. In
the case that OVS is not in virtual time, it appears that the system stabilizes much
quicker, it is actually due to the error observed in Figure 12. The incorrect convergence
time may hide system instability that causes the system to fail.

Therefore, experiments with OVS not in virtual time, may lead to incorrect obser-
vations of the power system, potentially missing important events that could lead to
system instability or failure. While we highlight the effect of STP not in virtual time,
errors will be introduced for many other applications, such as flow metrics and rule
timeouts.

6. CASE STUDY: DEMAND RESPONSE
DSSnet is designed for testing smart grid applications that affect both the power grid
and the communication network. We now present a case study to analyze the behavior
of a microgrid demand response application using DSSnet and to illustrate the benefits
of an SDN-enabled microgrid.
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6.1. Experiment Setup
We model a microgrid using the IEEE 13-bus system (see Figure 14). The system’s
base voltage is 2.4 kV and the point of common coupling with the main power system
is at bus 650.

We consider a three-phase unbalanced microgrid with added distributed energy re-
source components and sensors. We add a renewable energy generator at bus 634 with
variable power output matching the wind turbine in Figure 13. Additionally, we utilize
three dynamic loads, an energy storage device, and a control center to control the en-
ergy storage device. The loads are added to buses 611, 652, and 692. Because the wind
turbine provides dynamic generation, and the loads also consume dynamic power, we
consider a control application that measures the output generated by the wind turbine
and power consumed by the loads, and subsequently charge or discharge the energy
storage device. The control center acts as the demand response server, which collects
energy usage output from the sensors monitoring the dynamic loads and the generator.
The control center processes the information to send control messages to the energy
storage device to stabilize the system’s voltage. Sensor information is sent every 100
ms from the generator and sensors to the control center. The control center computes
the balance per phase and sends the corresponding control messages to the energy
storage device.

The communication network is shown in Figure 15. There is one switch at each bus
as well as two additional switches enabling backup routes and multipath forwarding.
The control plane is a distributed ONOS cluster comprised of three ONOS instances,
connected to the microgrid communication network via a single switch. Each of the
three ONOS instances manages five switches as shown by the color of the switch in
Figure 15.

One major benefit of ONOS is the graphical interface, which shows the topology of
switches and hosts, as well as established flows, flow intents, and traffic metrics. Addi-
tionally, ONOS comes with many helpful out-of-the-box network management applica-
tions, enabling statistic collection, multi-path routing, and host-to-host intents. In our
case study, we use the multi-path routing and host-to-host intents to create the paths
from the loads to the control center, from the generator to the control center, and from
the control center to the energy storage device. Evaluating SDN-based networks is a
unique ability of DSSnet. To illustrate how SDN can be utilized in the power network,
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Fig. 15. The ONOS web GUI depicts the communication network for the simulated microgrid. The color
of the switches corresponds with the managing controller in the ONOS cluster. The bottom left shows the
options for displaying background maps, flow statistics, intent creation and more.

we design an experiment to study the effects of a link failure between the controller
and the energy storage device. By using the reactive forwarding and topology service
applications built into ONOS, we see the effects of self-healing in the network.

The power simulator runs in duty mode with a timestep of 1 ms. Synchronization
events sent from the communication network are sensor readings for the loads and
generator—as blocking events, as well as the energy storage charge and discharge
commands—as non-blocking events.

6.2. Experimental Results
We plot the single-phase voltages at buses 652 and 675 in Figure 16. The demand
response application shows that the voltage stability of the power system does not
vary greatly from the nominal voltage in the simulated microgrid. Specifically, we can
verify that the system does not deviate greater than 5% of the average value, meaning
the system is stable.

The results found in this case study show that our demand response application
successfully maintains the correct operation of the power system. The results provide
motivation for evaluating and designing SDN-based solutions for cyber attacks on the
demand response application as well as the communication network itself. In order to
see the effects on the power grid during a link failure, we take down the primary link
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Fig. 16. Voltage at bus 652 and the three phases at bus 675. In the base case, we show the operation of
our demand response application in an SDN enabled network. In the link failure case, we illustrate the
self-healing capabilities of ONOS. At time t = 3.2 s, the link between the control center and the energy
storage device fails. This causes a topology change that ONOS processes and assigns alternative flows from
the control center to the energy storage device. The fast recovery from the link failure shows that SDN can
be beneficial in the power grid. The circle illustrates the location and the effect of the link failure.

on the path from the control center to the energy storage device at time t = 3.2s sim-
ulating link failure. When the link goes down, SDN’s centralized view of the network
facilitates the quick response time at the order of milliseconds, causing minimal devia-
tion from the base case. In Section 5, we have shown the effects of link down events on
the decentralized spanning tree protocol. With a convergence time in the tens of sec-
onds, the demand response application could suffer more severe outages, causing the
power system to reach an unstable state. However, with the SDN applications provided
by ONOS, we can see that the effect is significantly reduced.

DSSnet can be used for planning and evaluating more complicated demand response
applications before being introduced to real systems. Additionally, since DSSnet pro-
vides real emulated network traffic, we can use DSSnet to study data injection attacks
that target the power grid applications and test corresponding SDN-based solutions,
such as SDN-enabled intrusion detection.
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7. CONCLUSION AND FUTURE WORK
We present DSSnet, a testing platform that combines an electrical power system simu-
lator and an SDN-based network emulator. DSSnet can be used to model and simulate
power flows, communication networks, and smart grid control application, and to eval-
uate the effect of network applications on the smart grid. Our future work includes
exploring means to extract emulation lookahead to improve the performance of this
hybrid system, as well as developing the hardware-in-the-loop version of the testbed,
i.e., to include real SDN switches and hosts. In the future, we will explore how SDN
can provide security benefits as well as vulnerabilities, such as controller failure. We
will also investigate several novel SDN applications for smart grid security and re-
silience, such as network-wide configuration verification, and context-aware intrusion
detection.
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