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Outline

= Background
— Wildfires and utilities
— Arcing faults
— Sensing and measurements on distribution systems

= Analytics of high-resolution grid data
— Overall approach
— Unsupervised learning for event detection and clustering
— Supervised learning for labeling events
— Data management and visualization

= Conclusion and future work
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Wildfire Extent in the United States, 1983-2020
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Data sources:

« NIFC (National Interagency Fire Center). 2021. Total wildland fires and acres (1983-2020). Accessed March 2021.
www.nifc.gov/firelnfo/firelnfo_stats_totalFires.html.

« Short, K.C. 2015. Sources and implications of bias and uncertainty in a century of U.S. wildfire activity data. Int. J. Wildland Fire
24(7):883-891.

For more information, visit U.S. EPA’s “Climate Change Indicators in the United States” at www.epa.gov/climate-indicators.

U.S. Environmental Protection Agency. Climate Change Indicators in the United States. Ecosystems, Wildfires. Accessed May 2021.
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https://www.epa.gov/climate-indicators/climate-change-indicators-wildfires

Debris-burning: 13.8%

Electrical power: 9.4%0

Vehicle: 8.8% B
fk Equipment use: 8.2%
f Arson: 7%
Wildfire Lightning: 6.4%

causes
2013 to 2017 — Campfire: 3.8%

\_I_\— Playing with fire: 1.4%
Smoking: 1.4%
Spurcg:
Miscellaneous: 14.8% 5 California
epartment
of Forestry and
Undetermined: 24.6% Fire Protection

https://www.sfchronicle.com/bayarea/article/How-California-s-biggest-wildfires-ignited-13907244.php Todd Trumbull / The Chronicle
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https://www.sfchronicle.com/bayarea/article/How-California-s-biggest-wildfires-ignited-13907244.php
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Arcing faults

= Definition of arc faults
— Arc flash, arc burst, arc fault...

— Fault current: a current that flows from one conductor to ground or to

another conductor owing to an abnormal connection (including an arc)
between the two

— For this work, faults induced by vegetation or insulation breakdown
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Detecting faults and measuring devices/systems

= Protection devices

— Relays
— Digital fault recorders A T oM A
0.001 MS e | Mhz 0.001 MS e ] Mhz
= Continuous measurements °-°w--mm§ (coow) 00 100k
0.1 ms =d10kHz 1O R = 0.1 ms =$=10 kHz
— SCADA : I}I;D 5
O 1.0 mMS e | KMz o 4 8 1.0 M3 wde | kHz :’
. o)) DOR SOE
— AMI (advanced metering £ vomat o1 ] L~ .~§
infrastructurE) § 100 M 0.01 kcHz @ 100 msede 0.01 iz 2
— PMU (phasor measurement unit) e s o L Bt
. 15 min st O Advanced 15 min ==
— Point-on-wave (POW) s
Event Triggered Devices Continuous Sampling Devices
Figure 18: Grid monitoring devices by resolution and data continuity
= Event records
_ H Silverstein, Alison, and Jim Follum. 2020. “High-Resolution,
OUtage d nd maintenance records Time-Synchronized Grid Monitoring Devices.” NASPI
— Device activation records
Lawrence Livermore National Laboratory INVYSE
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Sensors deployed

= microPMU = Electric Phenomena Cluster (EPC)
— Sampling rate: 512 samples per cycle — Sampling and reporting rate: 20,000
— Reporting rate: 120 samples per second samples per second
— Internal storage — Optical sensor processing unit, data

— Measurements (calculated) acquisition system (processing 14
_ channels analog outputs), local data
» Voltage and current magnitudes storage

* Phase angles — Measurements: voltage, current,

* Frequency acoustics, vibrations

+ Active and reactive power
EPC Sensor Installation 12kV/1200 amp

* Power factor

Data Processing and
3D Model Representation Feld instaliation Communication
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Data management and visualization

= Data storage needs per month
— microPMU: ~25 GB per device
— EPC~750 GB
— Cellular connection from device storage

= Database setup and data visualization P
— Data formats and conversion (.dat, COMTRADE) ({Q)
— PostgreSQL-based TimescaleDB \5
— Grafana for visualization

= Measurement verification and calibration
— PT/CT ratios
— Verification with existing measurement data (e.g., SCADA)

Lawrence Livermore National Laboratory
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SCADA vs. microPMU
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Overview of analytics

PMU Dataset - |
IReduced-dimension I
Igradient based detection|

Extracted PMU |
event

Possible arcing
event cluster

Filtered EPC EPC waveform data
waveform data

Identified arcing
event
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Gradient-based detection

= Filter events based on a set threshold
— Three-phase voltage magnitudes and phase angles, current magnitudes
and phase angles
— Three-phase active and reactive power

rms voltage rms current voltage angle current angle
)
h"
~ Active power  Reactive power
Lawrence Livermore National Laboratory NUYSE -
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Gradient-based detection

= Reduced-order dataset
— Principal component analysis
— reduced data space to 2
— Filtering w separate variables either missed a lot of events or captured
too many events when threshold set low
— Normal bounds of the reduced order set by a “norma

III

day + epsilon

-W = . . .
WA P Eliminate non-arcing events
i RS WA Al i - Voltage regulation (cap bank
:W. | : i | switch, tap changes)

- Fuse and reclosers
- Motor start inrush

Lawrence Livermore National Laboratory N A‘ Sc’.’»‘é 14

LLNL-PRES-823699 Mo Moo S e vy dcbemnn st



Sample fault signatures
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Clustering of events

= Dynamic time warping
— Calculate similarity between the captured events

= K-means clustering
— Find optimal number of clusters with elbow method
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Analysis of captured events — example

= Voltage step change and current transients

Voltage mag
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Overview of analytics

PMU Dataset

| Reduced-dimension
I gradient based filtering

Extracted PMU
event

Possible arcing
event cluster

Identified arcing
event

Filtered EPC
waveform data

EPC waveform data
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Supervised learning of arcing events

= Electric grid waveform signature library
— Pool of labeled grid signatures including arcing faults
« ORNL signature library https://darknet-01.ornl.gov/apps/siglib
(this includes signature library from Texas A&M)
- DOE/EPRI National Database Repository of Power System Events
https://pgmon.epri.com

= Filtering waveform signatures for classifier training
— Fast Fourier transformation (FFT)
- filter out normal frequency
— Inverse FFT of filtered event
— transform back to time domain with normal signal filtered out
— Noise attenuation
- wavelet shrinkage denoising

= Apply different classifiers to find the best fit

Lawrence Livermore National Laboratory N A‘S@“ 19
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Filtering waveform signatures

= Filtered waveform data of arcing event

volt_L1 volt_L2 volt_L3
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Supervised learning of arcing events

Nearest Neighbors Linear SVM RBF SVM

= Application of
classifiers on filtered

-
e o
-

data
Nearest neighbors .87
Linear support vector .79

Gausslan Process Random Forest

machine (SVM)
Radial-basis function SVM .83

Gaussian process .79
Decision tree .83
Random forest .89
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Conclusion and future work

= Unsupervised anomaly detection and clustering
— High-resolution measurements (synchrophasors, waveform)
— Gradient-based detection in a reduced space
— Needs user inspection and input for labeling

= Supervised classification with waveform data
— Subcycle to few-cycle events difficult to identify with synchrophasor
measurements
— Threshold-based waveform data filtering can capture too many events
including noisy measurements
— Existing signature libraries (although not extensive) can help classify
arcing events from phasor measurement events

= Future work
— Filter events with waveform data trained classifier
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