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Convergence of Al, Physics, Computing, and
Control for Intelligent Power System Control

An example from ARPA-E HADREC: Al-enhanced
grid emergency control

Recent progress in Al for grid operation
Summary and perspectives
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Grid Transformation: Increasing Renewables and
Rapidly Changing Operation Conditions

4 IEEE

EIA projects renewables share of U.S. electricity generation mix California ISO net load “duck curve”
will double by 2050

U.5. electricity generation, AEQO2021 Reference case (2010-2050)
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Big Challenges in Grid Operation and Control

September 8, 2011 Pacific
Southwest Blackout in U.S.

60.2

60.1

I multiple events

< 5 sintervals e

59.8
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59.6

59.5

Frequency (Hz)

594

59.3

59.2

Sequence of Events

[1] https://www.texastribune.org/2021/02/18/texas-power-outages-ercot/
[2] http://www.ercot.com/content/wcm/key_documents_lists/225373/Urgent_Board_of_Directors_Meeting_2-24-2021.pdf

Texas was “seconds and minutes” away from
catastrophic monthslong blackouts[1]

10 mins

Entered EEA 3 1,000 MW Load-shed Ordered

with } W\
'\

35,343 MW Generation
Capacity Out as of 1:23 am

Additional 2,000 MW
Load-Shed Ordered

®
1,418 MW Generation Outages — '\-"o"_ (Total 10 500 MW) Y
1:26am - 1:42am o P
>low 59.4 Hz for 4m 23s /
248 MW Generation Outages N Yiore Gen Units would have tripped
if below 59.4 for 9m or more 594 MW Generation
329 MW Generation Outages Qutages
®, [ }
Additional 1,000 MW f N
Load-Shed Ordered 606 MW 843 MW Generation Outages
(Total 2,000 MW) Generation 841 MW Generation Outages
Outages
688 MW Generation Outages @, Additional 3,500 MW
\ Load-Shed Ordered

511 MW Generation Outages ————@,

(Total 8,500 MW)
Additional 3,000 MW @ Min Frequency 59.302 Hz
Load-Shed Ordered
(Total 5,000 MW)
1:23 1:33 1:43 153 2:.03

Local time Credit: ERCOT




The Grand Challenge of Achieving Intelligent Emergency\ @Es SIEEE

Control

 Power system post-event emergency control has strong requirements:
» Scalability: >20,000 buses (with 1000s of control devices)
» Solution time: < 5 seconds
» Security and adaptability (to fast-changing conditions)

* Existing control methods and issues:
» Rule-based control (not adaptive, time-consuming to develop and update them)
» Model-predictive control (scalability and solution time issues)
» Learning-based (or data-driven) control (scalability, security and adaptability issues)
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Can we bring successes in games to \

https://www.wecc.org/epubs/
StateOfThelnterconnection/
Credit: OpenAl Pages/Western-Interconnection.aspx



https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
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Deep Reinforcement Learning \ i

* Reinforcement learning is designed for solving p
sequential decision-making problems Agent (policy) is represented by

deep neural network

. . . . ;"; Control
 The agent learns a control policy iteratively through ovseraons [) - [ o
interacting with the environment via trial-and-errors =

—
guided by the reward signal

Agent

+ Reinforcement Learning

Environment

\
* Deep Reinforcement Learning = Deep learning e

St — St+1

* Previous work on RL-based power system operation *  Power Grid
and control showed promising results, but focused on
small-scale studies, e.g., IEEE 39-bus test system.




Key Challenges in Deep Reinforcement Learning for\ @’Es IEEE

Large-scale Grid Control

Goal

Scalability (# 20.000
of buses)

Adaptability
(to changing operation conditions)

Safety
(Security)




Advanced Computing Powers Al Breakthroughs

—
Deep and steep

Computing power used in training Al systems
Days spent calculating at one petaflop per second*, log scale

By fundamentals AlphaGo Zero b it 4% gdsdgmonth o
phala0 £Lero becomes Its own 4 doubling 10
©Language @ Speech @ Vision teacher of the game Go o,
O Games @ Other ,,cp !
AlexNet, image classification with ;:go 0.1
deep convolutional neural networks —@ :
o
7 0.01
o} (o o]
. . Yo 0001
O - - .
o=@ 0.0001
Two-year doubling ____.o-"" o
— (Moore’sl_aw) _— “_-__,-r"— . B R R e S . 000001
____,--"" < Firstera=> - Modern era 0.000001
----- "Perce tron, a simple artificial neural network
_.,r./ p : P | : : : : 0.0000001
1960 70 80 90 2000 10 20

Source: OpenAl *1 petaflop=10"> calculations

The Economist
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“The biggest lesson that can be read from
70 years of Al research is that general
methods that leverage computation are
ultimately the most effective, and by a
large margin.”

-- Professor Rich Sutton

Source: http://www.incompleteideas.net/Incldeas/BitterLesson.html



Physics Help Overcome Data Limitations and Enhance AI\ @s ¢ IEEE
Most Al applications in Observational bias Inductive bias Learning bias

power systems
) A - X

4 L

Small data Some data Big data Physics-informed machine learning
Data ¥ ¥ ¥
il Physics
Lots of physics Some physics No physics ‘ k
Symmetry Conservation laws Dynamics

Availability of data and physics for Al. (Source: [1])
Methods for embedding physics into Al. (Source: [1])

[1] Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 422—-440 (2021)
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Control for Decision-making at Scale

Data-driven control

e Strong connections o —
Principle, objective
among them
 Overcome some key

. S
W
advancements in Physics
o

challenges in each
others ( Power

domain by leveraging

* Many recent systems, DERs,
breakthroughs are
due to similar

convergences Q,,> 2 N
e AlphaGo 8 @‘7@5
« AlphaStar o °. N
. R
AlphaFold S S

Simulation



ARPA-E HADREC

Al-enhanced Real-time Grid
Emergency Control
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ARPA-E HADREC: High Performance Adaptive Deep Met (ﬁ s
Reinforcement Learning for Grid Emergency Control

Objective: to construct an intelligent, real-time emergency control decision-support tool to
provide effective and fast control actions to system operators in response to large

contingencies or extreme events.
Project team:

Power system « PNNL

Measurements Control Signals Measurements Control Signals
* V&R Energy

* Google
* PacifiCorp

Energy Management System (EMS) Energy Management System (EMS)
s —
ate J Apply Control Actions monitoring
Alarms pparameters, . . .
(c' ‘Q f‘g" bus Select, validate, &
requency, /
voltage, apply control actions
Decision-Making tie-lme flows
Recommend control T

actions in real-time

» Operators’

N ] memory & <ate2,  An Al based decision
experience
‘ bNoF:ebook .. % support tool for

» Look-up table Mee operators

Project summary website: https://arpa-e.energy.gov/technologies/projects/high-performance-adaptive-deep-reinforcement-
learning-based-real-time
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Develop Al-enhanced Solutions for Large-scale \ @:Es

A WECC-
Size system
A synthetic (~20K-bus)

https://electricgrids.engr.tamu.edu/electric-
grid-test-cases/activsg2000/

Texas e 2022
System
O
IEEE (2000-bus)
e 2021
300_b u S https://www.wecc.org/epubs/
Three dynamic emergency control schemes: aes /W ::t"‘:fr?E:‘;':::;ce‘:t‘l';?:::){
e 2020 * Under voltage load shedding '

* Generator tripping
e Controlled islanding


https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/
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We Addressed the Challenges by Fusing Al, Physics,
Advanced Computing, and Control

* Parallel Augmented Random

Search (PARS) algorithm|[1], A Our goal

* High performance power ot toa 20000 ¢mm we are here ©
system simulation platform
GridPACK [2] 2,000

* Smart sampling for scenario

reduction [3] 1

>
i Adaptability
* Physics-informed PARS [4]:
incorporate physics ey /. * Deep meta-reinforcement learning (meta-
knowledge through a trainable learning + PARS)[6]: realize fast adaptation
action mask (~5 mins) of control policies to changing
e Safe PARS [5]: control barrier grid conditions

function + PARS

[1]1 R. Huang, et al “Accelerated Derivative-free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage Control,” IEEE Trans. on Power Systems, 2021

[2] GridPACK, https://www.gridpack.org/

[3[ X. Sun et al., "Smart Sampling for Reduced and Representative Power System Scenario Selection," in IEEE Open Access Journal of Power and Energy, vol. 8, pp. 293-302, 2021
[4] D. Yan, et al “Physics-informed Evolutionary Strategy based Control for Mitigating Delayed Voltage Recovery”, IEEE Trans. on Power Systems, 2022

[5] T. Vu, et al. "Safe Reinforcement Learning for Emergency Load Shedding of Power Systems." In Proc of IEEE PES General Meeting 2021



https://www.gridpack.org/
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HPC-based Platform e

DRL OpenAl :
* Scalable from laptop to HPC clusters/clouds by algorithms Gym _ CrMdPACK

developing our solutions on top of the RAY
platform.

* OpenAl Gym, a de facto toolkit for environment
and interface definition. HPC cluster/Cloud

Figure 2 Architecture of the platform for training and
testing

Execution Module

Learning Module Real-time Monitoring, Operation & Control

1 i
I I |
| h 1
| I
I Off-line Massive Parallel Training, Interactions between . - validated |
| Learning Algorithm and Power Grid Simulator i 1 Real-Time AlLes Controls !
| ) I 1 Emergenc #| Fast-than-Real-Time !
Observations and Rewards | o I gency S !
\ Validation 1
I = i1 Controls
| Smart sampled Power ; ¥ 1 _—T :
1 System Models, ; = Deep Meta- [ " -2 I3 Py
: Topologies, and Scenarios Power Grid Q R einf::rcem ent I Emergency B g = gy S :
ridPACK R Control Decision- | . === i s
: Smart Sampled gimilatcor = P 1| Making Module " ' =L !
| Contingencies and % Algorithms 1 =0 W 9 :
: Extreme Events F | : : |
I 2 | Emergency Control 1 EMS |
| . [} . . 3
Actions Real-Time Situation 1
I ' Measurements
: Massive HPC-based Parallel Training Procedures : : & States Awareness Measure :
X ' ments 1

Figure 1 lllustration of the HADREC Methodology




4 IEEE

Parallel Augmented Random Search (ARS) Algorith @ES

Basic idea: Estimate the gradient using random search

1 i ARS Learner i
VF(Q) ~ % E {F(e -+ 0_6)6} where € N(O, I) sample perturbed policies
1=1 _ —_ e O+g, O+e, O+,
' Policy . Policy - Policy
NI o S e =l Inherent Worker 0 Worker i Worker N
ARSI  CERESRR RN parallelism in -
s y \ P evaluate policies
44. - oy .
. B the exploration
o S, =
N Q““\‘,_‘};,:‘\\me(!,? ‘:‘ : by Environment Environment Environment
% "’[’,OQ:‘“\‘SV!:“”’Q‘ "’ﬁ“ : Rollouts Rollouts Rollouts
Ch Rc Ri RN
Two-level Parallelism of PARS

R. Huang, et al “Accelerated Derivative-free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage Control,” IEEE Trans. on Power Systems, 2021
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Physics-informed DMRL Enhances Training ]
Efficiency and Control Robustness

. Power system community have developed vast amount of domain knowledge in forms of
physics laws, standards, rules, and performance requirements.

. Physics-informed Deep Meta-Reinforcement Learning (DMRL): we incorporated system
performance requirements as a trainable action mask (TAM) into the agent and significantly
improved its sampling efficiency and robustness[1].

o omamaeeme Action mask | Control
Check local bus voltage ! Test t Latent -
I e R variable ’| agent
action b e T l[a T R =) | pp—— = = = = = = = = = — o
vector State |’
1 Le:arr)ed# A/
------------------------------------------------------------------------------ TAM [1]0]1]0[ 1}« Criterion|,
_________ = v
observations s o Action (e

Incorporate prior knowledge into the agent with

. . Incorporate prior knowledge with TAM [1]
a fixed action mask [1]

[1] Y. Du, Q. Huang, R. Huang; T. Yin; J. Tan; W.Yu; X. Li, "Physics-informed Evolutionary Strategy based Control for Mitigating Delayed Voltage Recovery," in IEEE Transactions on
Power Systems, doi: 10.1109/TPWRS.2021.3132328.
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Deep Meta-Reinforcement Learning (DMRL) for
Addressing the Adaptability Issue

. Learning a universal control policy for very different Observation s;, Reward r // e
ne-size-

: . . . I
grid conditions is challenging and not scalable. N _@ fits-all
— solution
o

Action a;

* A one-size-fits-all-solution .
. Humans behave adaptively based on the context. \ )
e Q: How to help the agent learn the context and adapt
the control strategies accordingly?
. DMRL (meta-learning + PARS): learn a latent context

automatically through Bayesian optimization in the

~

Observation s;, Reward r; Power flow base
/ é Flexible-
Action a /_ W size-fits-all
Agent - .
‘ | ||~ solution
Inner loop (RL — PARS in this paper) /W

Outer loop (Meta RL — MSO in this paper ) <

~

outer loop. g8 c:
A flexible-size-fits-all-solution E‘E

-

R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Trans. on

Power Systems, 2021
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Meta-training and Fast Adaptation to Changing
Operation Condition

g :
E a
< Hour Ahead
Day Ahead | .
y (Intra-hour) ‘; Real Time

(minutes ahead to now)

Day-ahead  Hour-ahead (or : gmwmg ! e
. - ! for adaptation _; R i e
' training lintra-hour) training : : - | ume
! n s Meta-learning , : I I —
1 : :
i Power system | mesp  Adaptation : i 9
: uncertainty . , || Test Test
I . Meta‘learﬂlng state ! geaci i | |contingency || environment
| boundary . J
' Forecast system states  Universal ‘Adapted __ ¥ v
lI ’ 0 ¥ | control 'control | Deploy the adapted
[ | policy strategy control strategy
Time : ; » andtestiton the
: ' real-time system
Now Future ! 3 s
Meta-training stage E Adaptation stage i Deployment stage

Learning and adaptation to overcome increasing
uncertainties

R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Trans. on
Power Systems, 2021

The procedure fits into existing operation time framework
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An Example: Load Shedding for Emergency @Es
Voltage Control
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/ \ 0,: Observations

154 bus voltage magnitudes and 46 bus load levels
5 __'_: i — “"""'"I""‘q_'_ __'_—'___" Ot Inpt Inyer Hielebem Tpeirs o Dneput lnyer
Jo e ||1___.'.L_I_ w e w2 I;I_ —— i b b 0
At 4rovem O R T8 e = Ir=sd B |12 r¢(for training) | L NN :
i ..E.. i __' " npt ( -
ST ST e g TN g
: o ™ e : C ARl | e Ingrut 2 i ] o]
52t P L o] ﬁ-’fﬂﬁ ;.#M : , |
I P Ty b vy 1o LA | 2\ - (for illustration
1 ¢ Tl .,_,_,.:H...,_,_......_I.I..‘.... n !| _n:. o L o . ; () ) {}ul::aui_u onIy)
nf| __”_ g-— ; -‘--r -I I.. 1 | _j':' : m_'.’_",_'_'._._,‘_‘:,_ at Ingut f | _I :
£ IE gl I U H i
o h_ ‘.. TN - : _I_l -=| 9 1 : :
o =0l ¢l __L S>LTE" A Neural Network for representing agent’s policy

: Acti
QEE 300-bus system model / a.: Actions
(@)

46 load substations could shed load.

(@)

Each area, for each training time step, the load could be shed
between 0% and 20% .

o The action space is 46.

R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactions on Power Systems, accepted, 2022




Reward Function Design

ot
S 2P Pe
& oo

o

Voltage (p.u.)

0.2 fi L
0 1 2 3 4

Time (Seonds)

Bus voltage performance requirement

(epes

Power & Energy Society®

4 IEEE

Voltage criteria Load shedding Invalid actions

L/

Cl Z AVI - CZ Z AI)] (pu) - c3uinvalid
i J

Large-penalty for

non-acceptable

Reward =< i
—10000, if Vi(t) < 0.95, t>T,;+4 performance
min{V;(1)=0.7,03, i Ty s <1< Ty +0.33 Vet the
AV ()= min{V(£)=0.8,0}, if T, g, +033<t<T,,, 1, +0.5 minimum
C mingV(6)-0.9,03, if T, 4, +05<t<T,, o +1.5 performance
min{V,(1)~0.95,0}, if T, ., +1.5<1 requirement

Reward Function

R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactions on

Power Systems, accepted, 2022
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Parallel ARS Algorithm Test Results -

* Emergency voltage control on the IEEE 300-bus system

4 IEEE

B: 300-Bus led A led B

& -1.3; —— ARS
% 1.3] —— PPO

—— PPO 27
0 200 400 600 800 1000 1200 2% o 5 10 15 20 25 2% i 3 3 4 5
# of Cores Training Time (hr) Training Time (hr)

PPO: Proximal Policy Optimization
High scalability of Parallel ARS Much faster and more robust training with larger average rewards using
Parallel ARS

R. Huang, Y. Chen, T. Yin, X. Li, A. Li, J. Tan, W. Yu, Y. Liu, Q. Huang. “Accelerated Derivative-Free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage
Control,” in IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 14-25, Jan. 2022, doi: 10.1109/TPWRS.2021.3095179.
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Deep Meta-Reinforcement Learning Test Results

Positive is better
Training 11.6 hours 9.5 hours 200 * Improved control
()]
Adaptation 5.3 mins N/A N/A 5 7 effectiveness =
9]
Solution time 0.7 sec 0.7 sec 63.3 sec 507
o % 20000 15000 ~10000 —5000 0 5000 10000 15000 20000
*MPC: Model-predictive control DMRL Reward - PARS Reward
1.0
2000
All test scenarlc?s 0.8 ! S
are unseen during - : =
- E ! S 1500
training do.6 ! g
g ! 2
S04 E: ---- Voltage Erwelnpe j: 1000
; T No Shedding 0
| -
05 il —— PARS £ 500 —— PARS
' i —— DMRL a — DMRL
il —— MPC — MPC
0.0 B 0
0 1 2 3 a 5 ) 1 2 3 a 5
Time (sec) Time (sec)

R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactions on
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Physics-informed DMRL Test Results o

Physics-informed DMRL enhances training efficiency by 3X and control robustness by 75%

led
0.0 — Method Average test reward | No. of failed cases
o5 - : ARS —1.27 x 107 72
' Guided ES —5.6 x 103 17

T 1.0 Guided meta ES —4.3 x 107 12
% Guided meta ES + mask —2.8 x 10° 8
£ -1 Guided meta ES + TAM ~1.89 x 10° 3
£ 2.0 MPC —1.82 x 10° 3
©
ﬁ —2.5 Guided meta ES + TAM
> —— Guided ES -~ 1.0 ~ 10
5 —3.01 4 i —— Guided meta ES il:l s 3
S 35 . —— Guided meta ES + mask i E“'TE

-3. ! , o 0.5 2 0.5

- Guided meta ES + TAM ] g
404 ! ——_— ©0.25 0.25
4.0 Reward threshold > === Voltage envelopa = o ==+ Voltage envelope
‘ - : : - - o0 _=* S — .
0 10 20 30 40 50 01 2 3 456 7 8 910 012 3 456 7 8B 910
Iterations (x10) Time(s) Time{s)
Training results Test results based on 136 new scenarios

Y. Du, Q. Huang, R. Huang; T.Yin; J. Tan; W.Yu; X. Li, "Physics-informed Evolutionary Strategy based Control for Mitigating Delayed Voltage Recovery," in IEEE Transactions on
Power Systems, 2022,doi: 10.1109/TPWRS.2021.3132328.
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A 2000-bus Synthetic Texas System S e

Hourly Average Solar MW Hourly Average Hydro MW

500 1000

400

300

H

=]
200

Tirme Time
Hourly Average Wind MW Hourly Average Net Load MW

ek

000D
50000

Z 40000

=
30000

20000

@ Coal () Wind () Solar (3 Hydro (% Matural Gas Muclear

Hourly renewable
outputs and net load
demands

Single-line diagram Generation mix based
on EIA data

Source: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/
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Physics-informed Training

Physics: the voltage stability problem in
power systems are mostly local issues

T o Ay P R e P .
B i gk B s i an el o R B

“MEMH

e FIe

BN S, T R W g N e
PR G e el | e e S8 B R
e fr Bei ymitwin Sww b e b
P i et v O e o SRR R Sl B

1. Areas are loosely coupled for voltage
problems

2. Yet, actions in two or three of the
regions are required for faults near or
at the boundary of the regions.

3. Solutions: divided training and then
coordinative training
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Datasets for Training and Testing of Al-based \ @Es

iety®

Emergency Voltage Control

1440 power flow cases

Smart sampling (2 months) \‘ Smart sampling

200 power flow
cases

—_—

100 power flow ==
cases

140 fault buses,
1 fault duration

- 14,000
scenarios
(0.1s) —

Smart Smart
N samilini sampling
Training data set
~2000 buses

280 fault buses,
4 fault durations —
within [0.08, 0.4]

Test data set

56,000

scenarios

X. Sun et al., "Smart Sampling for Reduced and Representative Power System Scenario Selection," in IEEE Open Access Journal of Power and Energy, vol. 8,

4 IEEE
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Off-line Testing Results: Comparison with Rule-based\ @Es
Under-voltage Load Shedding (UVLS) Control

* Reduce load shedding by 26% on average while improving the control performance
* More selective in load shedding locations, and more intelligent in the action time and amount
* Meet real-time control requirements: 0.7 second for determining solutions for 80 control intervals

1600 - 15000

12500

10000

7500

5000

2500

W
\
\\

300

Counts

250

200

150

100

50

-20 o 20 40 60
Percentage of Load MSO Shed Less than UVLS

0- . :
-42000 —-4000 —-2000 0 2000

MSO Reward - UVLS Reward

Histogram of % reduced load shedding compared with Objective vzlue (total reward) differences
the existing UVLS (positive is better) (positive is better)

4000 42000




ARPA-E HADREC

Integration with V&R Energy’s
Tools and Demonstration
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HADREC Demonstration Setup

Observations
Situational - Hybrid control module
5, Control
- linfo -
| . A 3
| based haced
: .
) Control O 0 0o 0O
Processedand | = Tt mode
expanded PMUs Control slectio
actions

Linear State
estimation
results

V&R LSE

PMU

Measurements

environments Control actions

simulated by
GridPACK

Linear State /%'% Dynamic models in
estimation PSS/E format
results

Real-world

V&R ROSE

grid data ( Power flow W

V&R
Tools

» shapshots in
t PSS/E format

HADREC Intermediate :r
Algorithms data or files !

Users/Grid
operators

________________

—————————————————
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Power System State Estimator \ @Es

 Main tool to assess reliability and stability of a power system in real-time
environment at a utility/ISO:
* Basis for all advanced applications and market applications

 Designed to produce a system state based on the “best estimate” of the system
voltages and phase angles:
* Provided that there are errors in the measured quantities; and
* That there is a redundancy in measurements

* Minimizes the sum of the squares of the differences between the measured and
estimated values of variables:

* Voltage magnitude
e Current on the branches
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Importance of Linear State Estimator \ @Es

 Linear State Estimator (LSE) is based on PMU measurements of voltage and

current:
* Voltage and current vectors are considered as the state variable

 Advantages of LSE:

* Improves real-time resilience:
A backup to the conventional SE solution if it fails to solve or SCADA data is not available

* Improves real-time reliability:
A check/validation for the quality of conventional state estimator

* High speed of state estimation due to using a direct non-iterative solution
Solves at PMU sample rate (30 times/sec — transmission system or 60 times/sec — distribution

system)
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Introduction to V&R Energy’s PMU ROSE ( o
LSE POM Server LSE PMU Viewer
LSE
S e I' s | [rovememesecom |

Event Detection Contingency Voltage Stability
Reporting Analysis Analysis
T

l Qutput/Archiving/Alraming ‘

[ Visualization ’

. Bad data detection and conditioning
. Observability analysis

. Linear state estimation based on weighted least squares method
. Creation of conditioned and expanded PMU streams

. Visualization and data stream APIs

. Creation of PMU-based LSE cases

. Advanced applications based on LSE cases
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Integration of PMU ROSE with GridPACK \ @P ®
Input: Output:

e State Estimator cases: e Processed data after LSE for PMU locations

» Network parameters, connectivity, and observable locations

initial topology e Estimated data for locations where PMUs are

e PMU datain IEEE Standard installed

C37.118 e Additional “calculated PMUs” at locations identified

through observability analysis

: * Includes voltage magnitude and phase angle, and
mappfmgd.ff current amplitude and phase angle
Data tor different «  Reports:

scenarios/events was simulated + Bad data reports

e Observability reports
e Alarms:
* Event-related and PMU-related

Archives, logs

e State Estimator to PMU signal



SE POM Server for Demonstration -1
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Power & Energy Society®

File View Tools Window Help

P M U d t . t h Il oM Stucio 2021 Net - C:\WorkVR Projects\PNNLVRPA-E_PrinL_2019\Runs_are-Evwor I —

A -@ @ | k% ke G

realistic properties =~

cHP O
~ Mode
(e.g.’ nolse’ bad ': .Biza\fﬂme Off - Line
‘Options
4 Input General

data) was .

4 PMU Reader PMU Reader Configuration

Reader CsvReader

f

e n e r a t e d b : 4 PMU G Reder PHU Cov Reader G
PMU CSV Filename Input Files\PMU_data_jimb_jan_oos_Apr21l.csv

Mapping File: Input Files\PmuMapping V3.csv
PMUs 1488
Signals 1488

Waiting for configuzration frame

LSE started...

Gathering signal statistics

Gathering signal statistics finished
0.582 ms

New Session created: 06/02/2022 17:42:47
| Bad_Sicnals(o)
Event Started: 202
Event Ended: 2021.01.01 00:00:16.100
PMU stream has ended. (2022.06.02 17:42:46.008)

Execution time: 33.99 s
Activity was successfully exescuted.

Repeat Count 1
. - » Samples String[] Array 5% fimioned
- Use PMU Time True
G rl d PAC K SlaleE - Time Format yyyy-MH-dd fif
~lele Respect Time True
Period 00.00:00:00.100

Sent to LSE POM o

TimeStamp Header Ti
» PMU System
b VLS System Options Wis Configuration
S } Filtering Filtering System C ion
e r Ve r a e ra e » Bad Data Bad Data Configuration
4 PMU Server PMU Server Configuration
Enable True
f 1 O f Y Y L Configuration Server Ad...| 127.0.0.1:13200
O p S e G PMU Connections (Collection)
. 2 - Observable Connections _ (Collection)
>1ela Frame Rate 10
Use PMU Time False
Mazximum Number Of Cli... | O
¥ | » EventDetector Event Detector G ion
< > ¥ Archiver LseArchiverOptions { Enabled = True, Pmulse = True, ObservableLse = True }

Oneline [ NZES Plot ¥ Logging Logging Configuration

||Area [ \|0wner\

Branches Transformers Areas InterareaTransfer

© 1997-2022 V&R Enerc
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LSE POM Server for Demonstration — 2 \ @;;Fs
¢ LSE functionalities for ngggﬁnzmm PMU State Estimator State Estimator
demo include: el i B
* Bad data detection and X " " ]
conditioning; S ole
* Filtering & smoothing; # |

* Weighted Least Squares

Methods (WLS); . ‘
* Event detection; Observability Analysis
* Alarming;

|
* Visualization.

¥

Weighted Least Squares
Method

i Processed
ReportsfArchive PIMU Stream Logs




LSE PMU Viewer for Real-Time Situational Awareness - Y (Es <©IEEE

Power & Eﬁergy Society®

* Visualizes:

* PMU
measurements

e Data processed
by LSE

* Displays:

* Events
e Alarms
e Bad Data

Bus Fault Event

© 2022 V&I

LSE POM Server identified a bus fault event in PacifiCorp system
and PMU Viewer displayed an alarm




HADREC performance on the PacifiCorp system. (Gpes | GIEEE

arpa-e HADREC DEMO

MSO Control Action Messages:
TOPOLOGY

Meta Strategy Optimization

3.1s, Gen 18 ID1 tripped, 302.98MW

, Gen 9 ID1 tripped, 95.4MW

, Gen 10 ID1 tripped, 106.58MW
,Gen 11 1D1 tripped, 164.63MW
, Gen 12 ID1 tripped, 248.66MW
, Gen 18 ID1 tripped, 302.98MW
, Gen 20 ID1 tripped, 44.11MW

, Gen 20 ID2 tripped, 44.11MW

, Gen 25 ID1 tripped, 47.37MW

generation tripped: 1053.84MW

em Faults:

« HADREC: 1 generator tripped, 300MW total « ~20% improvement in responding time and 70%

« Out of Step (OOS): 8 generators tripped, 1 GW total improved in tripped generator output
 HADREC technology integrated with V&R'’s real-time
situational awareness tool (ROSE)

40



. B Chadon o @ Interac
REC DEMO

Meta Strategy Optimization

@ Interactives data vis.

TOPOLOGY
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The Al Algorithms and Grid Simulation \ @E"‘" N4
Environment are Open-sourced

Al algorithms and training source codes
 https://github.com/pnnl/HADREC/

* High-performance grid simulation environment based on GridPACK
 https://github.com/GridOPTICS/GridPACK

* Python wrapper for OpenAl-gym interface:
https://github.com/GridOPTICS/GridPACK/tree/master/python



https://github.com/pnnl/HADREC/
https://github.com/GridOPTICS/GridPACK
https://github.com/GridOPTICS/GridPACK/tree/master/python

Recent progress In
Al for Grid
Operation



PNNL's Recent progress in Al for power systems\ ( o QIEEE
Al/ML — Capabilities: Al/ML — Accomplishments:
« DOE PMU “Big Data Analytics” FOA. * Operation and Control
Anonymized and placed in dedicated * LACC: Reduce overshot magnitude during
cloud environment fault by more than 10X
 ~30 TB data, 600B records, 394 PMUs * MANGO: Adjust real-time operating points
* Full blown PMU network could be >1 for damping improvement
petabytes/year. e TRAST: Actively learning preventive
* EIOC dedicated “reliability grade” measure in real time for graceful

streaming data storage and curation degradation

* Approaching petabyte capacity to support * Planning | |
research and industry collaboration * HIPPO: 35x faster optimal solutions for $SBs

* ARPA-E data repositories (real and energy savings
synthetic data)

* Positioned to provide NAERM support

and hosting as the real-time system is Google  %PACIFICORP [, VER Energy
developed =~ WM IDAHO Bonneville
REFOIER g £MISO
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PNNL Applies Al to Increase System Transparency an @s
Grid Reliability, Security and Efficiency

T T T T T
—PID ‘ ‘ ) | Disturbance Occurrence |
4 7L R H
[ ___ADRC I __ADRC
___ADRC+GSES 6 ___ ADRC+GSES i
| Low Damping Detected |

A

No Control
/

Modulation Control
such as PSS, PDCI Modulation

1 (pu)
~
Lo

Original Operating Point

MANGO

New Operating Point

‘ ‘ ‘ ;
9.5 10 105 " 1.5 <
Time (Se¢) Ambient Environment  Disturbed Environment

I I I I
9.8 10 10.2 104 10.6 10.8 1"

Time (Sec) >

t

LACC: Al-based online controller parameter optimization and

MANGO: Grid damping improvement through Al-enabled active
adaption

operating point adjustment

Machine Learning
Toolbox

Tie-line/Path
Power flows g

Neural Network = i A
Generation Higden 15t RAS Search for ormueen .
1 it " -
Plant output g o Coefficient optimal solutions
Capacitor Shunt =
Compensation 2" RAS
Coefficient
Series Enhan.
Compensation
Substation
Voltage
. Certify ‘ Relaxed 'Sl Define Search Y Solve MIP = :colution
> optimal solutions Formulation v Region B&B
Levels

Transformative Remedial Action Scheme Tool (TRAST) HIPPO: Al accelerates solving power market

cIearini iroblems

'

Define Search B Solve MIP [ UB solution
Region B&B -

Improwv.
Guilder

Formula
tion

N-th RAS
Coefficient
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New Hardware and Software Ecosystem for Grid

| \ ¢ IEEE

Edge Intelligence

APPLICATIONS
B @ —
o[14%) ~ ~e =
kg X Y% s B 4 E B 5
__.’ A .
Customer Autonomous Surgical Vegetation RO?S;SC:OIW Fa‘j'lt ut\:/c;nhci;;l;us Customer Security &
Energy Use Microgrid Load y Location & Service Kyc, Outage
4 e i Management Management ; Power
Analysis Optimization Shedding Isolation o Ma ment Call Center, Nlp ~ Management

GRID OPERATION SERVICES

PLATFORM TOOLS

@E% %M AP| ;V.IT&IR:H @ ‘r:l'\.:l?)‘:;xl—l’c SDK m g_%?j(nm
SAnvipia I Bnet = — e
Al & DATA DATA BUS COMMS COMPUTE RENDERING SE
ANALYTICS & API MANAGEMENT UTILIZATION & VISUALIZATION

¥ ©

Dynamic
Load And
Planning & More

—«Balaneing

FLEET
MANAGER
MORPHEUS

CURITY & APPLICATION
MANAGEMENT

Smart grid chip with GPU for
edge computing and Al

Open-source software ecosystem for the
grid edge intelligence
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Summary

Fast and intelligent control and decision-making at the control centers and the
edge is required to operate the grid reliably and efficiently.

Al such as DRL, when combined with physics and advanced computing, can be an
essential part of the solution.

We demonstrated fast and intelligent emergency controls for a Texas-size system
and WECC system is achievable through fusing Al, physics, computing, control.
We developed datasets and Al-based solutions for enhancing renewable
integration, system operation, reliability management and market solution.



Perspective: Distributed Control with Edge Al \ (CES < IEEE

and Coordination with Centralized Control

e Distributed control with edge computing and Al helps manage and coordinate up to millions of DERs.

* Coordinating centralized and distributed control as well as computing is critical for large-scale clean energy
integration and FERC 2222 compliance.

* Federated learning and control can help overcome the data privacy and security concerns.

HPC + Al . .
Transmission control
. center
Existing work such as
ARPA-E HADREC 100 to 1000
Utilities/Distribution System Utilities/Distribution System
Operators/ Substations oo Operators/ Substations
1,000,000 / Federated Iearning\ /=ederated Iearnin’g\‘
. DERs/EVs | < > | DERs/EVs DERs/EVs | < ”| DERs/EVs
Edge Computing + Al = -

8 puting { /MGs J cee /MGs /MGs ooo /MGs
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Perspective: Convergence of Physics, Al, Compum (eps |

and Control for the Future Grid

Data-driven control

* The technology advancements required for
operating the future grid can be achieved
through the convergence of key technologies
including physics, Al, computing and control.

Principle, objective

4 Machine
Learning

Physics
( Power

* The ARPA-E HADREC project demonstrated D?Et:n;fé.)
promising results in this direction.

* This framework is good for both centralized and
distributed applications.

Simulatio
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Thank You!

Contact:

Yousu Chen Marianna Vaiman Qiuhua Huang
yousu.chen@pnnl.gov marvaiman@vrenergy.com ghuang@utilidata.com
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