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Control for Intelligent Power System Control

2. An example from ARPA-E HADREC: AI-enhanced 
grid emergency control

3. Recent progress in AI for grid operation
4. Summary and perspectives
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Grid Transformation: Increasing Renewables and 
Rapidly Changing Operation Conditions

EIA projects renewables share of U.S. electricity generation mix 
will double by 2050

Sources: EIA

California ISO net load “duck curve”
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Big Challenges in Grid Operation and Control

[1] https://www.texastribune.org/2021/02/18/texas-power-outages-ercot/
[2] http://www.ercot.com/content/wcm/key_documents_lists/225373/Urgent_Board_of_Directors_Meeting_2-24-2021.pdf
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Sequence of Events

September 8, 2011 Pacific 
Southwest Blackout in U.S.

10 minsmultiple events 
with 

< 5 s intervals

Texas was “seconds and minutes” away from 
catastrophic monthslong blackouts[1]

Credit: ERCOT
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The Grand Challenge of Achieving Intelligent Emergency 
Control

• Power system post-event emergency control has strong requirements:
Scalability: >20,000 buses (with 1000s of control devices)
Solution time: < 5 seconds
Security and adaptability (to fast-changing conditions)

• Existing control methods and issues:
Rule-based control (not adaptive, time-consuming to develop and update them)
Model-predictive control (scalability and solution time issues)
Learning-based (or data-driven) control (scalability, security and adaptability issues)



Can we bring successes in games to 
complex grid operation and control?

Credit: Nature

Credit: OpenAI

https://www.wecc.org/epubs/
StateOfTheInterconnection/

Pages/Western-Interconnection.aspx

Credit: CAISO

https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
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Deep Reinforcement Learning

• Power Grid

stat

Observations
Control 
Actions

Agent (policy) is represented by 
deep neural network    

• Reinforcement learning is designed for solving 
sequential decision-making problems

• The agent learns a control policy iteratively through 
interacting with the environment via trial-and-errors 
guided by the reward signal

• Deep Reinforcement Learning = Deep learning 
+ Reinforcement Learning

• Previous work on RL-based power system operation 
and control showed promising results, but focused on 
small-scale studies, e.g., IEEE 39-bus test system.
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Key Challenges in Deep Reinforcement Learning for 
Large-scale Grid Control

Scalability (# 
of buses)

Adaptability

Safety
(Security)

200

2,000

20,000

Prior work

Goal

(to changing operation conditions)



Advanced Computing Powers AI Breakthroughs

“The biggest lesson that can be read from 
70 years of AI research is that general
methods that leverage computation are 
ultimately the most effective, and by a 
large margin. ”

-- Professor Rich Sutton
Source: http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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Physics Help Overcome Data Limitations and Enhance AI

[1] Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 422–440 (2021)

Availability of data and physics for AI. (Source: [1])
Methods for embedding physics into AI. (Source: [1])

Most AI applications in 
power systems

11



Convergence of Physics, AI, Computing, and 
Control for Decision-making at Scale
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Control AI

Physics
( Power 

systems, DERs, 
etc.)

Computing & 
Simulation

Data-driven control

Principle, objective

M
odels &

 
Data

An
al

yz
e

• Strong connections 
among them

• Overcome some key 
challenges in each 
domain by leveraging 
advancements in 
others

• Many recent 
breakthroughs are 
due to similar 
convergences

• AlphaGo
• AlphaStar
• AlphaFold



AI-enhanced Real-time Grid 
Emergency Control

ARPA-E HADREC
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ARPA-E HADREC: High Performance Adaptive Deep Meta-
Reinforcement Learning for Grid Emergency Control

OUR SOLUTION

Objective: to construct an intelligent, real-time emergency control decision-support tool to 
provide effective and fast control actions to system operators in response to large 
contingencies or extreme events.

Project team:
• PNNL
• V&R Energy
• Google
• PacifiCorp

Project summary website: https://arpa-e.energy.gov/technologies/projects/high-performance-adaptive-deep-reinforcement-
learning-based-real-time



IEEE
300-bus
• 2020

A synthetic 
Texas
System 
(2000-bus)
• 2021

A WECC-
size system 
(~20K-bus)
• 2022

Develop AI-enhanced Solutions for Large-scale 
Power Systems

https://www.wecc.org/epubs/
StateOfTheInterconnection/

Pages/Western-Interconnection.aspx

https://electricgrids.engr.tamu.edu/electric-
grid-test-cases/activsg2000/

Three dynamic emergency control schemes:
• Under voltage load shedding
• Generator tripping
• Controlled islanding
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https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/


We Addressed the Challenges by Fusing AI, Physics, 
Advanced Computing, and Control
• Parallel Augmented Random 

Search (PARS) algorithm[1],
• High performance power 

system simulation platform 
GridPACK [2]

• Smart sampling for scenario 
reduction [3]

• Physics-informed PARS [4]: 
incorporate physics 
knowledge through a trainable 
action mask

• Safe PARS [5]: control barrier 
function + PARS

• Deep meta-reinforcement learning (meta-
learning + PARS)[6]: realize fast adaptation 
(~5 mins) of control policies to changing 
grid conditions

[1] R. Huang, et al “Accelerated Derivative-free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage Control,” IEEE Trans. on Power Systems, 2021
[2] GridPACK, https://www.gridpack.org/
[3[ X. Sun et al., "Smart Sampling for Reduced and Representative Power System Scenario Selection," in IEEE Open Access Journal of Power and Energy, vol. 8, pp. 293-302, 2021
[4] D. Yan, et al “Physics-informed Evolutionary Strategy based Control for Mitigating Delayed Voltage Recovery”, IEEE Trans. on Power Systems, 2022
[5] T. Vu, et al. "Safe Reinforcement Learning for Emergency Load Shedding of Power Systems." In Proc of IEEE PES General Meeting 2021
[6] R. Huang, et al, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning, IEEE Trans. on Power Systems, 2022 16

https://www.gridpack.org/


HPC-based Platform

• Scalable from laptop to HPC clusters/clouds by 
developing our solutions on top of the RAY 
platform.

• OpenAI Gym, a de facto toolkit for environment 
and interface definition.
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Figure 2 Architecture of the platform for training and 
testing

Figure 1 Illustration of the HADREC Methodology

HPC cluster/Cloud



Parallel Augmented Random Search (ARS) Algorithm

Basic idea: Estimate the gradient using random search 

Inherent 
parallelism in 

the exploration

Two-level Parallelism of PARS

R. Huang, et al “Accelerated Derivative-free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage Control,” IEEE Trans. on Power Systems, 2021

18



Physics-informed DMRL Enhances Training 
Efficiency and Control Robustness

• Power system community have developed vast amount of domain knowledge in forms of 
physics laws, standards, rules, and performance requirements.

• Physics-informed Deep Meta-Reinforcement Learning (DMRL): we incorporated system 
performance requirements as a trainable action mask (TAM) into the agent and significantly 
improved its sampling efficiency and robustness[1]. 

19

Incorporate prior knowledge into the agent with 
a fixed action mask [1]

[1] Y. Du, Q. Huang, R. Huang; T. Yin; J. Tan; W.Yu; X. Li, "Physics-informed Evolutionary Strategy based Control for Mitigating Delayed Voltage Recovery," in IEEE Transactions on
Power Systems, doi: 10.1109/TPWRS.2021.3132328.

Incorporate prior knowledge with TAM [1]
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• Learning a universal control policy for very different 
grid conditions is challenging and not scalable.
• A one-size-fits-all-solution

• Humans behave adaptively based on the context.
• Q ： How to help the agent learn the context and adapt 

the control strategies accordingly?
• DMRL (meta-learning + PARS): learn a latent context 

automatically through Bayesian optimization in the 
outer loop.
• A flexible-size-fits-all-solution

Deep Meta-Reinforcement Learning (DMRL) for 
Addressing the Adaptability Issue

R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Trans. on 
Power Systems,  2021

One-size-
fits-all 
solution

Flexible-
size-fits-all 
solution

Agent

Agent



Meta-training and Fast Adaptation to Changing 
Operation Condition

R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Trans. on 
Power Systems,  2021

The procedure fits into existing operation time frameworkLearning and adaptation to overcome increasing 
uncertainties

21
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An Example: Load Shedding for Emergency 
Voltage Control

IEEE 300-bus system model 

𝑶𝑶𝒕𝒕: Observations
154 bus voltage magnitudes and 46 bus load levels

A Neural Network for representing agent’s policy

𝒂𝒂𝒕𝒕: Actions
o 46 load substations could shed load.
o Each area, for each training time step, the load could be shed 

between 0% and 20% .
o The action space is 46.

𝒐𝒐𝒕𝒕

𝒓𝒓𝒕𝒕

𝒂𝒂𝒕𝒕

(for training)

R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactions on Power Systems, accepted, 2022

(for illustration 
only)
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Reward Function Design

Reward FunctionBus voltage performance requirement
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R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactions on 
Power Systems, accepted, 2022



Parallel ARS Algorithm Test Results

24

High scalability of Parallel ARS Much faster and more robust training with larger average rewards using 
Parallel ARS 

R. Huang, Y. Chen, T. Yin, X. Li, A. Li, J. Tan, W. Yu, Y. Liu, Q. Huang. “Accelerated Derivative-Free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage 
Control,” in IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 14-25, Jan. 2022, doi: 10.1109/TPWRS.2021.3095179.

PPO: Proximal Policy Optimization

• Emergency voltage control on the IEEE 300-bus system



Deep Meta-Reinforcement Learning Test Results
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DMRL PARS MPC*

Training 11.6 hours 9.5 hours N/A

Adaptation 5.3 mins N/A N/A

Solution time 0.7 sec 0.7 sec 63.3 sec

*MPC: Model-predictive control 

All test scenarios 
are unseen during 
training

• Positive is better
• Improved control 

effectiveness

R. Huang, Y. Chen, T. Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactions on 
Power Systems, accepted, 2022



Physics-informed DMRL Test Results
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Training results Test results based on 136 new scenarios

Physics-informed DMRL enhances training efficiency by 3X and control robustness by 75%

Y. Du, Q. Huang, R. Huang; T. Yin; J. Tan; W.Yu; X. Li, "Physics-informed Evolutionary Strategy based Control for Mitigating Delayed Voltage Recovery," in IEEE Transactions on
Power Systems, 2022,doi: 10.1109/TPWRS.2021.3132328.
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A 2000-bus Synthetic Texas System

Source: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/

Hourly renewable 
outputs and net load 
demands 

Generation mix based 
on EIA data

Single-line diagram

https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/


Physics-informed Training

28

1. Areas are loosely coupled for voltage 
problems

2. Yet, actions in two or three of the 
regions are required for faults near or 
at the boundary of the regions. 

3. Solutions: divided training  and then 
coordinative training 

Physics: the voltage stability problem in 
power systems are mostly local issues
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Datasets for Training and Testing of AI-based 
Emergency Voltage Control

140 fault buses,
1 fault duration

(0.1 s)

100 power flow 
cases

280 fault buses,
4 fault durations 
within [0.08, 0.4]

200 power flow 
cases

14,000 
scenarios

56,000 
scenarios

Training data set Test data set

1440 power flow cases
(2 months)

~2000 buses

Smart samplingSmart sampling

Smart 
sampling

Smart 
sampling

X. Sun et al., "Smart Sampling for Reduced and Representative Power System Scenario Selection," in IEEE Open Access Journal of Power and Energy, vol. 8, 
pp. 293-302, 2021,
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Off-line Testing Results: Comparison with Rule-based 
Under-voltage Load Shedding (UVLS) Control

Objective value (total reward) differences 
(positive is better)

Histogram of % reduced load shedding compared with 
the existing UVLS (positive is better)

• Reduce load shedding by 26% on average while improving the control performance
• More selective in load shedding locations, and more intelligent in the action time and amount

• Meet real-time control requirements: 0.7 second for determining solutions for 80 control intervals

26%



Integration with V&R Energy’s 
Tools and Demonstration

ARPA-E HADREC
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HADREC Demonstration Setup
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Power System State Estimator

• Main tool to assess reliability and stability of a power system in real-time 
environment at a utility/ISO:
• Basis for all advanced applications and market applications

• Designed to produce a system state based on the “best estimate” of the system 
voltages and phase angles:
• Provided that there are errors in the measured quantities; and 
• That there is a redundancy in measurements 

• Minimizes the sum of the squares of the differences between the measured and 
estimated values of variables:
• Voltage magnitude
• Current on the branches
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Importance of Linear State Estimator

• Linear State Estimator (LSE) is based on PMU measurements of voltage and 
current:
• Voltage and current vectors are  considered as the state variable

• Advantages of LSE:
• Improves real-time resilience:

A backup to the conventional SE solution if it fails to solve or SCADA data is not available

• Improves real-time reliability:
A check/validation for the quality of conventional state estimator

• High speed of state estimation due to using a direct non-iterative solution
Solves at PMU sample rate (30 times/sec – transmission system or 60 times/sec – distribution 
system)
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Introduction to V&R Energy’s PMU ROSE

• Bad data detection and conditioning
• Observability analysis
• Linear state estimation based on weighted least squares method
• Creation of conditioned and expanded PMU streams 
• Visualization and data stream APIs
• Creation of PMU-based LSE cases
• Advanced applications based on LSE cases

LSE POM Server LSE PMU Viewer
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Integration of PMU ROSE with GridPACK

• State Estimator cases:
• Network parameters, connectivity, 

initial topology
• PMU data in IEEE Standard 

C37.118
• State Estimator to PMU signal 

mapping
• Data for different 

scenarios/events was simulated

• Processed data after LSE for PMU locations 
and observable locations 
• Estimated data for locations where PMUs are 

installed
• Additional “calculated PMUs” at locations identified 

through observability analysis
• Includes voltage magnitude and phase angle, and 

current amplitude and phase angle
• Reports:

• Bad data reports
• Observability reports

• Alarms: 
• Event-related and PMU-related

• Archives, logs

Input: Output:
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LSE POM Server for Demonstration – 1 

• PMU data with 
realistic properties 
(e.g., noise, bad 
data) was 
generated by 
GridPACK

• Sent to LSE POM 
Server at the rate 
of 10 fps
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LSE POM Server for Demonstration – 2 

• LSE functionalities for 
demo include:
• Bad data detection and 

conditioning;
• Filtering & smoothing;
• Weighted Least Squares 

Methods (WLS);
• Event detection;
• Alarming;
• Archiving;
• Visualization.



LSE PMU Viewer for Real-Time Situational Awareness
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• Visualizes:
• PMU 

measurements
• Data processed 

by LSE
• Displays: 

• Events
• Alarms
• Bad Data

LSE POM Server identified a bus fault event in PacifiCorp system
and PMU Viewer displayed an alarm



HADREC performance on the PacifiCorp system

40

• HADREC: 1 generator tripped, 300MW total

• Out of Step (OOS): 8 generators tripped, 1 GW total

• ~20% improvement in responding time and 70% 
improved in tripped generator output

• HADREC technology integrated with V&R’s real-time 
situational awareness tool (ROSE)



• Demo



The AI Algorithms and Grid Simulation 
Environment are Open-sourced

• AI algorithms and training source codes
• https://github.com/pnnl/HADREC/

• High-performance grid simulation environment based on GridPACK
• https://github.com/GridOPTICS/GridPACK
• Python wrapper for OpenAI-gym interface: 

https://github.com/GridOPTICS/GridPACK/tree/master/python

https://github.com/pnnl/HADREC/
https://github.com/GridOPTICS/GridPACK
https://github.com/GridOPTICS/GridPACK/tree/master/python


Recent progress in 
AI for Grid 
Operation



PNNL’s Recent progress in AI for power systems

AI/ML – Capabilities:
• DOE PMU “Big Data Analytics” FOA.  

Anonymized and placed in dedicated 
cloud environment

• ~30 TB data, 600B records, 394 PMUs
• Full blown PMU network could be >1 

petabytes/year. 
• EIOC dedicated “reliability grade” 

streaming data storage and curation
• Approaching petabyte capacity to support 

research and industry collaboration 
• ARPA-E data repositories (real and 

synthetic data)
• Positioned to provide NAERM support 

and hosting as the real-time system is 
developed

AI/ML – Accomplishments:
• Operation and Control 

• LACC: Reduce overshot magnitude during 
fault by more than 10X 

• MANGO: Adjust real-time operating points 
for damping improvement 

• TRAST: Actively learning preventive 
measure in real time for graceful 
degradation 

• Planning 
• HIPPO: 35x faster optimal solutions for $Bs 

energy savings   

44
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LACC: AI-based online controller parameter optimization and 
adaption

MANGO: Grid damping improvement through AI-enabled active 
operating point adjustment

Transformative Remedial Action Scheme Tool (TRAST) HIPPO: AI accelerates solving power market 
clearing problems
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New Hardware and Software Ecosystem for Grid 
Edge Intelligence

Smart grid chip with GPU for 
edge computing and AI

Open-source software ecosystem for the 
grid edge intelligence

46



Summary

• Fast and intelligent control and decision-making at the control centers and the 
edge is required to operate the grid reliably and efficiently.

• AI such as DRL, when combined with physics and advanced computing, can be an 
essential part of the solution.

• We demonstrated fast and intelligent emergency controls for a Texas-size system 
and WECC system is achievable through fusing AI, physics, computing, control.

• We developed datasets and AI-based solutions for enhancing renewable 
integration, system operation, reliability management and market solution.
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Perspective: Distributed Control with Edge AI 
and Coordination with Centralized Control

Utilities/Distribution System 
Operators/ Substations

Utilities/Distribution System 
Operators/ Substations

DERs/EVs
/MGs

Transmission control 
center

DERs/EVs
/MGs

DERs/EVs
/MGs

Edge Computing + AI

HPC + AI 1

100 to 1000

1,000,000

DERs/EVs
/MGs... ...

...

Existing work such as 
ARPA-E HADREC

• Distributed control with edge computing and AI helps manage and coordinate up to millions of DERs.
• Coordinating centralized and distributed control as well as computing is critical for large-scale clean energy 

integration and FERC 2222 compliance.
• Federated learning and control can help overcome the data privacy and security concerns.

Federated learning Federated learning
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Perspective: Convergence of Physics, AI, Computing 
and Control for the Future Grid

• The technology advancements required for 
operating the future grid can be achieved 
through the convergence of key technologies 
including physics, AI, computing and control.

• The ARPA-E HADREC project demonstrated 
promising results in this direction.

• This framework is good for both centralized and 
distributed applications.
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Qiuhua Huang
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