

Learning for Monitoring and Control in Power Distribution Grids

Vassilis Kekatos (kekatos@vt.edu)

IEEE PES Big Data Tutorial Series October 17, 2019 Blacksburg, VA

Acknowledgements

NSF-CAREER-1751085 NSF-EPCN-1711587

Learning in distribution grids

- Reduced observability due to sheer extent and limited real-time metering
- However, load estimates and topology information needed for grid optimization and control

Smart inverters interfacing new technologies

- Adding a third functionality to smart inverters
 - 1. energy conversion
 - 2. grid control
 - 3. grid monitoring

Inverter Probing for Learning Distribution Grids

Guido Cavraro [now with NREL]

Sid Bhela [now with Siemens]

Sina Taheri

Manish Singh

Harsha Veeramachaneni Next Era Analytics

Grid topology learning

 Given data and existing line infrastructure, find which lines are energized

topology identification

 Given data alone, find grid topology and line impedances

Prior work

Passive data collection

- Voltage covariance [Bolognani'13], [Deka-Backhaus-Chertkov'15], [Li-Scaglione-Poor'15]
- Graphical models and DNN [Weng-Liao-Rajagopal'17], [Sevlian-Rajagopal'17], [Zhao-Poor'17]
- Micro-PMU data [Ardakanian et al'18]

Grid perturbation for active data collection

- Oscillation modes in transmission grid dynamics [Trudnowski-Pierre'09]
- Identification of DC microgrids [Angjelichinoski-Scaglione '16]
- Thevenin impedance for single inverter [Jaksic-Boroyevich-Burgos ′17]

Grid probing using inverters

- Perturb power injections at probing buses [how?]
- Collect grid voltage response (magnitudes, phasors)
- Repeat over *T* probing actions spaced 1-2' apart

Approximate grid model

Single-phase *radial* grid with *N*+1 nodes and *N* lines

$$\mathbf{a}_{\ell} = \begin{bmatrix} \mathbf{0} \\ +1 \\ \mathbf{0} \\ -1 \\ \mathbf{0} \end{bmatrix} \longleftarrow \text{node } m$$

Linear distribution flow (LDF) model [Baran-Wu'89], [Deka et al'17]

$$\mathbf{v}\simeq\mathbf{R}\mathbf{p}+\mathbf{X}\mathbf{q}+\mathbf{1}_N$$

inverse graph
$$\mathbf{L} = \mathbf{A}^{\top} dg(\mathbf{g}) \mathbf{A}$$

Laplacian $\mathbf{R} = \mathbf{L}^{-1}$

- Differential quantities $\tilde{\mathbf{v}}_t = \mathbf{R}\tilde{\mathbf{p}}_t + \mathbf{X}\tilde{\mathbf{q}}_t + \mathbf{n}_t$ $\tilde{\mathbf{p}}_t := \mathbf{p}_t \mathbf{p}_{t-1}$ 1. modeling error 2. metering noise 3. unmodeled (load) variations

Probing for topology identification

• Active power probing $(\tilde{\mathbf{q}}_t = \mathbf{0})$

$$\tilde{\mathbf{p}}_t = \begin{bmatrix} \tilde{\mathbf{p}}_{t,\mathcal{M}} \\ \tilde{\mathbf{p}}_{t,\mathcal{O}} \end{bmatrix} = \begin{bmatrix} \mathrm{known} \\ \mathbf{0} \end{bmatrix}$$
 probed buses \mathcal{M} unchanged loads \mathcal{O}

• Probe grid over $T \ge |\mathcal{M}|$ periods and ignore noise

$$ilde{\mathbf{v}}_t = \mathbf{R} ilde{\mathbf{p}}_t + \mathbf{X} ilde{\mathbf{q}}_t + \mathbf{n}_t \quad \Longrightarrow \quad ilde{\mathbf{V}} = \mathbf{R} ilde{\mathbf{P}} = \mathbf{R} \left[egin{array}{c} ilde{\mathbf{P}}_{\mathcal{M}} \ ilde{\mathbf{0}} \end{array}
ight]$$

$$\mathbf{R} = \begin{bmatrix} \mathbf{R}_{\mathcal{M},\mathcal{M}} & \mathbf{R}_{\mathcal{O},\mathcal{M}}^{\top} \\ \mathbf{R}_{\mathcal{O},\mathcal{M}} & \mathbf{R}_{\mathcal{O},\mathcal{O}} \end{bmatrix}$$
matrix partition

- Complete data: voltages collected at all buses, recover $\mathbf{R}_{\mathcal{M}} = \begin{bmatrix} \mathbf{R}_{\mathcal{M},\mathcal{M}} \\ \mathbf{R}_{\mathcal{O},\mathcal{M}} \end{bmatrix}$
- Partial data: voltages collected only at probing buses, recover $\mathbf{R}_{\mathcal{M},\mathcal{M}}$

Topology identifiability

Theorem 1 (Complete data): Remove the descendants of probed buses. If you get a tree with all its leaves probed, this tree can be identified.

Corollary: If all leaf buses are probed, the entire grid topology can be identified.

Theorem 2 (Partial data): If all leaf nodes are probed, a reduced grid can be identified.

Rich literature on recovering graphs; parallel results [Park-Deka-Chertkov'17]

From probing data to topology identification

Root and Branch (R&B) algorithm

- Group entries of m-th column of $\mathbf{R}_{\mathcal{M}}$
- Buses grouped together comprise a *level set* \mathcal{N}_m^k

Recursive graph algorithm

- *S*1) Find *k*-depth root as intersection of $\{\mathcal{N}_m^k\}$
- *S*2) Connect *k* to (*k*-1)-depth root with resistance
- *S3*) Group buses with identical \mathcal{N}_m^k and recurse

R&B with partial voltage data

What if voltages are collected only at M?

$$ilde{\mathbf{V}}_{\mathcal{M}} = \mathbf{R}_{\mathcal{M}\mathcal{M}} ilde{\mathbf{P}}_{\mathcal{M}} \ \, ext{where} \ \, \mathbf{R} = \left[egin{array}{ccc} \mathbf{R}_{\mathcal{M},\mathcal{M}} & \mathbf{R}_{\mathcal{M},\mathcal{O}} \\ \mathbf{R}_{\mathcal{O},\mathcal{M}} & \mathbf{R}_{\mathcal{O},\mathcal{O}} \end{array}
ight]$$

Level sets of probing nodes are partially observed

- Modified R&B recovers a reduced grid
 - ✓ radial grid
 - ✓ recovers non-metered buses having two children each one with a probed descendant
 - ✓ correct pair-wise path resistances

Numerical tests

Probability of Erroneous Topology

Complete voltage data

T_m	1	10	20	40	90
Error Prob. [%]	98.5	55.3	20.9	3.1	0.2

Partial voltage data

T_m	1	5	10	20	39
Error Prob. [%]	97.2	45.8	26.3	18.9	0.1

• Each inverter is probed T_m times to average out noise

Convex relaxation heuristic

- Graph algorithms rely on noiseless estimates of $\mathbf{R}_{\mathcal{M}}$ ($\mathbf{R}_{\mathcal{M},\mathcal{M}}$)
- For complete voltage data, invert probing data model

$$\tilde{\mathbf{V}} = \mathbf{R}\tilde{\mathbf{P}} + \mathbf{N}$$
 $\tilde{\mathbf{P}} = \mathbf{L}\tilde{\mathbf{V}} + \mathbf{E}$

Topology identification via data fitting

$$\min_{\mathbf{L}} \|\tilde{\mathbf{P}} - \mathbf{L}\tilde{\mathbf{V}}\|_F^2 \qquad convex \qquad \min_{\mathbf{L}} \|\tilde{\mathbf{P}} - \mathbf{L}\tilde{\mathbf{V}}\|_F^2 + \lambda \|\mathbf{L}\|_1 - \mu \log |\mathbf{L}|$$
s.to $\mathbf{L} \succ \mathbf{0}$

$$L_{m,n} \leq 0, \quad \forall m \neq n$$

$$\|\mathbf{L}\|_{0,\text{off}} = 2N$$

$$\sin \|\tilde{\mathbf{P}} - \mathbf{L}\tilde{\mathbf{V}}\|_F^2 + \lambda \|\mathbf{L}\|_1 - \mu \log |\mathbf{L}|$$

$$\text{s.to } \mathbf{L} \succeq \mathbf{0}$$

$$L_{m,n} \leq 0, \quad \forall m \neq n$$

Recover tree through heuristics (e.g., minimum spanning tree)

Topology detection vs. identification

Similar formulation if Laplacian is parameterized in terms of lines

$$L(\mathbf{b}) = \sum_{\ell \in \mathcal{L}} \frac{\mathbf{b}_{\ell}}{r_{\ell}} \mathbf{a}_{\ell} \mathbf{a}_{\ell}^{\top}$$
 where $\mathbf{b}_{\ell} = \begin{cases} 1 & \text{, line } \ell \text{ is energized} \\ 0 & \text{, otherwise} \end{cases}$

Topology detection through data fitting

$$\min_{\mathbf{b}} \|\tilde{\mathbf{P}} - \mathbf{L}(\mathbf{b})\tilde{\mathbf{V}}\|_F^2$$

$$\text{s.to } \mathbf{b} \in \{0, 1\}^{\bar{L}}$$

$$\mathbf{b}^{\top} \mathbf{1} = N$$

$$\mathbf{L}(\mathbf{b}) \succ \mathbf{0}$$

$$\min_{\mathbf{b}} \|\tilde{\mathbf{P}} - \mathbf{L}(\mathbf{b})\tilde{\mathbf{V}}\|_F^2 - \mu \log |\mathbf{L}(\mathbf{b})|$$

$$\text{s.to } \mathbf{b} \in [0, 1]^{\bar{L}}$$

$$\mathbf{b}^{\top} \mathbf{1} = N$$

Related formulations with covariance matrices for smart meter data analytics

Numerical tests

Resistive Laplacian matrix for *IEEE 13-bus feeder*

Identification/detection results for IEEE 37-bus feeder

AVERAGE NUMBER OF LINE STATUS ERRORS FOR THE 37-BUS FEEDER

	T = 1	T=2	T = 5	T = 10
Identification task of (22)	5.07	3.92	3.73	2.69
Verification task of (32)	0.32	0.21	0.08	0.01

Exact model fitting

- $\textbf{Recall grid Laplacian} \quad \textbf{L} = \textbf{A}^{\top} dg(\textbf{g}) \textbf{A}$ $\textit{topology} \quad \textit{line conductances}$
- Vectorize probing data model

$$\tilde{\mathbf{P}} = \mathbf{L}\tilde{\mathbf{V}} + \mathbf{E}$$
 \Longrightarrow $\mathbf{p} = \mathbf{H}\mathbf{g} + \mathbf{e}$ where $\mathbf{H} = \tilde{\mathbf{V}}^{\top}\mathbf{A}^{\top} \star \mathbf{A}^{\top}$ Khatri-Rao product

- Pretending topology A is known, find conductances g through LS fit
- Optimal \mathbf{g}_{LS} provides LS fit error $f(\mathbf{A}) = -\mathbf{p}^{\top} \mathbf{H} (\mathbf{H}^{\top} \mathbf{H})^{-1} \mathbf{H}^{\top} \mathbf{p}$
- Find topology **A** attaining smallest LS fit $f(\mathbf{A})$

Topology identification

selection matrix

Select from candidate lines $\mathbf{A} = \mathbf{S}\bar{\mathbf{A}}$ $\mathbf{S}\mathbf{S}^{\top} = \mathbf{I}_N, \quad \mathbf{S}^{\top}\mathbf{S} = \mathrm{dg}(\mathbf{b})$

$$\mathbf{S}\mathbf{S}^{ op} = \mathbf{I}_N, \quad \mathbf{S}^{ op}\mathbf{S} = \mathrm{dg}(\mathbf{b})$$

 \mathbf{Z}

- Reformulate LS fit $f(\mathbf{b}) = \bar{\mathbf{p}}^{\top} dg(\mathbf{b}) \bar{\mathbf{p}} + \bar{\mathbf{p}}^{\top} dg(\mathbf{b}) (\mathbf{C} dg(\mathbf{b}))^{-1} dg(\mathbf{b}) \bar{\mathbf{p}}$
- Solve problem

$$\min_{\mathbf{z}, \mathbf{b} \in \{0,1\}^{\bar{L} \times 1}} f'(\mathbf{b}, \mathbf{z}) = \bar{\mathbf{p}}^{\top} \operatorname{dg}(\mathbf{b}) \bar{\mathbf{p}} + \bar{\mathbf{p}}^{\top} \operatorname{dg}(\mathbf{b}) \mathbf{z}$$
s.to $(\mathbf{C} - \operatorname{dg}(\mathbf{b})) \mathbf{z} = \operatorname{dg}(\mathbf{b}) \bar{\mathbf{p}}$

$$\mathbf{1}_{\bar{L}}^{\top} \mathbf{b} = N$$

$$|\bar{\mathbf{A}}|^{\top} \mathbf{b} \ge \mathbf{1}_{N+1}$$

every bus connected to at least one line

- Products handled by *McCormick linearization* to yield MILP
- Caveat: If $(\mathbf{C} dg(\mathbf{b}^*))$ is singular, the relaxation is not exact!

Ensuring connectivity

Lemma: Matrix $(\mathbf{C} - dg(\mathbf{b}^*))$ is invertible iff $\mathbf{A} = \mathbf{S}\bar{\mathbf{A}}$ yields a connected grid

- *Key question:* How to guarantee a connected topology?
- Introduce optimization vector of *virtual* line flows $\mathbf{f} \in \mathbb{R}^L$

add these constraints to
$$\bar{\mathbf{A}}^{\top}\mathbf{f} = \mathbf{1}$$
previous formulation $-N\mathbf{b} \leq \mathbf{f} \leq N\mathbf{b}$

- *Intuition:* find topology that can deliver 1 pu injected at each bus and N pu received by substation
- Comparison to formulation of [Lei-Chen-Song-Hou'19]

Numerical tests

Prob. of Correct Topology Identification $T_{inv} = 2$ $T_{inv} = 10$ $T_{inv} = 50$ 0.6

0.4

0.2

Noise variance

Prob. of Correct Line Detection $T_{inv} = 2$ $T_{inv} = 10$ $T_{inv} = 50$ 0.4

Noise variance

Each inverter probed *T* times to average out noise

RUNNING TIME FOR MILPS [SEC]

# of candidate lines $ar{L}$	24	36	48
MILP formulation	1	27	200

Topology identification algorithms

- Graph algorithms
 - complete or partial voltage data
 - exact for noiseless data
- Convex relaxation
 - complete voltage data
 - noisy data but heuristic
- Mixed-integer linear program (MILP) approach
 - complete voltage data
 - computationally more demanding yet exact

Probing for learning loads

Coupled power flow (CPF) problem

Problem statement: Given inverter data on metered buses \mathcal{M} and assuming time-invariant injections at buses \mathcal{O} , find states $\{\mathbf{v}_t\}_{t=1}^T$ and non-metered loads on \mathcal{O}

probing (metered) buses non-metered buses

$$\begin{array}{ll}
p_n(\mathbf{v}_t) = \hat{p}_n^t & \forall n \in \mathcal{M} \\
q_n(\mathbf{v}_t) = \hat{q}_n^t & \forall n \in \mathcal{M} \\
u_n(\mathbf{v}_t) = \hat{q}_n^t & \forall n \in \mathcal{M}
\end{array}$$

$$3MT \qquad p_n(\mathbf{v}_t) = p_n(\mathbf{v}_{t+1}) & \forall n \in \mathcal{O} \\
q_n(\mathbf{v}_t) = q_n(\mathbf{v}_{t+1}) & \forall n \in \mathcal{O}
\end{array}$$

$$2O(T - 1)$$

- Counting equations and unknowns yields $|\mathcal{M}| \ge \frac{2|\mathcal{O}|}{T}$
- **Q1**) Can non-metered loads be recovered by probing *T* slots?
- Q2) How to optimally design probing actions?
- **Q3**) How to solve the CPF problem?
 - S. Bhela, V. Kekatos, and S. Veeramachaneni, "Smart Inverter Grid Probing for Learning Loads: Parts I & II", IEEE Trans. on Power Systems, Sep 2019.

Conclusions

Take-home: Inverter probing as active data collection paradigm for grid learning

- ☑ identifiability
- ☑ topology ID algorithms
- ☑ probing for load learning

- □ multiphase configurations
- □ partial and noisy data
- ☐ 'probing' by regulators/capacitors

Kernel-Based Learning for Smart Inverter Control

Mana Jalali

Aditie Garg [now with EPRI]

Nikolaos Gatsis Un. of Texas San Antonio

Deep Deka Los Alamos National Lab

Motivation

Voltage fluctuations due to renewables

Inefficiency of voltage control devices

Reactive power control with inverters

Finding reactive power setpoints

Local control curves [Turitsyn'11], [Kekatos-Zhang-Giannakis'15], [IEEE 1547]

- Centralized OPF [Lavaei-Low'14], [Farivar-Low'15]
- Decentralized OPF
 [Dallanese-Dhople-Giannakis'15], [Peng-Low'16]

Customize control curves on a quasi-stationary basis

- ✓ no cyber cost
- × suboptimal
- ✓ optimal
- × cyber, obsolete
- ✓ cyber
- × iterations

Designing control rules

- Control rules as *linear* policies
 - □ Chance-constrained [Ayyagari-Gatsis-Taha'17]
 - Robust approaches [Jabr'18]; [Lin-Bitar'18]
 - Closed-loop approach [Baker, Bernstein, Dall'Annese, Zhao'18]
 - □ OPF-then-Fit [Dobbe-Callaway'18], [Karagiannopoulos-Hug'18]

Control rules do not have to be linear!

Problem formulation

- Approximate grid model $\tilde{\mathbf{v}} \simeq \mathbf{R}(\mathbf{p}^g \mathbf{p}^c) + \mathbf{X}(\mathbf{q}^g \mathbf{q}^c)$ $= \mathbf{X}\mathbf{q}^g + \mathbf{y}$
- Options for voltage deviation penalties
 - least-squares $\Delta_s(\mathbf{q}^g) = \|\mathbf{X}\mathbf{q}^g + \mathbf{y}\|_2^2$
 - epsilon-insensitive $\Delta_{\epsilon}(\mathbf{q}^g) = \sum_{n=1}^N [\mathbf{e}_n^{\top} \left(\mathbf{X} \mathbf{q}^g + \mathbf{y} \right)]_{\epsilon}$

OPF

Inverter setpoints to minimize voltage deviation penalty

$$egin{array}{l} \min \limits_{\mathbf{q}^g} \;\; \Delta(\mathbf{q}^g; \mathbf{y}) \ \mathrm{s.to} \;\; -ar{\mathbf{q}}^g \leq \mathbf{q}^g \leq ar{\mathbf{q}}^g \end{array}
ight)$$

- Inverter setpoints as policies $q_n^g(\mathbf{z}_n) = f_n(\mathbf{z}_n)$
 - remote and local inputs $\mathbf{z}_n = [p_n^g p_n^c \quad \bar{q}_n^g \quad q_n^c]^{\top}$

Kernel-based learning

• Given data $\{(x_t \in \mathcal{X}, z_t \in \mathbb{R})\}_{t=1}^T$, and kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

$$f^* = \arg\min_{f \in \mathcal{H}_K} \sum_{t=1}^T (z_t - f(x_t))^2 + \mu \|f\|_K$$
 where
$$\mathcal{H}_K := \left\{ f(x) = \sum_t K(x, x_t) a_t \right\}$$

Representer's Theorem: Minimizing function depends only on training data

$$f^*(x) = \sum_{t=1}^{T} K(x, x_t) a_t^*$$

Functional minimization as vector optimization

$$\arg\min_{\mathbf{a}} \ \|\mathbf{z} - \mathbf{K}\mathbf{a}\|_{2}^{2} + \mu \sqrt{\mathbf{a}^{\top}\mathbf{K}\mathbf{a}}$$

Least-squares inverter control

• Control rule design as function fitting using *T* scenario data

$$\min \sum_{t=1}^{T} \Delta(\mathbf{q}_{t}^{g}; \mathbf{y}_{t}) + \mu \sum_{n=1}^{N} \|q_{n}^{g}\|_{\mathcal{K}_{n}}$$
s.to $|q_{n,t}^{g}| \leq \bar{q}_{n,t}^{g} \quad \forall n, t$

Jointly learning inverter functions can be solved as QP or SOCP

$$q_{n,t}^g(\mathbf{z}_n) = \sum_{t=1}^T K(\mathbf{z}_n, \mathbf{z}_{n,t}) a_{n,t}^*$$
 rule described by $\{\mathbf{z}_{n,t}, a_{n,t}^*\}_{t=1}^T$

- Increasing μ unselects some inverters from reactive control (*spatial sparsity*)
- Policy output heuristically projected within feasible range

Support vector inverter control

Lemma: Voltage deviation penalties and *sparsity across scenarios*

$$\Delta_{\epsilon}(\mathbf{q}^g) = \sum_{n=1}^{N} \left[\tilde{v}_n \right]_{\epsilon} : \text{ if } \|\tilde{\mathbf{v}}_t\|_{\infty} > \epsilon, \text{ then } a_{n,t} \neq 0 \ \forall n$$

$$\Delta_{\tau}(\mathbf{q}^g) = \left[\|\tilde{\mathbf{v}}\|_2 \right]_{\tau} : \text{ if } \|\tilde{\mathbf{v}}_t\|_2 \leq \tau, \text{ then } a_{n,t} = 0 \ \forall n \text{ with } |q_{n,t}^g| < \bar{q}_{n,t}^g$$

$$\Delta_{\tau}(\mathbf{q}^g) = \begin{bmatrix} \|\tilde{\mathbf{v}}\|_2 \end{bmatrix}_{\tau} : \quad \text{if} \quad \|\tilde{\mathbf{v}}_t\|_2 \le \tau, \text{ then} \quad a_{n,t} = 0 \quad \forall n \text{ with } |q_{n,t}^g| < \bar{q}_{n,t}^g$$

Different from SVMs, block voltage penalties yield support feeder scenarios

Numerical tests

- Pecan Street data (8am-8pm) on IEEE 123-bus feeder (1-phase)
- 50% solar penetration with 1.1 inverter oversizing
- Train for *T*=30 one-min data; validate on next 30 one-min data

Performance vs. sparsity

OPF-then-learn vs. OPF-and-learn

- *OPF-then-learn*: **2-**step approach
- solve multiple OPFs
- fit input-minimizer pairs

Linear rules on IEEE 13-bus grid

Conclusions

- ☑ learning non-linear inverter rules
- ☑ data-based feeder-wide designs
- ☑ SVM costs for communication savings

- closed-loop control
- ☐ remote input and kernel selection
- □ constrained kernel learning
- ☐ DNN-based rules

Thank you!

Grid IoT data analytics

Tools

inverter probing

machine learning for grid control

Related publications

- G. Cavraro and V. Kekatos, "Inverter Probing for Power Distribution Network Topology Processing,"
 IEEE Trans. on Control of Network Systems, Sep 2019.
- G. Cavraro and V. Kekatos, "Graph Algorithms for Topology Identification using Power Grid Probing," *IEEE Control Systems Letters*, Oct 2018.
- G. Cavraro, A. Bernstein, V. Kekatos, and Y. Zhang, "Real-Time Identifiability of Power Distribution Network Topologies with Limited Monitoring," *IEEE Control Systems Letters*, Apr 2020.
- G. Cavraro, V. Kekatos, and S. Veeramachaneni, "Voltage Analytics for Power Distribution Network Topology Verification," *IEEE Trans. on Smart Grid*, Jan. 2019.
- S. Taheri, V. Kekatos, and G. Cavraro, "An MILP Approach for Distribution Grid Topology Identification using Inverter Probing," *IEEE PES PowerTech*, Milan, Italy, June 2019.
- M. K. Singh, V. Kekatos, S. Taheri, K. P. Schneider, and C.-C. Liu, "Enforcing Radiality Constraints for DER-Aided Power Distribution Grid Reconfiguration," *in Proc. PSCC*, Porto, Portugal, June 2020.
- S. Bhela, V. Kekatos, and S. Veeramachaneni, "Smart Inverter Grid Probing for Learning Loads: Part I -- Identifiability Analysis," *IEEE Trans. on Power Systems*, Sep 2019.
- S. Bhela, V. Kekatos, and S. Veeramachaneni, "Smart Inverter Grid Probing for Learning Loads: Part II
 -- Probing Injection Design," *IEEE Trans. on Power Systems*, Sep 2019.
- S. Bhela, V. Kekatos, and S. Veeramachaneni, "Enhancing Observability in Distribution Grids using Smart Meter Data," *IEEE Trans. on Smart Grid*, Nov 2018.
- M. Jalali, V. Kekatos, N. Gatsis, and D. Deka, "Designing Reactive Power Control Rules for Smart Inverters using Support Vector Machines," IEEE Trans. on Smart Grid, (early access).
- A. Garg, M. Jalali, V. Kekatos, and N. Gatsis, "Kernel-Based Learning for Smart Inverter Control," *in Proc. IEEE GlobalSIP*, Anaheim, CA, Nov. 2018.