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Learning in distribution grids

= Reduced observability due to sheer extent and
limited real-time metering

= However, load estimates and topology information
needed for grid optimization and control

H-OON-& . . :
& = Smart inverters interfacing

h ﬂk N new technologies

ﬁ@—&}d

= Adding a third functionality to smart inverters
1. energy conversion

2. grid control

3. grid monitoring
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Grid topology learning

= Given data and existing line infrastructure,
find which lines are energized

topology detection

= Given data alone, find grid topology and
line impedances

topology identification




Prior work

Passive data collection

Voltage covariance [Bolognani'13], [Deka-Backhaus-Chertkov’15], [Li-Scaglione-Poor’15]
Graphical models and DNN [Weng-Liao-Rajagopal’17], [Sevlian-Rajagopal’17], [Zhao-Poor’17]

Micro-PMU data [Ardakanian et al’18]

Grid perturbation for active data collection

Oscillation modes in transmission grid dynamics [Trudnowski-Pierre’09]
Identification of DC microgrids [Angjelichinoski-Scaglione "16]

Thevenin impedance for single inverter [Jaksic-Boroyevich-Burgos "17]



Grid probing using inverters

= Perturb power injections at probing buses [how?]
&

L J
. é& ‘ = Collect grid voltage response (magnitudes, phasors)

‘&‘ = Repeat over T probing actions spaced 1-2" apart
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+— Probing (1-20 sec.) —<+—Grid Dispatch (15 min.)—




Approximate grid model

Single-phase radial grid with N+1 nodes and N lines

ge — 3B +1 <— node m
- ag=| 0
—1 <— node n
Prm» Gm Dns @ | 0

Linear distribution flow (LDF) model [Baran-Wu’89], [Deka et al’17]

inverse graph L = A'dg(g)A

~ Rp +Xq+1
[ ¥ P o } Laplacian R =Lt

1. modeling error

Differential quantities v; = Rp; + Xq; + ny 2. metering noise

Pt = Pt — Pt—1 3. unmodeled (load) variations



Probing for topology identification

®
. . 5 —0
Active power probing (q ) ‘% R
B Pt M known probed buses M ° o o
p = p—
t P+,0 0 unchanged loads O I

Probe grid over T > | M| periods and ignore noise

vi=Rp: + Xq; +1n; mm) V:RIS:R[ 0

Complete data: voltages collected at all buses, recover R, = [ II{{MW‘ ]
O,M

Partial data: voltages collected only at probing buses, recover Ry

~ Rvm Ro g ]
R — ) )
P ] [ Ro.m  Roo

matrix partition



Topology identifiability

[Theorem 1 (Complete data): Remove the descendants of probed buses. If you get a tree }

with all its leaves probed, this tree can be identified.

actual recovered

actual recovered

Vs

Corollary: If all leaf buses are probed, the entire grid topology can be identified. }

Ve

-

Theorem 2 (Partial data): If all leaf nodes are probed, a reduced grid can be identified. }

Rich literature on recovering graphs; parallel results [Park-Deka-Chertkov’17]
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From probing data to topology identification

= Graph algorithms

m Convex relaxation

» Mixed-integer linear program (MILP) approach
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Root and Branch (R&B) algorithm

T 1] ‘“
3|
Group entries of m-th column of R R 6 1 4 Ng
3 — |1
’ |
Buses grouped together comprise a level set N\, 3 * . o N2
b 3 - ; T
*3 NG

depth (k-1) =
‘ Recursive graph algorithm
depth k ‘@ , : : k
S1) Find k-depth root as intersection of {N,)}
w w a §2) Connect k- to (k-1)-depth root with resistance

S3) Group buses with identical A% and recurse

G. Cavraro and V. Kekatos, “Graph Algorithms for Topology Identification using Power Grid
Probing,” IEEE Control Systems Letters, October 2018. 1



R&B with partial voltage data

®
2
What if voltages are collected only at M? » e o o+ o o
o ./f)‘
~ ~ Re o R A |
Vi =RuymPa where R = MM M0 ] °
Rom Roo

Level sets of probing nodes are partially observed

¢ Modified R&B recovers a reduced grid
¢ radial grid
¢ o— @ recovers non-metered buses having two
I children each one with a probed descendant
i—‘—f—‘—‘ @ I ® correct pair-wise path resistances
O [

actual recovered
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Numerical tests

724 707 720 706 725
. o o IEEE 37-bus feeder
722 704 714 718
799 ‘713 731 740
701 702 703 730 709 708 733 734 737 738 Illl 741
L L ® L 4 @ L @ L
712 705 ‘727 775 Im 736 710 735
‘742 744 728
729
°
Probability of Erroneous Topology
Tm 1 10 20 40 90
Complete voltage data | Error Prob. [%] | 98.5 | 553 | 20.9 3.1 0.2
Tm 1 5 10 20 39
Partial voltage data | Error Prob. [%] | 97.2 | 458 [ 263 [ 189 [ 0.1

= Each inverter is probed T,, times to average out noise
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Convex relaxation heuristic

Graph algorithms rely on noiseless estimates of R ¢ (Raq,m)
For complete voltage data, invert probing data model
V=RP+N m=m) P=LV+E

Topology identification via data fitting

min P - LVIJ3 convex min IP —LV|% + Al|L|l; — plog |L|
sto L>0 relaxation sto L>=0

Lyn <0, Ym#n | Hmmmmm) Linn <0, Vm#n

ILlo,off = 2N

Recover tree through heuristics (e.g., minimum spanning tree)

G. Cavraro and V. Kekatos, “Inverter Probing for Power Distribution Network Topology
Processing,” IEEE Trans. on Control of Network Systems, Sep. 2019.
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Topology detection vs. identification

Similar formulation if Laplacian is parameterized in terms of lines

be T 1 , line / is energized

L(b) = Z Eaga@ where b, = { 0 , otherwise
teL ’

Topology detection through data fitting

min [|P — L(b)V|2 convex min ||P — L(b)V|[f — plog [L(b)
b B relaxation ;
s.to b e {0,1}" ) S0 bE[01]
b'1=N b'1=N
L(b) -0

Related formulations with covariance matrices for smart meter data analytics

G. Cavraro, V. Kekatos, and H. Veeramachaneni ”Voltage analytics for power distribution
network topology verification," IEEE Trans. on Smart Grid, Jan. 2019.
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Numerical tests

= Resistive Laplacian matrix
for IEEE 13-bus feeder

= Identification/detection results for IEEE 37-bus feeder

actual

recovered

AVERAGE NUMBER OF LINE STATUS ERRORS FOR THE 37-BUS FEEDER

T=1|T=2|T=5|T=10
Identification task of (22) 5.07 3.92 373 2.69
Verification task of (32) 0.32 0.21 0.08 0.01

@ B B &8 8 B

e

8
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Exact model fitting

Recall grid Laplacian L = A 'dg(g)A

v

topology line conductances

Vectorize probing data model

P=LV+E == p=Hg+e where H=VTATxAT Khatri-Rao
product

Pretending topology A is known, find conductances g through LS fit

Optimal g, ¢ provides LS fit error f(A) = —p'H (H' H) THp

Find topology A attaining smallest LS fit f(A)

S. Taheri, G. Cavraro, and V. Kekatos, “An MILP Approach for Distribution Grid Topology

Identification using Inverter Probing,” IEEE PowerTech, Milan, Italy, June 2019. 17



Topology identification

selection matrix

/

Select from candidate lines A = SA SST =1y, S'S=dg(b)

Reformulate LS fit  f(b) = p' dg(b)p + p ' dg(b) (C — dg(b)) " dg(b)

Solve problem

\

\. T

Y
Z

-

\_

min
z,be{0,1} L x1

F'(b,z) = pT dg(b)p + p" dg(b)z )

s.to (C —dg(b))z =dg(b)p

1;b=N

A" b > 1y,

Products handled by McCormick linearization to yield MILP

Caveat: If (C — dg(b*)) is singular, the relaxation is not exact!

every bus connected
to at least one line
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Ensuring connectivity

[Lemma: Matrix (C — dg(b*)) is invertible iff A = SA yields a connected grid }

Key question: How to guarantee a connected topology?

Introduce optimization vector of virtual line flows f € R*

add these constraints to ATf=1
previous formulation —Nb <f < Nb

Intuition: find topology that can deliver 1 pu injected at each bus and N pu
received by substation

Comparison to formulation of [Lei-Chen-Song-Hou'19]

Singh, Kekatos, Taheri, Schneider, and Liu, “Enforcing Radiality constraints for DER-aided power
distribution grid reconfiguration,” in Proc. PSCC, June 2020, Porto, Portugal. 19



Numerical tests

Prob. of Correct Topology Identification

_e_T}'m' =2
+T}'m‘ = 10| |
T}'zn' =50

0.8

0.6

0.4

0.2+

10 1073
Noise variance

= Each inverter probed T times to average out noise

RUNNING TIME FOR MILPS [SEC]

0.8

0.6

0.4

Prob. of Correct Line Detection

+ﬂnl‘ =2

+T’im' =10

CZjinl' =50

10

Noise variance

# of candidate lines L

24

36

48

MILP formulation

1

27

200
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Topology identification algorithms

» Graph algorithms

o complete or partial voltage data

o exact for noiseless data

= Convex relaxation
o complete voltage data

0 noisy data but heuristic

= Mixed-integer linear program (MILP) approach

o complete voltage data

o computationally more demanding yet exact

21



Probing for learning loads

<|V0|790) (201,%, ‘Vl‘) (p2,Q2) I
| | | P
0 1 2
(Vol.66) (o IV lona) |
| | | : | t,
| T
0 1 \2_ i

S. Bhela, V. Kekatos, and S. Veeramachaneni, "Enhancing Observability in Distribution Grids using
Smart Meter Data," IEEE Trans. on Smart Grid, Nov. 2018. 22



Coupled power flow (CPF) problem

Problem statement: Given inverter data on metered buses M and assuming time-
invariant injections at buses O, find states {v,}/_, and non-metered loads on O

probing (metered) buses non-metered buses

} E t; . Vn € M MT v v e } 20(T' = 1)
dn (Vi q 3 qn(Vi) = qu(viy1) VneO

Up(vy) =at VYneM
20|

= Counting equations and unknowns yields | M| > T

Q1) Can non-metered loads be recovered by probing T slots?
Q2) How to optimally design probing actions?
Q3) How to solve the CPF problem?

S. Bhela, V. Kekatos, and S. Veeramachaneni, “Smart Inverter Grid Probing for Learning Loads: Parts I
& 11", IEEE Trans. on Power Systems, Sep 2019. 23



Conclusions

Take-home: Inverter probing as active data collection paradigm for grid learning

4 ~N | |©m |
M identifiability | | | i

¢

~ [E
-

M topology ID algorithms

M probing for load learnin L N
probing g | | I/B@
- 7/ | I
» ' g
% o—9¢ oo » [J multiphase configurations
. I | G %& o [1 partial and noisy data
o} L1 “probing’ by regulators/capacitors
» !
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Kernel-Based Learning for Smart Inverter Control

= \ 9
Mana Jalali Aditie Garg Nikolaos Gatsis Deep Deka
[now with EPRI]  Un. of Texas San Antonio  Los Alamos National Lab
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Motivation

/}‘ | = Inefficiency of voltage control devices

,:0.6
g solar
& 05 :
5 generation
o 0.4
g,
é 0.3
202
5o
n

00 4:00 8:60 12200 16:00 20:00 24;00

©
o
a

o
o
=

voltage deviation

°
o
@

o
o
o

Absolute voltage deviation [p.u.
o
o

o

0 4:00 8:00 12:00 16:00 20:00 24:00

= Voltage fluctuations due to renewables
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Finding reactive power setpoints

Local control curves [Turitsyn'11], [Kekatos-Zhang-Giannakis'15], [IEEE 1547]

qg
"A  Volt/VAR

ov,,

Centralized OPF [Lavaei-Low’14], [Farivar-Low’15]

Decentralized OPF

[Dallanese-Dhople-Giannakis'15], [Peng-Low’16]

Customize control curves on
a quasi-stationary basis

Aq’

X N

X N X X

no cyber cost

suboptimal

optimal

cyber, obsolete

cyber

iterations
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Designing control rules

utility 9,08, ¢ utility utility e,
I | —— —— “_
A : \\ g “-|IIII|IIII"-‘:=.f. qg() “
I \\q\'n(') ‘o"" .0’ . ‘:
¢ L C : + — @ ® — —
f) g 1 ! . %o 4"
o) W ¥ . § ™ e ¥
|
o ® e © —0 e © °
|
v
o &Y oAy o &Y
Data collection Design inverter rules Real-time operation
[30-min basis] [30-min basis] [5-sec basis]

Control rules as linear policies

o Chance-constrained [Ayyagari-Gatsis-Taha’17]

Control rules do not
o Robust approaches [Jabr'18]; [Lin-Bitar'18] Lave to be linear!

0 Closed-loop approach [Baker, Bernstein, Dall’ Annese, Zhao'18]
o OPF-then-Fit [Dobbe-Callaway’18], [Karagiannopoulos-Hug'18]
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Problem formulation

Approximate grid model v~ R(p? —p°) + X(q’ — q)

= Xq’ +y
4
Options for voltage deviation penalties g
- least-squares A,(q?) = || Xq? +y|3
N
- epsilon-insensitive A.(q?) = Z[el (Xq? +y)]e _
n=1 —€ 0 +e
voltage deviation
Inverter setpoints to minimize voltage deviation penalty (per bus)
min  A(q”;y)
o OPF

sto —q’ <q’ <@’

Inverter setpoints as policies G5 (2n) = fn(zn)

- remote and local inputs z, = [p% —p5 @ ¢

29



Kernel-based learning

Given data {(z: € X,z € R)}_,, and kernel function K : X x X — R
T

f* = arg min (ze — fz))” + pllfllx
=1

where Hi = {f(:c) = ZK(w,xt)at}

Representer’s Theorem: Minimizing function depends only on training data

Functional minimization as vector optimization

argmin |z — Kal|3 + uva'Ka
a

Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, Inference, and
Prediction, Springer, 2009. 30



Least-squares inverter control

Control rule design as function fitting using T scenario data

4 T N N
min ) Alaf;ye) +p)_ lledllc,
t=1 n=1
s.to |Q}ql7t’ < (jygz,t vnat
/

Jointly learning inverter functions can be solved as QP or SOCP

T

qrrgz,t(zn) = Z K(zn, Zn,t)a’:,t <«—— rule described by {zn,¢, aZ,t}thl

=l

Increasing p unselects some inverters from reactive control (spatial sparsity)

Policy output heuristically projected within feasible range

A. Garg, M. Jalali, V. Kekatos, and N. Gatsis, ‘Kernel-Based Learning for Smart Inverter Control,
in Proc. GlobalSIP, Anaheim, CA, Nov. 2018. 31



Support vector inverter control

Gemma: Voltage deviation penalties and sparsity across scenarios

N
A(q?) = Z {@RL :if ||[Vi]leo > €, then a,#0 Vn

n=1

@)= |I9ll2] : i |Vl <7, then an,=0 Vn with |gf,| <al,
T

A
N

Ar(V)

= Different from SVMs, block voltage penalties yield support feeder scenarios

M. Jalali, V. Kekatos, N. Gatsis, and D. Deka, “Designing Reactive Power Control Rules for Smart
Inverters using Support Vector Machines,” IEEE Trans. on Smart Grid, (early access)
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Numerical tests

B C3) local control rule
A C4) 7-SVM rule (linear)

V¥ C5) 7-SVM rule (Gaussian) ”
0.04| e C2)dispatch delayed by 2 min " R

® C1) optimal dispatch ﬂ =

Max. voltage deviation

0 20 40 80 100 120

60 .
Bus index

= Pecan Street data (8am-8pm) on IEEE 123-bus feeder (1-phase)
= 50% solar penetration with 1.1 inverter oversizing

= Train for T=30 one-min data; validate on next 30 one-min data

33



Performance vs. sparsity

o o
N M~

~
0

Avg. voltage deviation
I
IN N

w
fo)

%107

B > ® 7 -SVM (linear) I

i > » ¢ -SVM (linear) i
e o > > ¢ 7-SVM (Gaussian)

® 0o Mo > " ¢ -SVM (Gaussian)

L u ’ _|
” "y o>

[ ‘ ’ . I

' ) R °
L ; - : .. ¢ > L i
%
L > —
0 12 16 20

4 8
Avg. percentage of non

-zero elements
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Max. voltage deviation

OPF-then-learn vs. OPF-and-learn

Io.os— . OPF-and-learn
B OPF-then-learn |

OPF-then-learn: 2-step approach

o solve multiple OPFs

o fit input-minimizer pairs

| " g n
0.02 -
[ | [ | [ | [ | [ ]
0.01 ° e o © o ©
e o © o ° T
0 | | | | |
0 2 4 Busﬁindex 8 10 12
4_.5><10_3 -
c
2
—
S s "y = = o
Linear rules on IEEE 13-bus ¢rid >
& S @® OPF-and-learn
U 25 .
20 B OPF-then-learn
= m = "
S °
> 1.5 b
o) °®
> o © O 4
< 5. © @ ® |
0 2 6 8 10 12
Bus index
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Conclusions

J 2 HOMM T VirginiaTech
Power and Energy Center Invent the Future

A
M learning non-linear inverter rules
M data-based feeder-wide designs \
—
M SVM costs for communication savings ‘\/

utlllty | o .,

closed-loop control

remote input and kernel selection

constrained kernel learning

DNN-based rules

O O O O

Thank you!
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Grid IoT data analytics P EC mV1rg1n1aTeCh_

Invent the Future

Power and Energy Center

Tools
: : machine learning for
inverter probing erid control
Problems
[ load learning } [ grid IoT control }
TTnTn d
|
BRR
- e P P munn

=0 B W §
5 5 B
I I I I

[ topology learning }

Thank You!
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