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Power System Patterns

min Zieg(cz,ipcz;,i +¢1D6,)
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“Power system operators solve
power flow in their heads”

— L Informal discussion with Thomas Tratscher
EED | i (Head of Data Science, Statnett, Norway)
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IDEA: Can we use
machine learning to identify
==o | the optimal dispatch?
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Optimal Power Flow

Goal: Low cost operation, while enforcing technical limits
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Optimal Power Flow

System conditions (load, renewables) are constantly changing

min Zieg(CZ,ipcz;,i +cq; pG,i) minimize generation cost )
. Resolve this
=Y. b (0; — 6) power flow balance problem
Pa() ~ Poe) = Zjesi Pij(bi = b)), > every 5-15 min
. for varying
min < pMax g ¢ e {i traint :
Py P6g <Psg 9 G generation constraints load proflle Pp

max max : i i i
ij < bl-j(el- — Qj) < fl.j ,J EL transmission constraints D

Could include much more details (security constraints, generator
variables on/off variables, non-linear AC power flow, ...)




Repeated solution process

OPF at T, with load p')’
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Repeated solution process

OPF at T, with load p')’
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Can we use solutions for previous load profiles p)

to learn the new solution p; ?



First attempt:

Train a neural net!
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First attempt: Train a neural net

Renewable k« Dispatch
energy o : >

TA_}(» > / - Pg(wy)

» This didn’t work well...
» Hard to satisfy safety constraints!
* Projection back onto feasible space cause suboptimality...

« Challenging: High-dimensional input - High dimensional output

. . . Wide enough and deep enough
This can work well under some circumstances [Karg and Lucia, 2018]
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Power System Patterns

How is this possible?

Limited number of operational patterns
« Set of congested lines
« Set of generators at their limits

Each optimal operational pattern A* has a
corresponding optimal control policy

PZ = Aaclt(bact + CoactPp)

Optimal dispatch is a linear function of
the load profile pp for small* changes!

*Small changes = same active constraints at optimal solution

min Q,;ccC1iPqgi
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s.t.
Pe(i) — Ppi) = Zjesi bij(0; — 6;),

min max
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[Vrakopoulou
and Hiskens,
2017]
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Multiparametric programming, explicit MPC...
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Multi-parametric programming is
inconvenient and computationally
expensive for large systems ®

The number of possible active sets is
exponential in problem size ®

... but maybe only a few matters in
practice? ©

Can we learn the practically relevant
active sets?
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Think again!

min Q,;ccC1iPqgi
b ZLEQ 1,i PG,i

s.t.
Pe(i) — Ppi) = Zjesi bij(0; — 6;),
min

Peg <Dcg <Dig » 9EG

— < b (6, —6;) < fF¥,j €L

IDEA: Can we use
Statistical learning to
identify optimal active sets
== | and corresp_opding optimal

policies?

ESSINEERINE ERRINL



Learning the Patterns

Learning optimal active sets through sampling

load
profile 1 ——

Pp

Optimal
Power —
Flow

Pc Optimal dispatch

A” Optimal active set 1

min icc C1iDg i
Py ZLEQ 1,i PG,i

s.t,
Py — Poi) = Xjesi bij(6i — 6)),
pg.lén < Peg SPeg

_fi;'naxs bU(Hl - 9]) < fi}nax,

i€EN,gEG,ijEL



Learning the Patterns

Learning optimal active sets through sampling

load Optimal Pc Optimal dispatch
profle 1 — Power —*

Pp Flow A" Optimal active set 1

load Optimal Pc Optimal dispatch

profile2 — Power —*

Pp Flow A” Optimal active set 2

min icc C1iDg i
Py ZLEQ 1,i PG,i

s.t,
Py — Poi) = Xjesi bij(6i — 6)),
pg.lén < Peg SPeg

_fi;'naxs bU(Hl - 9]) < fi}nax,

i€EN,gEG,ijEL



Learning the Patterns

Learning optimal active sets through sampling

load Optimal Pc Optimal dispatch
profle 1 — Power —*

Pp Flow A" Optimal active set 1

load Optimal Pc Optimal dispatch
profile2 — Power —*

Pp Flow A" Optimal active set 2

load Optimal pc Optimal dispatch
profle 3 —— Power —*

Pp Flow A”* Optimal active set 3

min icc C1iDg i
Py ZLEQ 1,i PG,i

s.t.
Py — Poi) = Xjesi bij(6i — 6)),
pg.lén < P6.g S PGy

_fi;'naxs bU(Hl — 9]) < fi}nax,

i€EN,gEG,ijEL



Learning the Patterns

Learning optimal active sets through sampling

load Optimal Pc Optimal dispatch
profle 1 — Power —*

Pp Flow A" Optimal active set 1

load Optimal Pc Optimal dispatch
profile2 — Power —*

Pp Flow A" Optimal active set 2

load Optimal pc Optimal dispatch
profle 3 —— Power —*

Pp Flow A”* Optimal active set 3

min icc C1iDg i
Py ZLEQ 1,i PG,i

s.t.
Py — Poi) = Xjesi bij(6i — 6)),
pg.lén < P6.g S PGy

_fi;'naxs bU(Hl — 9]) < fi}nax,

i€EN,gEG,ijEL



Learning the Patterns

Learning optimal active sets through sampling

load Optimal Pc Optimal dispatch
profle 1 — Power —*

Pp Flow A" Optimal active set 1

load Optimal Pc Optimal dispatch
profile2 — Power —*

Pp Flow A" Optimal active set 2

load Optimal pc Optimal dispatch
profle 3 —— Power —*

Pp Flow A”* Optimal active set 3

min icc C1iDg i
Py ZLEQ 1,i PG,i

s.t.
Py — Poi) = Xjesi bij(6i — 6)),
pg.l;n < P6.g S PGy

_fi;'naxs bU(Hl — 9]) < fi}nax,

i€EN,gEG,ijEL

Benefit:
We only look for active sets
that occur in practice!
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Learning optimal active sets through sampling
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When to stop?  Combined probability of observed
patterns A* = {AM, AP .. }is high.

Combined probability of observed patterns A" = /’ AL
the probability that .A™ contains the optimal policy Load pp

and give us an optimal solution for a new sample p,
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Requires estimating this probability!
Algorithm based on a “stream” of samples: [Misra, Roald and Ng ‘18]
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Requires estimating this probability!

Algorithm based on a “stream” of samples: [Misra, Roald and Ng ‘18]
1. Use first samples to identify optimal active sets A"
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1. Use first samples to identify optimal active sets A"
2. Use next samples to assess the “rate of discovery” (i.e., empirical probability of observing
previously unseen A%)
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1. Use first samples to identify optimal active sets A"

2. Use next samples to assess the “rate of discovery” (i.e., empirical probability of observing
previously unseen A%)

3. Use empirically observed probability to derive bounds on the true probability
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Learning optimal active sets through sampling
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When to stop? Combined probability of
observed patterns A~ is high.

Requires estimating this probability!
Algorithm based on a “stream” of samples: [Misra, Roald and Ng ‘18]

1. Use first samples to identify optimal active sets A"

2. Use next samples to assess the “rate of discovery” (i.e., empirical probability of observing
previously unseen A%)

3. Use empirically observed probability to derive bounds on the true probability

4. If true probability is too high: Add additional samples and move to step 1
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Learning optimal active sets through sampling

min e C1i i
Pc.0 Zleg 1,lpG,l
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When to stop? Combined probability of
observed patterns A~ is high.

Requires estimating this probability!

Algorithm based on a “stream” of samples: [Misra, Roald and Ng ‘18]
« Guaranteed to converge
« Converges fast if there are few active sets

« No assumptions on problem structure/probability distribution required!




Learning the Patterns

Learning optimal active sets through sampling

min icc C1iDg i
Py ZLEQ 1,i PG,i

s.t.

load Optimal Pc Optimal dispatch Do) — Poi) = Bjesi bij (0 — 6)),
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When to stop? Combined probability of
observed patterns A~ is high.

1

Requires estimating this probability!

Algorithm based on a “stream” of samples: [Misra, Roald and Ng ‘18]

Missing mass problem and Good-Turing estimator!
[Bertsimas and Stellato ‘18]




Using the Patterns

Operating the system based on learned policies

/ AT

min ccC1iPci
6.0 Zleg 1,i Pg,i

s.t.
Pe) — Poi) = Xjesi bij(6i — 6)),

Load pp

min max
pG,g < pG,g < pG,g )

—fi] < by(6: — 6;) < f7,

i€EN,gEG,jEL

Operator experience!

Classification [Deka and Misra, 2019]




Using the Patterns

Operating the system based on learned policies

/ AT

min Zieg C1,i Pg,i

pz PG,

s.t.

Load Pp Pe(i) — Po(i) = Xjesi bij(8; — 0)),

min max
pG,g < pG,g < pG,g )

— [ < by (6; - 6;) < f7%,

i€EN,gEG,ijeL

Operator experience / classification [Deka and Misra, 2019]

* Works well if the number of optimal active sets is small
« Dangerous if a correct active set has not yet been observed

—
|



Is it effective?

Stopping criterion: Rate of discovery (Empirical probability) < 0.01

* Works well if the number of optimal active sets is small
« Dangerous if a correct active set has not yet been observed




s it effective?
Stopping criterion: Rate of discovery (Empirical probability) < 0.01

Normal distrib n Uniform distrib n
Ku M Wt v P(p") ] M Wi v P(p")

Km
Low-Complexity
case3_Imbd 1 1 13°259 0.0 1.0 1 1 13°259 0.0 0.0
cased_pjm 1 | 13°259 0.0 1.0 1 1 13°259 0.0 0.0 For many DC OP F
casel4_ieee I I 13'259 0.0 1.0 1 I 13'259 0.0 0.0 teSt ca SeS*
case30_ieee 1 I 13°259 0.0 1.0 1 1 13°259 0.0 0.0
Test  cwsedvepr 2 2 13259 0.0 1.0 2 2 13259 0.0008  0.9998 it works well:

casel 18_ieee 2 33 13259 0.0 1.0 2 4 13°259 0.0019 0.9984

CasSe  caseST.eee 2 2 13259 0.0003  0.9997 3 46 13°259 0.0 0.0
case1888 _rte 3 6 13259 0.0 0.0 3 10 13259 0.0 0.0 .
case1951 rte 5 47 13259 00069 09943 || 11 63 13259 00084  0.9901 Few active sets
case]62_jeee_dtc 7 91 13250 0.0054  0.9925 17 192 13259 0.0085  0.9926 . .
case24_ieee_rts 10 1456 187209 0.0 0.0 1 64 13'259  0.0047  0.9941 req ul red to acC h ieve
High-Complexity = agm
case73 ieee_tts 19 1258 17844 00087 09931 || 130 227000 24977 00136 - a hi g h pro babil Ity
case300_icee 24 1257 17842 0.0073  0.9919 || 293 9095 22789  0.0099  0.9897
case200_pserc 174 4649  21'112 00099 09909 || 236 6741 22040  0.0099  0.9901
case240_pserc 2993 22°000 24997 0.0795 : 2093 22°000 24997 0.0795 :

* Works well if the number of optimal active sets is small
« Dangerous if a correct active set has not yet been observed

*from pglib_opf

—
|




s it effective?
# of active sets # of active sets

Normal distribution Uniform distribution
M War Ruyw  P(p") f M W Rvyw  P(p")

Low-Complexity
case3_Imbd 1 | 137259 0.0 1.0 1 | 13°259 0.0 0.0
cased_pjm 1 | 13°259 0.0 1.0 1 1 13°259 0.0 0.0 For many DC OP F
casel4_iece 1 I 13°259 0.0 1.0 1 I 13°259 0.0 0.0 *
case30_ieee 1 | 13°259 0.0 1.0 1 1 13°259 0.0 0.0 teSt Cases
Test  case39ep 2 2 13'259 0.0 1.0 2 2 13259 0.0008  0.9998 |t WO rkS Wel |-

casel18_jeee 2 33 13°259 0.0 1.0 2 4 13259 0.0019  0.9984

case case57 ieee 2 2 13259 0.0003  0.9997 3 46 13°259 0.0 0.0
case1888_rte 3 6 13'259 0.0 0.0 3 10 13°259 0.0 0.0 .
case1951 rte 5 47 13259 0.0069  0.9943 1 63 13259 0.0084  0.9901 Few aCtlve sets
case162_ieee_dtc 7 91 13259 0.0054  0.9925 17 192 13259 0.0085  0.9926 . .
case24_ieee_rts 10 1456 187209 0.0 0.0 11 64 13'259  0.0047  0.9941 re q uire d to acC h ieve
High-Complexity = agm
caseT3 jecetts 19 1258 17844 00087 09931 || 130 227000 24977  0.0136 - a hi g h pro babil Ity
case300_icee 24 1257 17842 0.0073  0.9919 || 293 9095 22789 0.0099  0.9897
case200_pserc 174 4649 21112 0.0099  0.9909 || 236 6741  22°040  0.0099  0.9901
case240_pserc 2993 22°000  24°997  0.0795 : 2993 22°000  24°997  0.0795 -

* Works well if the number of optimal active sets is small
« Dangerous if a correct active set has not yet been observed

*from pglib_opf

—
|



PSERC 200 bus test case

~ Number of active sets 012 |
150} /_/_/—”ﬂ .
Number of / 163
active  or 0.10 | -
sets y Probability of
// 0.08 observed sets
0—g S(I)O 10I00 15IOO 20IOO 25100 006 [
Rate of  osf L 0.04 |
discovery o4 | 002 |
ol S Rate of discovery
— . 0.0099 0.00 | |
560 I 2000 2500

1000 . 1501
Iterations

Many optimal active sets with non-negligible probability =

the algorithm terminates slowly!




RTE 1951 bus test case

Number of active sets

r ‘ 06 °
Number of 4 /J 5
active 4| 0.5 *
sets a / 0.4
1k 1 1 1 1
0 10 20 30 40

03 ¢©

0.3F
2
Rate of | 02
discovery
. 0.1
o1l Rate of discovery l
0_04 1 1 1 1 r I 1 | _ \_
0 10 40

Probability of
observed sets

0.0069 00 ¢

20
Iterations

Few optimal active sets with high probability =

the algorithm terminates fast!




How do the patterns change with

renewable energy?

1\



- J0

Unique active sets

500 1

400 1

300 1

200 -

—

—— Std. dev = 0.01]
Std. dev = 0.02
— Std. dev =0.03| 7
Std. dev = 0.04 |-
—— Std. dev = 0.05
///,J
///‘ -
y
2500 5000

Number of load scenarios

10000

Renewable energy = Increased variability

Renewable energy =
Increasing load variability =
Increasing number of active sets

Results for IEEE 300 bus system with normally distributed
load uncertainty [Ng, Misra, Roald, Backhaus, 2018]



Unique active sets

Renewable energy = Increased variability

500 1

400 1

300 -

200 -

100 1

Number of load scenarios

- R —
— Std. dev = 0.01 o
—— Std. dev = 0.02 o
— Std. dev = 0.03 et
—— Std. dev =0.04 |-
—— Std. dev = 0.05

,// - T g’ -

S ——
//',_/_,'_zf—’_' —_—
2500 5000 7500 10000

Renewable energy =
Increasing load variability =
Increasing number of active sets

Results for IEEE 300 bus system with normally distributed
load uncertainty [Ng, Misra, Roald, Backhaus, 2018]

“Operators sometimes make
wrong decisions because of
Increased variability”
Patrick Panciatici (RTE, France)



Renewable energy = Increased variability

More variety in the active (congested) line constraints! Red and blue:
Line is congested

Without

Renewable

Energy '

Active line constraints for the month of June in IEEE RTS-GMLC test case (with and without renewable energy).



Renewable energy = Increased variability

More variety in the active (congested) line constraints! Red and blue:
Line is congested

Without

Renewable 5 congested lines, 8 patterns over 1 year

Energy v

Active line constraints for the month of June in IEEE RTS-GMLC test case (with and without renewable energy).



Renewable energy = Increased variability

More variety in the active (congested) line constraints! Red and blue:
Line is congested

Without

Renewable 5 congested lines, 8 patterns over 1 year
Energy v

Renewable - 13 congested lines, 98 patterns over tyear - - - - - -1-
Energy

Active line constraints for the month of June in IEEE RTS-GMLC test case (with and without renewable energy).



Renewable energy = Increased variability

More variety in the active (congested) line constraints! Red and blue:
Line is congested

Without

Renewable 5 congested lines, 8 patterns over 1 year
Energy v

Renewable - 13 congested lines, 98 patterns over tyear - - - - - -1-
Energy

With more variable power injections, it gets harder to learn all the relevant patterns!




How about AC optimal power flow?
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|

RTE 1951 bus test case

| DC OPF

’ \%\ 47 iterations
_\\R
L T AC OPF ?
T (did not terminate)
T

~—

Learning AC congestion patterns toration

PSERC 200 bus test case

1 ocomr

2602 iterations

—

AC OPF
205 iterations

AC OPF is typically harder (voltage and reactive power constraints)

but not always



Learning AC active constraints

0.991

0.98-

RTE 1951 bus test case

~__ Active sets

\ 0.967

0.75
0.50
0.25F
—
200

0.00E

Individual
active constraints

= 0.0035

0.7
0.6

0.6

0.4
0.3
0.2
0.1

0.0, T T I I
0 50 100 150 200

PSERC 200 bus test case

il Active sets

0.4
0.3
0.2
01

0.039

1 1 1 1
0 50 100 150 200

Individual
active constraints

0.0001

If there are too many active sets, we can still learn active constraints.



Learning AC active constraints

RTE 1951 bus test case

Only 164 of 5192 transmission
line constraints ever active

0.75F IndiViduaI
active constraints

0.25[ \

(I) 2(1)0 4(‘)0 6([)0 B(I)O 0 u 0 0 3 5

0.00E

0.6
0.5
0.4
0.3
0.2
0.1

0.0

PSERC 200 bus test case

Only 28 of 490 transmission line
constraints ever active

|
Individual
active constraints

; p 00 = =— 0.0001

If there are too many active sets, we can still learn active constraints.



Only very few constraints seem to be
at the optimal solution

Are there constraints that can never be
active at all?

1\



Learning the active constraints

Previous part of the talk: If you know the set of active constraints
at optimum, you can recover the optimal solution!

Renewable Predict optimal : O;_)tlmal Predict/recover X thlmal
energy active set active set optimal solution dispatch
® A’ (@) Pi(w;)

Optimal active set = “minimal” information we need to recover optimal solution
Inherently encodes information about physical constraints and technical limits
Finite, low dimensional object

Nice practical interpretation as “operational patterns”




Learning the active constraints

If you know the set of active constraints at optimum,
you can recover the optimal solution!

If you know that some constraints are never active,
you can solve a smaller optimization problem!

Previously, we used learning to identify constraints that
are probably not active.

Let's see if we can find transmission constraints that will
never be active (i.e., are redundant).




How many constraints can ever be active?

Previous part of the talk: If you know the set of active
constraints at optimum, you can recover the optimal solution!

If you know that some constraints are never active,
you can solve a solve a smaller optimization problem!

100% ~

75% 2848 bus RTE test case
Percentage of
line flow I
50% = Redundant constraints .
constraints Only 0.8% constraints
25% are non redundant!

0% >~ Non-redundant constraints




1) Parallel lines

« For parallel lines, one flow limit may always be
more restrictive.

Case Num. Num. Parallel Num. Redundant

Name Lines Lines Limits

i 1 T i TaY PL-2383wp 2896 20 6

. !Evalga_tmg analytic condl.thn is sufficient jto L 273600 e = )
identifying redundant flow limits on parallel lines PL-273750p 3209 2 ;
. . ~2746wop 3: 5 3
using only the lines’ parameters. PL-2746wp 3279 12 4
PL-3012wp 3572 12 5

PL-3120sp 3693 18 8

b(k) b(l) PL-3375wp 4161 178 5

ij ij PEGASE-89 210 8 2

X < ] PEGASE-1354 1991 519 203

f max (k) f_'_”“x (D PEGASE-2869 4582 1157 316

L l PEGASE-9241 16049 3503 650

[Molzahn “18]
* For some test cases, approximately 20% of

parallel lines are identified as redundant.




2) Optimization-based constraint screening

mipn/zr)nax fi=Mqyy(pg — pPp) Minimize/maximize line flows
G PD
st %2 (peay — Powy) =0 Power balance Non-redundant
0<pg <pg*, Generation constraints Typically non-redundant

—f"** < M(pg — pp) < fi"Y, Transmission constraints Often redundant

A-X)pp°™ <pp < (1 +X)p;°™, Considered load variation

Allow power demand pp tovary + X - 100% where 0 < X <1

Relax generator lower bounds to 0 (applicable to unit commitment!)

Find maximum and minimum achievable flows E » 1




2) Optimization-based constraint screening

m;,r;/;?)ax fi =Muy(pc — po) Minimize/maximize line flows
st. X (pey —Pow) =0 Power balance Non-redundant
0<ps <pi™, Generation constraints Typically non-redundant
—fi"** < M(pe —pp) < fi"Y, Transmission constraints  Often redundant

A-X)pp°™ <pp < (1 +X)p;°™, Considered load variation

Allow power demand pp tovary + X - 100% where 0 < X <1

Relax generator lower bounds to 0 (applicable to unit commitment!)

Find maximum and minimum achievable flows E » 1

If fi < fI8% or f;> fimn = Constraint is redundant!




Many redundant constraints...

R case2848 rte . case3375wp_k
100% 100%
75% 75%
50% 50%
25% 25% | I Remaining Constraints
Percentage of - [ Optimization Elimination
I f 0% == == == == . oo, == = Em b e [_JParallel Line Elimination
Ine 1iow . caseb468 rte , case9241_pegase
. 100% 100%
constraints
75% 5% ' [
5% 75% Constraint screening results for test
— 50% cases from PGLib v.17.08
25% 25%
0% 0% “
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Range of load Range of load

...even for large load variations!




Significant reduction in computation...

case2848 rte case3375wp_k

100% — — 100% —

75% 75%
50% 50%

25% - 25% r

Relative 8‘”9€'pe”°d
: 0% 0% nit Commitment
computatlonal . case6468_rte . case9241_pegase

time 100% —————————————— 100% T problem
75% | 1 75% |
50% I | 509 | ] Results based on 100 computations of

UC for test cases from PGLib v.17.08
o | || RRSTT
0% 0%

° 0% 25% 50% 75%100% ° 0% 25% 50% 75%100%
Range of load Range of load

...even for large load variations!




Summary

Congestion pattern = Optimal active set of OPF

In traditional operations, only a few constraints Lunch!
are relevant

... our algorithms can identify them!

Renewable energy variability increases
complexity of system operations =
increasing number of operational patterns!

A good case for optimization? ©




Thank you!

roald@wisc.edu
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