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“Power system operators solve 
power flow in their heads”

Informal discussion with Thomas Trøtscher
(Head of Data Science, Statnett, Norway)
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−C%6=@A≤ 8%6 :% − :6 ≤ C%6=@A, D ∈ ℒ
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IDEA: Can we use 
machine learning to identify 

the optimal dispatch?
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Optimal Power Flow

System conditions (load, renewables) are constantly changing

min ∑%∈' (),%+,,%) + (.,% +,,%

s.t.	

+, % − FG H = ∑6∈7% 8%6(:% − :6) ,

+,,<=%> ≤ +,,< ≤ +,,<=@A, B ∈ '

−C%6=@A≤ 8%6 :% − :6 ≤ C%6=@A, D ∈ ℒ

minimize generation cost

power flow balance

generation constraints

transmission constraints

Could include much more details (security constraints, generator 
variables on/off  variables, non-linear AC power flow, …)

Resolve this 
problem 
every 5-15 min 
for varying 
load profile FG
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Can we use solutions for previous load profiles FG
to learn the new solution FO∗ ?
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• This didn’t work well...
• Hard to satisfy safety constraints! 

• Projection back onto feasible space cause suboptimality… 

• Challenging: High-dimensional input → High dimensional output

• This can work well under some circumstances(though I will admit that we gave up quite fast)
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First attempt: Train a neural net

• This didn’t work well...
• Hard to satisfy safety constraints! 

• Projection back onto feasible space cause suboptimality… 

• Challenging: High-dimensional input → High dimensional output

• This can work well under some circumstances Wide enough and deep enough
[Karg and Lucia, 2018]
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[Vrakopoulou
and Hiskens, 
2017]
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inconvenient and computationally 

expensive for large systems L

The number of possible active sets is 
exponential in problem size L

… but maybe only a few matters in 
practice? J

Can we learn the practically relevant 
active sets?
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IDEA: Can we use 
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Benefit: 
We only look for active sets 

that occur in practice!



Learning the Patterns
Learning optimal active sets through sampling

When to stop? Combined probability of observed 

patterns ]∗ = {](.),]()), … } is high.

min
RS,T

∑%∈' (.,% +,,%

s.t.	
+, % − FG H = ∑6∈7% 8%6(:% − :6) ,

+,,<=%> ≤ +,,< ≤ +,,<=@A,

−C%6=@A≤ 8%6 :% − :6 ≤ C%6=@A,

[ ∈ \, B ∈ ' , [D ∈ ℒ

Optimal 
Power 
Flow

+,∗

]∗

Optimal dispatch

Optimal active set H

load
profile H
FG



Learning the Patterns
Learning optimal active sets through sampling

When to stop? Combined probability of observed 

patterns ]∗ = {](.),]()), … } is high.

min
RS,T

∑%∈' (.,% +,,%

s.t.	
+, % − FG H = ∑6∈7% 8%6(:% − :6) ,

+,,<=%> ≤ +,,< ≤ +,,<=@A,

−C%6=@A≤ 8%6 :% − :6 ≤ C%6=@A,

[ ∈ \, B ∈ ' , [D ∈ ℒ

Optimal 
Power 
Flow

+,∗

]∗

Optimal dispatch

Optimal active set H

load
profile H
FG

Combined probability of observed patterns ]∗ = 

the probability that ]∗ contains the optimal policy

and give us an optimal solution for a new sample +4
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When to stop? Combined probability of 
observed patterns ]∗ is high.

Requires estimating this probability! 
Algorithm based on a “stream” of samples: [Misra, Roald and Ng ‘18]
1. Use first samples to identify optimal active sets ]∗

2. Use next samples to assess the “rate of discovery” (i.e., empirical probability of observing 
previously unseen ]∗)
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Learning the Patterns
Learning optimal active sets through sampling

When to stop? Combined probability of 
observed patterns ]∗ is high.

Requires estimating this probability! 
Algorithm based on a “stream” of samples: [Misra, Roald and Ng ‘18]
1. Use first samples to identify optimal active sets ]∗

2. Use next samples to assess the “rate of discovery” (i.e., empirical probability of observing 
previously unseen ]∗)

3. Use empirically observed probability to derive bounds on the true probability 
4. If true probability is too high: Add additional samples and move to step 1 
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Learning the Patterns
Learning optimal active sets through sampling

When to stop? Combined probability of 
observed patterns ]∗ is high.

Requires estimating this probability! 

Algorithm based on a “stream” of samples: [Misra, Roald and Ng ‘18]

• Guaranteed to converge 

• Converges fast if there are few active sets

• No assumptions on problem structure/probability distribution required! 
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Learning the Patterns
Learning optimal active sets through sampling

When to stop? Combined probability of 
observed patterns ]∗ is high.

Requires estimating this probability! 

Algorithm based on a “stream” of samples: [Misra, Roald and Ng ‘18]

min
RS,T

∑%∈' (.,% +,,%

s.t.	
+, % − FG H = ∑6∈7% 8%6(:% − :6) ,

+,,<=%> ≤ +,,< ≤ +,,<=@A,

−C%6=@A≤ 8%6 :% − :6 ≤ C%6=@A,

[ ∈ \, B ∈ ' , [D ∈ ℒ

Optimal 
Power 
Flow

+,∗

]∗

Optimal dispatch

Optimal active set

Missing mass problem and Good-Turing estimator!
[Bertsimas and Stellato ‘18]
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Using the Patterns

min ∑%∈' (),%+,,%) + (.,% +,,%

s.t.	
+, % (b − +4 % = ∑6∈7% 8%6(:% − :6) ,

+,,<=%> ≤ +,,< ≤ +,,<=@A,

−C%6=@A≤ 8%6 :% − :6 ≤ C%6=@A,

[ ∈ \, B ∈ ' , [D ∈ ℒ

Operating the system based on learned policies

Operator experience! 

Classification [Deka and Misra, 2019] 
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Using the Patterns

min ∑%∈' (),%+,,%) + (.,% +,,%

s.t.	
+, % (b − +4 % = ∑6∈7% 8%6(:% − :6) ,

+,,<=%> ≤ +,,< ≤ +,,<=@A,

−C%6=@A≤ 8%6 :% − :6 ≤ C%6=@A,

[ ∈ \, B ∈ ' , [D ∈ ℒ

Operating the system based on learned policies

Operator experience / classification [Deka and Misra, 2019]

• Works well if the number of optimal active sets is small
• Dangerous if a correct active set has not yet been observed 
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Is it effective?
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• Works well if the number of optimal active sets is small
• Dangerous if a correct active set has not yet been observed 

Stopping criterion: Rate of discovery (Empirical probability) < 0.01
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Is it effective?

O

O

• Works well if the number of optimal active sets is small
• Dangerous if a correct active set has not yet been observed 

For many DC OPF 
test cases*
it works well:

Few active sets 
required to achieve 
a high probability

*from pglib_opf

# of active sets # of active sets

Test
case



PSERC 200 bus test case

Many optimal active sets with non-negligible probability = 
the algorithm terminates slowly!

Rate of discovery
0.0099

Number of active sets
163Number of 

active 
sets

Rate of 
discovery

Iterations

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Probability of 
observed sets



RTE 1951 bus test case

Rate of discovery
0.0069

Number of active sets
5

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Probability of 
observed sets

Few optimal active sets with high probability = 
the algorithm terminates fast!

Number of 
active 

sets

Rate of
discovery

Iterations



How do the patterns change with 
renewable energy?



Renewable energy = Increased variability

Renewable energy =
Increasing load variability =
Increasing number of active sets
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Results for IEEE 300 bus system with normally distributed 
load uncertainty [Ng, Misra, Roald, Backhaus, 2018] 
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Renewable energy =
Increasing load variability =
Increasing number of active sets
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Number of load scenarios
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Std. dev

Results for IEEE 300 bus system with normally distributed 
load uncertainty [Ng, Misra, Roald, Backhaus, 2018] 

??? “Operators sometimes make 
wrong decisions because of 

increased variability”
Patrick Panciatici (RTE, France)



Renewable energy = Increased variability

More variety in the active (congested) line constraints!
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Active line constraints for the month of June in IEEE RTS-GMLC test case (with and without renewable energy).
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Renewable energy = Increased variability

More variety in the active (congested) line constraints!

Time 
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Red and blue:
Line is congested
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Time 

Without
Renewable
Energy

With
Renewable
Energy

5 congested lines, 8 patterns over 1 year

13 congested lines, 98 patterns over 1 year

With more variable power injections, it gets harder to learn all the relevant patterns!



How about AC optimal power  flow?



Learning AC congestion patterns

PSERC 200 bus test caseRTE 1951 bus test case

DC OPF
2602 iterations

AC OPF
205 iterations

DC OPF
47 iterations

AC OPF ?
(did not terminate)

AC OPF is typically harder (voltage and reactive power constraints)

but not always

iteration



Learning AC active constraints

PSERC 200 bus test caseRTE 1951 bus test case

Active sets

If there are too many active sets, we can still learn active constraints.

0.0035 0.0001

Individual 
active constraints

Active sets

Individual 
active constraints

0.967 0.039



Learning AC active constraints

PSERC 200 bus test caseRTE 1951 bus test case

If there are too many active sets, we can still learn active constraints.

0.0035 0.0001

Individual 
active constraints

Individual 
active constraints

Only 164 of 5192 transmission 
line constraints ever active

Only 28 of 490 transmission line 
constraints ever active



Only very few constraints seem to be
at the optimal solution

Are there constraints that can never be  
active at  all?



Learning the active constraints

Previous part of the talk: If you know the set of active constraints
at optimum, you can recover the optimal solution!

• Optimal active set = “minimal” information we need to recover optimal solution
• Inherently encodes information about physical constraints and technical limits
• Finite, low dimensional object
• Nice practical interpretation as “operational patterns”

Optimal
dispatch

cO∗ bH

Predict optimal 
active set

Renewable 
energy
b

Predict/recover 
optimal solution

Optimal
active set
U∗ bH



Learning the active constraints

If you know the set of active constraints at optimum, 
you can recover the optimal solution!

If you know that some constraints are never active,
you can solve a smaller optimization problem!

Previously, we used learning to identify constraints that 
are probably not active.

Let’s see if we can find transmission constraints that will 
never be active (i.e., are redundant).



How many constraints can ever be active?

Previous part of the talk: If you know the set of active 
constraints at optimum, you can recover the optimal solution!

If you know that some constraints are never active,
you can solve a solve a smaller optimization problem!

Percentage of
line flow 

constraints

2848 bus RTE test case

Only 0.8% constraints 
are non redundant!

Redundant constraints

Non-redundant constraints



1) Parallel lines

• For parallel lines, one flow limit may always be 
more restrictive.

• Evaluating analytic condition is sufficient to 
identifying redundant flow limits on parallel lines 
using only the lines’ parameters.

• For some test cases, approximately 20% of 
parallel lines are identified as redundant.

[Molzahn ‘18]

8%6
d

C%6
=@A (d) <

8%6
f

C%6
=@A (f)



2) Optimization-based constraint screening

min/max
RS, FG

Cf = j f,⋅ +, − FG

∑%l.
mn +,(%) − FG(H) = 0

p ≤ +, ≤ +,=@A ,

−Cq=@A ≤ j +, − FG ≤ Cq=@A,

1 − s +4>t= ≤ +4 ≤ 1 + s +4>t= ,

s.t.

Minimize/maximize line flows

Power balance

Generation constraints

Transmission constraints

Allow power demand FG to vary ± s ⋅ 100% where 0 ≤ s ≤ 1

Relax generator lower bounds to p (applicable to unit commitment!)

Find maximum and minimum achievable flows wx , wx

Non-redundant

Typically non-redundant

Often redundant

Considered load variation
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min/max
RS, FG

Cf = j f,⋅ +, − FG

∑%l.
mn +,(%) − FG(H) = 0

p ≤ +, ≤ +,=@A ,

−Cq=@A ≤ j +, − FG ≤ Cq=@A,

1 − s +4>t= ≤ +4 ≤ 1 + s +4>t= ,

s.t.

Minimize/maximize line flows

Power balance

Generation constraints

Transmission constraints

Allow power demand FG to vary ± s ⋅ 100% where 0 ≤ s ≤ 1

Relax generator lower bounds to p (applicable to unit commitment!)

Find maximum and minimum achievable flows wx , wx

Non-redundant

Typically non-redundant

Often redundant

Considered load variation

If wx < wy,xz{| or  wx > wy,xz~� ⇒ Constraint is redundant!



Many redundant constraints…

Percentage of
line flow 

constraints

…even for large load variations!

Constraint screening results for test 
cases from PGLib v.17.08

Range of load Range of load



Significant reduction in computation…

…even for large load variations!

Relative 
computational 

time

Single-period 
Unit Commitment 
problem

Range of load Range of load

Results based on 100 computations of 
UC for test cases from PGLib v.17.08



Summary
Congestion pattern = Optimal active set of OPF

In traditional operations, only a few constraints 
are relevant

… our algorithms can identify them!

Renewable energy variability increases 
complexity of system operations = 
increasing number of operational patterns!

A good case for optimization? J

Lunch!
J



Thank you!

roald@wisc.edu
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