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Computing Facilities

 Deep Learning Workstation

 4 x NVIDIA RTX 2080

 4 x 16 GB Memory

 512 GB SSD (OS)

 2 x 2TB HDD (Data)

 Oracle Big Data Appliance

 Number of Nodes: 6

 Number of Core: 216

 Hard Drive: 288 TB of 7,200 rpm 

High Capacity SAS Disks

 Memory: 768 GB DDR4

 Hadoop Platform: CDH Enterprise 

Edition

 Tools: Hive, Pig, Impala, PySpark, 

Scala, TensorFlow
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Why focus on distribution systems?
Increasing penetrations of distributed energy resource (DER) in power 

distribution systems

On a 5-year basis (2015-2019), DER in US is growing almost 3 times faster than central 

generation (168 GW vs. 57 GW).

In 2016, distributed solar PV installations alone represented 12% of new capacity 

additions.

California DER, 7GW in 2017, 12 GW by 2020 (peak load 50 GW)

Source: The U.S. EIA and FERC DER Staff Report

U.S. DER Deployments

Source: Navigant Report, Take Control of Your Future

Annual Installed DER Power Capacity Additions by 

DER Technology, United States: 2015-2024



The need for advanced modeling, monitoring, 

and control in distribution systems
The cold hard facts about modern power distribution systems

Modeling

Incomplete topology information in the secondary systems

Phase connection

Transformer-to-customer mapping

Even the three-phase load flow results are unreliable!

Monitoring

Most utilities do not have online three-phase state estimation for their entire 

distribution network

Control

Reactive Control

System restoration, equipment maintenance

Limited Proactive Control

Volt-VAR control, CVR, network reconfiguration
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Big Data in Distribution Systems: Volume

In 2017, the U.S. electric utilities had about 78.9 million AMI installations 

covering over 50% of 150 million electricity customers. 

The smart meter installation worldwide will surpass 1.1 billion by 2022.

In 2012, the AMI data collected in the U.S. alone amounted to well above 

100 terabytes.

By 2022, the electric utility industry will be swamped by more than 2 

petabytes of meter data alone.

Source: U.S. Energy Information Administration

U.S. Smart Meter Installations Projected to Reach 90 Million by 2020

Source: Institute for Electric Innovation



Advanced Metering Infrastructure

Electricity usage (15-minute, hourly)

Voltage magnitude

Weather Station

Geographical Information System

Census Data (block group level)

Household variables: ownership, appliance, # of rooms

Person variables: age, sex, race, income, education

SCADA Information

Micro-PMU

Time synchronized measurements with phase angles

Equipment Monitors

Wireless

Network

Cell Relay

RF 

Neighborhood

Area Mesh 

Network

Wide-Area Network

Meter Data

Management

System

Big Data in Distribution Systems: Variety



Big Data in Distribution Systems: Velocity

Sampling Frequency

AMI’s data recording frequency increases from once a month to one reading every 15 

minutes to one hour.

Micro-PMU hundreds (512) of samples per cycle at 50/60 Hz

Bottleneck in Communication Systems

Limited bandwidth for zigbee network

Most of the utilities in the US receives smart meter data with ~24 hour delay

Edge Computing Trend

Itron and Landis+Gyr extend edge computing capability of smart meters

Increasing data transmission range and computing capabilities of smart meters

Centralized → distributed / decentralized



Big Data in Distribution Systems: Value
The big data collected in the power distribution system had utterly swamped the 

traditional software tools used for processing them.

Lack of innovative use cases and applications to unleash the full value of the big 

data sets in power distribution systems1.

Insufficient research on machine learning and big data analytics for power 

distribution systems.

Electric utilities around the world will spend over $3.8 billion on data analytics 

solutions in 2020.

1. Nanpeng Yu, Sunil Shah, Raymond Johnson, Robert Sherick, Mingguo Hong and Kenneth Loparo, “Big Data Analytics in Power 

Distribution Systems” IEEE PES ISGT, Washington DC, Feb. 2015.

Source: GTM 

Research
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Applications of Big Data Analytics and Machine 
Learning in Power Distribution Systems

Spatio-temporal Forecasting
Electric Load / DERs – Short-Term / Long-Term

Anomaly Detection
Electricity Theft, Unauthorized 

Solar Interconnection

Equipment Monitoring
Predictive Maintenance

Online Diagnosis

System Monitoring
State Estimation & Visualization

Network Topology and 

Parameter Identification
Transformer-to-customer, Phase 
connectivity, Impedance estimation

Customer Behavior Analysis
Customer segmentation, nonintrusive 
load monitoring, demand response

Distribution System Controls
Deep Reinforcement Learning



Publications: Big Data Analytics & Machine Learning in Smart Grid
1. N. Yu, S. Shah, R. Johnson, R. Sherick, Mingguo Hong and Kenneth Loparo, "Big Data Analytics in Power Distribution Systems", IEEE PES 

Conference on Intelligent Smart Grid Technology, Washington DC, Feb. 2015.

2. Xiaoyang Zhou, Nanpeng Yu, Weixin Yao and Raymond Johnson, “Forecast load impact from demand response resources” Power and Energy 

Society General Meeting, pp. 1-5, Boston, USA, 2016.

3. W. Wang, N. Yu, B. Foggo, and J. Davis, “Phase identification in electric power distribution systems by clustering of smart meter data” 15th IEEE 

International Conference on Machine Learning and Applications (ICMLA), pp. 1-7, Anaheim, CA, 2016.

4. Jie Shi and Nanpeng Yu, “Spatio-temporal modeling of electric loads” in 49th North American Power Symposium, pp.1-6, Morgantown, WV, 2017.

5. W. Wang, N. Yu, and R. Johnson “A model for commercial adoption of photovoltaic systems in California” Journal of Renewable and Sustainable 

Energy, Vol. 9, Issue, 2, pp.1-15, 2017.

6. Yuanqi Gao and Nanpeng Yu, “State estimation for unbalanced electric power distribution systems using AMI data” The Eighth Conference on 

Innovative Smart Grid Technologies (ISGT 2017), pp. 1-5, Arlington, VA. 

7. Wenyu. Wang and Nanpeng Yu, "AMI Data Driven Phase Identification in Smart Grid," the Second International Conference on Green 

Communications, Computing and Technologies, pp. 1-8, Rome, Italy, Sep. 2017.

8. Jinhui Yang, Nanpeng Yu, Weixin Yao, Alec Wong, Larry Juang, and Raymond Johnson, “Evaluate the effectiveness of CVR with robust 

regression” in Probabilistic Methods Applied to Power Systems, pp.1-6, 2018.

9. Brandon Foggo, Nanpeng Yu, “A comprehensive evaluation of supervised machine learning for the phase identification problem”, the 20th 

International Conference on Machine Learning and Applications, pp.1-9, Copenhagen, Denmark, 2018.

10. Ke Wang, Haiwang Zhong, Nanpeng Yu, and Qing Xia, “Nonintrusive load monitoring based on sequence-to-sequence model with attention 

mechanism”, Proceedings of the CSEE, 2018.

11. Farzana Kabir, Brandon Foggo, and Nanpeng Yu, "Data Driven Predictive Maintenance of Distribution Transformers," in the 8th China 

International Conference on Electricity Distribution, pp. 1-5 2018.

12. Wei Wang and Nanpeng Yu, " A Machine Learning Framework for Algorithmic Trading with Virtual Bids in Electricity Markets," to appear in IEEE 

Power and Energy Society General Meeting, 2019.

13. Yuanqi Gao, Brandon Foggo, and Nanpeng Yu, “A physically inspired data-driven model for electricity theft detection with smart meter data” to 

appear in IEEE Transactions on Industrial Informatics, 2019.

14. Wang, Wenyu, and Nanpeng Yu. "Maximum Marginal Likelihood Estimation of Phase Connections in Power Distribution Systems." arXiv preprint 

arXiv:1902.09686 (2019).

https://intra.ece.ucr.edu/~nyu/
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Distribution System Topology Identification

16

The distribution system topology identification problem can be broken 

down into two sub-problems

The phase connectivity identification problem

The customer to transformer association problem



Phase Connectivity Identification

Problem Definition

Identify the phase connectivity of each customer & structure in the power 

distribution network.

Very few electric utility companies have completely accurate phase connectivity 

information in GIS!

Why is it important? (Business Value)

Phase connectivity is crucial to an array of distribution system analysis & 

operation tools including

3-phase Power flow

Load balancing

Distribution network state estimation

3-phase optimal power flow

Volt-VAR control

Distribution network reconfiguration and restoration



Phase Connectivity Identification

Primary Data Set

Advanced Metering Infrastructure, SCADA, GIS, OMS

Training data (field validated phase connectivity)

Solution Methods

Physical approach with Special Sensors

Micro-synchrophasors, Phase Meters

Drawback: expensive equipment, labor intensive ($2,000 per feeder), 3,000 feeders for a 

regional electric utility company ($6 million)



Phase Connectivity Identification
Solution Methods

Integer Optimization, Regression and Correlation based Approach

0-1 integer linear programming (IBM)

Correlation/Regression based methods (EPRI)

Drawback: cannot handle delta connected Secondaries, low tolerance for erroneous or 

missing data, low accuracy and high computational cost

Data-driven phase identification technology

Synergistically combine machine learning techniques and physical understanding of 

electric power distribution networks.

Unsupervised and supervised machine learning algorithms

High accuracy on all types of distribution circuits. (overhead, underground, phase-to-

neutral, phase-to-phase, pilot demonstration on over 100 distribution feeders)
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Unsupervised Machine Learning Algorithm1

General Framework

Step 1: Collect 

Voltage Data from 

Smart Meters and 

SCADA System

Step 2: Normalize 

Time Series Data, 

Impute Missing 

Values, and Perform 

Dimension Reduction

Step 5: Perform 

Centroid-based 

Clustering to Group 

Customers/Smart 

Meters

Step 3: Gather 

Distribution Network 

Connectivity Information

Step 4: Generate 

Must-link 

Constraints

Step 6: Identify the 

Phase Connectivity 

of Each Cluster

1. W. Wang, N. Yu, B. Foggo, and J. Davis, “Phase identification in electric power distribution systems by clustering of smart meter data” 15th IEEE 

International Conference on Machine Learning and Applications (ICMLA), pp. 1-7, Anaheim, CA, 2016.



Why Voltage Data Is Predictive of Phase?

Voltage data is fairly informative of phase type

Consider a power injection at bus 𝑘 whose phase type 

is 𝐴𝐵.

This induces a current along the lines 𝐴 and 𝐵.

Any customer also feeding from either of those lines 

will notice a change.

Due to the capacitive and inductive effects of the 

primary feeder, both lines will also induce a voltage 

change along the lines 𝐶 and 𝑛.

However, the off-diagonal elements of the phase 

impedance and shunt admittance matrices are much 

smaller than the diagonal ones.

Hence, the power injection at bus 𝑘 will have much less 

effect on phase 𝐶 than phase 𝐴 and 𝐵.



Must-link Constraints
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Case Study: Southern California Edison Distribution Circuit

Voltage Level 12.47 kV

Peak load ~5 MW

Number of Customers ~1500

Customer type 95% residential

Most of the customers served by a three-wire single-phase system through

center-tapped transformers (120/240 V).

Highly unbalanced in terms of phase currents.

6 month of smart meter data and SCADA data.

Engineers gather actual phase connectivity of each building and structure

through field validation.



Unsupervised Learning: Unconstrained Clustering

Phase Identification Accuracy: 92.89%

Cluster 

number

Number of 

customers

Accuracy 

(%) 
Phase

1 226 94.25 CA

2 647 95.21 AB

3 364 87.91 BC

The circuit is highly unbalanced and has 3 possible phase connections.

Even linear dimension reduction technique results in reasonable

separation among customers with different phase connections.



Supervised Learning: Constrained Clustering

Phase Identification Accuracy: 96.69%

The must-link constraints pulled some of the blue points (customers with

phase connections of CA) in the green region back to the blue area.

The must-link constraints improve the phase identification accuracy.

Cluster 

number

Number of 

customers

Accuracy 

(%) 
Phase

1 618 99.84 AB

2 384 91.41 BC

3 235 97.02 CA



Visualization of Phase Identification Accuracy

With GIS inputs, visualization of

distribution circuit with phase

connection information can be

generated automatically

Each line is colored 

according to its actual phase

Each structure is 

represented by a small dot

A colored rectangle is 

overlaid on top of a structure 

if it is assigned to the wrong 

cluster.
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Drawbacks of Constrained K-means Clustering 

Algorithm (CK-Means)

First, all of the prior proposed methods assume that the number of phase

connections are known.

E.g., in the CK-Means algorithm, the number of phase connections/clusters needs to

be know as prior knowledge

Second, the existing methods can not provide accurate phase identification

results when there is a mix of phase-to-neutral and phase-to-phase connected

smart meters and structures.

The phase identification accuracy decreases as the number of possible phase

connection increases.

Third, the existing methods are quite

sensitive to the level of unbalance in a

distribution feeder.

The phase identification accuracy decrease as

the level of unbalance decreases.



Nonlinear Dimension Reduction & Density-based 

Clustering2

General Framework

2. W. Wang and N. Yu, "AMI Data Driven Phase Identification in Smart Grid," the Second International Conference on Green 

Communications, Computing and Technologies, pp. 1-8, Rome, Italy, Sep. 2017.



Stage 1 Feature Extraction from Voltage Time Series

Dimension reduction techniques

Linear dimension reduction techniques (E.g., PCA)

Drawbacks

1. Restricted to learning only linear manifolds. High-dimensional data lies on or near a low-dimensional,

non-linear manifold.

2. Difficult for linear mappings to keep the low-dimensional representations of very similar points close

together.

Explains the lower accuracy of phase identification algorithm using linear features for less

unbalanced feeders.

Nonlinear dimensionality reduction techniques

Sammon mapping, curvilinear components analysis (CCA), Isomap, and t-distributed

stochastic neighbor embedding (t-SNE).

We adopt t-SNE, because it has been shown to work well with a wide range of data

sets and captures both local and global data structures.

t-SNE improves upon SNE by

1. Simplifying the gradient calculation with a symmetrized version of the SNE cost

function

2. Adopting a Student-t distribution rather than a Gaussian to compute the similarity

between two points in the low-dimensional space



Comparison between PCA & t-SNE

The data points are not well

separated according to phase

connection with linear dimension

reduction.

The non-linear dimensionality reduction

technique does a much better job in extracting

hidden features from the voltage time series

during a less unbalanced period for the

feeders.

Feeder 5, data set 18 with a low level of unbalance



Phase Identification Accuracy with CK-Means and 

the Proposed Method

The proposed phase identification algorithm significantly outperforms the 

CK-Means method with all data sets in terms of accuracy.

On average, the proposed phase identification algorithm improves the 

identification accuracy by 19.81% over the CK-Means algorithm.



Clustering Results of the Proposed Method

Nonconvex clusters are identified.

The proposed phase identification algorithm not only groups phase-to-

phase meters for phase AB, BC, and CA accurately, but also groups 

single-phase meters with high accuracy



Impact of Data Granularity on Accuracy

As the granularity of meter readings increases from hourly to every 15 minutes and 

then 5 minutes, the phase identification accuracy increases. 

The average increase in phase identification accuracy over the 3 distribution circuits 

is 3.36% when the meter reading granularity increases from hourly to 5 minutes.

More granular voltage readings allows extraction of features/patterns that may not be 

present in coarse data sets

Feeder Data Set
Granularity of Meter Readings

1 hour 15-minute 5-minute

1
s1 93.06% 93.93% 93.88%

s2 93.62% 94.32% 94.40%

2
s3 87.55% 88.86% 92.03%

s4 87.79% 90.47% 89.93%

3
s5 83.94% 90.02% 91.56%

s6 82.83% 84.51% 87.16%
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Motivation and Main Idea3

Motivation
Existing data-driven approaches lack physical interpretation and theoretical 

guarantee.

Their performance generally deteriorates as the complexity of the network, the 

number of phase connections, and the level of load balanceness increase.

Need a physically inspired data-driven algorithm for phase identification.

Overall Framework
Develop a physical model, which links the phase connections to the voltage 

magnitudes and power injections via the three-phase power flow manifold.

Formulate the phase identification problem as a maximum likelihood 

estimation (MLE) and a maximum marginal likelihood estimation (MMLE) 

problem.

Prove that the correct phase connection solution achieves the highest log 

likelihood values for both problems.

Develop an efficient solution algorithm for the MMLE problem.

3. Wang, Wenyu, and Nanpeng Yu. "Maximum Marginal Likelihood Estimation of Phase Connections in Power Distribution Systems." arXiv

preprint arXiv:1902.09686 (2019).



Problem Setup

A distribution circuit contains 𝑀 loads (can connect to the three-phase 

primary line directly or indirectly through single-phase or two-phase 

branches).

The three-phase primary line consists of 𝑁 + 1 nodes.

Node 0 is the substation/source node.

Smart meters measure the real and reactive power consumption and the 

voltage magnitude of each load.



Available Information and Goal

Available Information

For a single-phase load on phase 𝑖, we know its power injection and voltage 

magnitude of phase 𝑖

For a two-phase delta-connected load between phase 𝑖 and 𝑗, we know its 

power injection and voltage magnitude across phase 𝑖 and 𝑗.

For a three-phase load, we know its total power injection and the voltage 

magnitude of one of the phases, which needs to be identified.

For the source node, we know the voltage measurement (SCADA).

The connectivity model of the primary feeder. (GIS)

Goal

Identify which phase(s) each single-phase or two-phase load connects to and 

which phase’s voltage magnitude the three-phase smart meter measures.



Linearized Three-phase Power Flow Model

𝐴
𝒗 − ഥ𝒗
𝜽 − ഥ𝜽

=
𝐴11 𝐴12
𝐴21 𝐴22

𝒗 − ഥ𝒗
𝜽 − ഥ𝜽

= [
𝒑
𝒒]

𝐴𝑖𝑗 are 3 𝑁 + 1 × 3(𝑁 + 1) matrices derived from the admittance matrix*. 

𝒗, 𝜽, 𝒑, and 𝒒 are the nodes’ voltage magnitude, voltage angle, real and reactive 

power of the three phases.

ҧ𝑣 = 𝟏3(𝑁+1) and ҧ𝜃 = [0 × 𝟏𝑁+1
𝑇 , −

2𝜋

3
× 𝟏𝑁+1

𝑇 ,
2𝜋

3
× 𝟏𝑁+1

𝑇 ]𝑇 are the flat feasible 

solution for the underlying nonlinear three-phase power flow.

Remove the rows & columns of the substation node in 𝐴𝑚𝑛, 𝒗, 𝜽, 𝒑, and 𝒒:

ሙ𝐴
𝒗
ෙ𝜽

=
ේ𝐴11 ේ𝐴12
ේ𝐴21 ේ𝐴22

𝒗
ෙ𝜽

= [
𝒑
𝒒
]

Now voltage can be written in terms of real and reactive power injections.

𝒗 = (ේ𝐴11 − ේ𝐴12 ේ𝐴22
−1 ේ𝐴21)

−𝟏𝒑 − ( ේ𝐴11 − ේ𝐴12 ේ𝐴22
−1 ේ𝐴21)

−𝟏 ේ𝐴12 ේ𝐴22
−1
𝒒

Or in condensed form as

𝒗 = 𝐾𝒑 − 𝐿𝒒

Similarly we have ෙ𝜽 = 𝝒𝒑 − ℒ𝒒

*𝑟𝑎𝑛𝑘(𝐴) is at most 6𝑁. Need to transform 𝐴 into a nonsingular form to make the subsequent derivations easier.



Modeling Phase Connections in Three-phase 

Power Flow

Decision Variables for Phase Connection

𝑥𝑚
1 , 𝑥𝑚

2 , and 𝑥𝑚
3 denote phase connections for each load 𝑚.

𝑥𝑚
𝑖 = 0 or 1, and σ𝑖 𝑥𝑚

𝑖 = 1, ∀𝑚.

If load 𝑚 is single-phase, then 𝑥𝑚
1 , 𝑥𝑚

2 , and 𝑥𝑚
3 represent 𝐴𝑁, 𝐵𝑁, and 𝐶𝑁

connections.

If load 𝑚 is two-phase, then 𝑥𝑚
1 , 𝑥𝑚

2 , and 𝑥𝑚
3 represent 𝐴𝐵, 𝐵𝐶, and 𝐶𝐴

connections.

If load 𝑚 is three-phase, then the measured voltage is between one phase and 

the neutral, then 𝑥𝑚
1 , 𝑥𝑚

2 , and 𝑥𝑚
3 represent which of the phases 𝐴𝑁, 𝐵𝑁, and 

𝐶𝑁 is measured.

The phase connection decision variables form a 𝑀 × 3𝑀 matrix 𝑋 as

𝑋 ≜ 𝑑𝑖𝑎𝑔( 𝑥1
1 𝑥1

2 𝑥1
3 , … , [𝑥𝑀

1 𝑥𝑀
2 𝑥𝑀

3 ])



Link Phase Connections to Smart Meter 

Measurements
Main Result

ෝ𝒗 ≈ 𝑋ෝ𝒗𝑟𝑒𝑓 + 𝑋𝐾𝑋𝑇ෝ𝒑 + 𝑋𝐿𝑋𝑇ෝ𝒒

ෝ𝒗, ෝ𝒑, and ෝ𝒒 denote measured voltage magnitudes, real power and reactive power of 

each load*. ෝ𝒗𝑟𝑒𝑓 ≜ [ො𝑣1
𝑟𝑒𝑓

,… , ො𝑣𝑀
𝑟𝑒𝑓

]. ො𝑣𝑚
𝑟𝑒𝑓

= 𝑣0
𝑎 , 𝑣0

𝑏, 𝑣0
𝑐 if load 𝑚 is single-phase or three-

phase. ො𝑣𝑚
𝑟𝑒𝑓

= 𝑣0
𝑎𝑏, 𝑣0

𝑏𝑐 , 𝑣0
𝑐𝑎 if load 𝑚 is two-phase.

𝐾 ≜ [ 𝑈1𝐾 +𝑈2𝝒 𝑈1 − 𝑈1𝐿 + 𝑈2ℒ 𝑈3]

𝐿 ≜ [ 𝑈1𝐾 + 𝑈2𝝒 𝑈2 − 𝑈1𝐿 + 𝑈2ℒ 𝑈1]

𝑈1, 𝑈2, 𝑈1, 𝑈2, and 𝑈3 are 3𝑁 × 3𝑀 matrices calculated based on the topology of the 

three-phase primary feeder.

The time difference version of the physical model

𝒗 𝑡 = 𝑋𝒗𝑟𝑒𝑓 𝑡 + 𝑋𝐾𝑋𝑇𝒑 𝑡 + 𝑋𝐿𝑋𝑇𝒒 𝑡 + 𝒏(𝑡)

𝒗 𝑡 ≜ ෝ𝒗 𝑡 − ෝ𝒗 𝑡 − 1 . 𝒗𝑟𝑒𝑓 𝑡 , 𝒑 𝑡 , and 𝒒 𝑡 are defined in a similar way.

𝒏(𝑡) is the “noise term” representing the error of the linearized power flow model, the 

measurement error, and other sources of noise not considered.

* The derivation of measured voltage magnitudes, real power and reactive power from the corresponding 

variables can be found in the arXiv version of the paper.



Formulate Phase Identification as a Maximum 

Likelihood Estimation (MLE) Problem

MLE Problem Formulation

Let 𝒙 ≜ [𝑥1
1, 𝑥1

2, 𝑥1
3, … , 𝑥𝑀

1 , 𝑥𝑀
2 , 𝑥𝑀

3 ]𝑇 be the phase connection decision variable vector.

Define 𝒗(𝑡, 𝒙) as the theoretical difference voltage measurement 𝒗(𝑡) with phase connection 

𝒙.

Assume that the noise  follows a Gaussian distribution 𝒏(𝑡) ∼ 𝒩(𝟎𝑀×1, Σ𝑁), where Σ𝑁 is an 

unknown underlying covariance matrix.

Assume that 𝒏(𝑡) is i.i.d. and independent of 𝒗𝑟𝑒𝑓 𝑡 , 𝒑 𝑡 , and  𝒒 𝑡 . Given these 

conditions, 𝒏(𝑡) is also independent of 𝒗(𝑡, 𝒙).

The likelihood of observing {𝒗 𝑡 }𝑡=1
𝑇 , given 𝒙, {𝒑 𝑡 }𝑡=1

𝑇 and {𝒒 𝑡 }𝑡=1
𝑇 is

𝑃𝑟𝑜𝑏 𝒗 𝑡 𝑡=1
𝑇 {𝒑 𝑡 }𝑡=1

𝑇 , {𝒒 𝑡 }𝑡=1
𝑇 ; 𝒙)

=
Σ𝑁

−
𝑇
2

(2𝜋)
𝑀𝑇
2

× exp{−
1

2


𝑡=1

𝑇

[𝒗 𝑡 − 𝒗(𝑡, 𝒙)]𝑇Σ𝑁
−1[𝒗 𝑡 − 𝒗(𝑡, 𝒙)]}

Taking the negative logarithm of likelihood function, removing the constant, and scaling by 
Τ2 𝑇, we get

𝑓(𝒙) ≜
1

𝑇


𝑡=1

𝑇

[𝒗 𝑡 − 𝒗(𝑡, 𝒙)]𝑇Σ𝑁
−1[𝒗 𝑡 − 𝒗(𝑡, 𝒙)]



Theoretical Guarantee

The correct phase connection 𝒙∗ maximizes the likelihood function and 

minimizes the function 𝑓(𝒙) under two mild assumptions.

Lemma 1. Let 𝒙∗ be the correct phase connection. If the following two conditions 

are satisfied, then as 𝑇 → ∞, 𝒙∗ is a global optimizer of 𝑓 𝒙 .

1. 𝒏 𝑡𝑘 is i.i.d. and independent of 𝒗𝑟𝑒𝑓 𝑡𝑙 , 𝒑 𝑡𝑙 , and 𝒒 𝑡𝑙 , for ∀𝑡𝑘 , 𝑡𝑙 ∈ 𝑍+.

2. 𝒗𝑟𝑒𝑓 𝑡𝑘 , 𝒑 𝑡𝑘 , and  𝒒 𝑡𝑘 are independent of 𝒗𝑟𝑒𝑓 𝑡𝑙 , 𝒑 𝑡𝑙 , and  𝒒 𝑡𝑙 , for 

∀𝑡𝑘 , 𝑡𝑙 ∈ 𝑍+, 𝑡𝑘 ≠ 𝑡𝑙.

Directly minimizing 𝑓(𝒙) is very difficult due to its nonlinearity and 

nonconvexity. Furthermore, the actual values of Σ𝑁 is unknown.

Therefore, we will convert the phase identification problem into a 

maximum marginal likelihood estimation (MMLE) problem.

We will also prove that the correct phase connection is a also a global 

optimizer of the MMLE problem.



Phase Identification as a Maximum Marginal 

Likelihood Estimation (MMLE) Problem

Let 𝑣𝑚(𝑡) be the 𝑚th entry of 𝒗 𝑡 , 𝑣𝑚(𝑡, 𝒙) be the 𝑚th entry of 𝒗(𝑡, 𝒙), and 𝑛𝑚 (𝑡)
be the 𝑚th entry of 𝒏(𝑡).

The marginal likelihood of observing { 𝑣𝑚(𝑡)}𝑡=1
𝑇 , given 𝒙, {𝒑 𝑡 }𝑡=1

𝑇 and {𝒒 𝑡 }𝑡=1
𝑇 is

𝑃𝑟𝑜𝑏 𝑣𝑚(𝑡) 𝑡=1
𝑇 {𝒑 𝑡 }𝑡=1

𝑇 , {𝒒 𝑡 }𝑡=1
𝑇 ; 𝒙)

=
Σ𝑁(𝑚,𝑚)

−
𝑇
2

(2𝜋)
𝑇
2

× exp{−
1

2


𝑡=1

𝑇 [ 𝑣𝑚(𝑡) − 𝑣𝑚(𝑡, 𝒙)]
2

Σ𝑁(𝑚,𝑚)
}

Where Σ𝑁(𝑚,𝑚) is the 𝑚th diagonal entry of Σ𝑁. Taking the negative logarithm of the 

likelihood function, removing the constant terms and scaling by ൗ2Σ𝑁(𝑚,𝑚)
𝑇, we have

𝑓𝑚(𝒙) ≜
1

𝑇


𝑡=1

𝑇

[ 𝑣𝑚(𝑡) − 𝑣𝑚(𝑡, 𝒙)]
2

Lemma 2. Let 𝒙∗ be the correct phase connection. If the following two conditions 

in Lemma 1 hold, then as 𝑇 → ∞, 𝒙∗ is a global optimizer of 𝑓𝑚 𝒙 .



Solution Method
Directly minimizing 𝑓𝑚(𝒙) is still a difficult task.

We further simplify the optimization problem by first solving three sub-problems 

𝑚𝑖𝑛𝑓𝑚,𝑖 𝒙−𝑚 , 𝑖𝜖 1,2,3 .

𝑓𝑚,𝑖 𝒙−𝑚 ≜ 𝑓𝑚(𝒙)

Subject to 𝑥𝑚
𝑖 = 1 and 𝑥𝑚

𝑗
= 0 for 𝑗 ≠ 𝑖

Where 𝒙−𝑚 is a (3𝑀 − 3) × 1 vector containing every element in 𝒙 except 𝑥𝑚
1 , 𝑥𝑚

2 , 

and 𝑥𝑚
3 . Then we have

𝑚𝑖𝑛𝑓𝑚 𝒙 = min{𝑚𝑖𝑛𝑓𝑚,1 𝒙−𝑚 , 𝑚𝑖𝑛𝑓𝑚,2 𝒙−𝑚 , 𝑓𝑚,3 𝒙−𝑚 }

Now the sub-problem for MMLE can be formulated as

Find      𝒙−𝑚,𝑖
† = argmin

𝒙−𝑚

𝑓𝑚,𝑖 𝒙−𝑚

Subject to  𝑥𝑘
𝑗
= 0 or 1 ∀𝑗 and 𝑘 ≠ 𝑚

σ𝑗 𝑥𝑘
𝑗
= 1 ∀ 𝑘 ≠ 𝑚

This is a binary least-square problem which can be converted to convex quadratic 

programming by relaxing the problem by replacing the binary constraints by their 

convex hull. The sub-problem can be solved in polynomial time.



Summary of Solution Algorithm

1. Target-only Approach. The phase connection of each load 𝑚 is the corresponding connection 

shown in the 𝑚th solution 𝑥𝑚
†

.

2. Voting Approach. For single-phase and two-phase load 𝑚, the phase connection is the 

corresponding phase connection that receives the most votes in the 𝑀 sets of 𝑥𝑚
†

.

From step 1 to 6, we solve 𝑀 MMLE problems, 

each of which contains three binary least-

square sub problems.

Step 3 solves the sub-problems of MMLE.

Step 5 solves the 𝑚th MMLE problem by 

finding which of the three 𝒙−𝑚,𝑖
†

minimizes 

𝑓𝑚,𝑖(𝒙−𝑚).

The chosen 𝒙−𝑚,𝑖
†

combined with the 

corresponding 𝑥𝑚
𝑖 = 1, 𝑥𝑚

𝑗
= 0 (𝑗 ≠ 𝑖) forms the 

3𝑀 × 1 solution 𝑥𝑚
†

of the 𝑚th MMLE problem.

The 𝑀 sets of 𝑥𝑚
†

may not be all correct due to 

the limited number of measurements, and 

measurement noise.

In step 7, we design two approaches to 

integrate 𝑀 sets of 𝑥𝑚
†

into two phase 

identification solutions. The final solution has a 

lower sum of square error.



Numerical Study Setup
Test Circuits (Modified IEEE distribution feeders)

Radial primary: IEEE 37-bus, 123-bus & heavily meshed primary: 342-bus.

Feeder A B C AB BC CA ABC Total

37-bus 5 5 6 3 2 2 2 25

123-bus 18 17 17 9 9 10 5 85

342-bus 30 38 31 35 31 33 10 208

Number of Loads per Phase in the IEEE Test Circuits

Smart Meter Data

Length: 90 days of hourly average real power consumption data (2160 data points)

Source: a distribution feeder managed by FortisBC.

Power Flow Simulated with OpenDSS to Generate Theoretical Nodal Voltage

Measurement noise follows a zero-mean Gaussian distribution with three-sigma deviation 

matching 0.1% and 0.2% of nominal values. (0.1 and 0.2 accuracy class smart meters 

established in ANSI.)

After applying measurement noise, the voltage measurements are rounded to the nearest 1 

V for the primary loads and 0.1 V for the secondary loads to make the phase identification 

task more difficult.



Phase Identification Algorithm Performance

The performance of the proposed MMLE-based algorithm on three IEEE distribution 

test circuits, two meter accuracy classes, and three time windows are shown here.

With 90 days of hourly meter measurements, the proposed algorithm achieved 

100% accuracy for all three circuits. (Works well for radial and meshed circuits).

Phase identification accuracy increases as smart meter measurement error 

decreases and addition smart meter data becomes available.

Feeder Meter Class 30 days 60 days 90 days

37-bus (radial)
0.1% 100% 100% 100%

0.2% 92% 100% 100%

123-bus (radial)
0.1% 96.47% 100% 100%

0.2% 63.53% 96.47% 100%

342-bus (meshed)
0.1% 96.63% 100% 100%

0.2% 72.60% 99.52% 100%

Accuracy of the Proposed Phase Identification Method



Comparison with Existing Methods
Phase Identification Accuracy of Different Methods with 90 days of Meter Data

* M. Xu, R. Li, and F. Li, “Phase identification with incomplete data,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2777-2785, 2018

# W. Wang and N. Yu, "AMI Data Driven Phase Identification in Smart Grid," the Second International Conference on Green Communications, 

Computing and Technologies, pp. 1-8, Rome, Italy, Sep. 2017.

Method
Meter 

Class

37-Bus 

Feeder

123-Bus 

Feeder

342-Bus 

Feeder

Correlation-based 

Approach*

0.1% 100% 98.75% 81.82%

0.2% 100% 97.5% 81.31%

Clustering-based 

Approach#

0.1% 100% 100% 93.43%

0.2% 100% 98.75% 91.41%

MMLE-based

Algorithm

0.1% 100% 100% 100%

0.2% 100% 100% 100%

The proposed MMLE-based algorithm outperforms the correlation and 

clustering-based approaches.

The improvement in accuracy increases as the complexity of the 

distribution feeder increases.



Conclusion

Develop a physically inspired data-driven algorithm for the phase 

identification in power distribution system.

The phase identification problem is formulated as an MLE and MMLE 

problem based on the three-phase power flow manifold.

We prove that the correct phase connection is a global optimizer for both 

the MLE and the MMLE problems.

A computationally efficient algorithm is developed to solve the MMLE 

problem, which involves synthesizing the solutions from the sub-

problems.

Comprehensive simulation results show that our proposed algorithm 

yields high accuracy and outperforms existing methods.



The Center for Grid Engineering Education - Short Course: 

Big Data Analytics and Machine Learning in Smart Grid

Date: May 9th 8:00 am – 5:00 pm

Location: Hilton St. Louis at The Ballpark

1 South Broadway, Gateway Ballroom

St. Louis, Missouri

PDH’s available: 8 hours

Registration Fee charged by EPRI

$800 per person

20% discount for organizations with three or more attendees

25% discount for government employees (non-utility)

25% discount for university professors*

75% discount for graduate students*

*University IDs required to qualify for professor or graduate student 

discounts.

https://intra.ece.ucr.edu/~nyu/Teaching/ML-BD-Smart-Grid_2019.pdf



The Center for Grid Engineering Education - Short Course: 

Big Data Analytics and Machine Learning in Smart Grid

EPRI Contacts: Amy Feser, afeser@epri.com

(865) 218-5909

Course Topics: Big Data Analytics and Machine Learning

Distribution System

Topology Identification

Theft Detection

Predictive Maintenance of Distribution Equipment

Estimation of Behind-the-meter Solar Generation

Reinforcement Learning based Volt-VAR Control and Network Reconfiguration

Electricity Market

Algorithmic Trading with Virtual Bids in Electricity Market

Transmission System

Anomaly Detection with PMU Data

Motifs and Signatures Discovery with PMU Data

Segmentation of PMU Data

https://intra.ece.ucr.edu/~nyu/Teaching/ML-BD-Smart-Grid_2019.pdf

mailto:afeser@epri.com
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