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§ More active devices that are not modeled or difficult to model. 
§ Utility unaware of small deployments and would like visibility behind 

the meter. 
§ Bi-directional power flow and over voltages.

Problem Statement



Data-Driven Modeling for Power Systems
Physics-based models use basic equations of continuum 

mechanics, materials, heat transfer, power flow, …. that 
capture the phenomenon in a mathematical form

We don’t have ‘basic equations’ for social, medical, 
behavioral, economic and other complex phenomena.

Source: Guha Ramanathan



Data-Driven Modeling has been extremely 
successful. 

Take lots of data and fit the curve … 
(No causal equations required)

Lots of data and compute power
Extremely successful in the last 10 

years
• Spell Correction
• Web search and advertising
• News feed
• Perception: Vision, speech
(Mostly web-ecosystem products)
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§ Overall goal of the project: Understand the impact of technologies on the 
distribution system and how they can be used for planning and operations to 
increase PV penetration (reduce interconnection study costs and approval 
time) using a data-driven approach
• build open-source tools to model and integrate a large number of data 

sources for distribution system planning and control, 
• verify capability of tools utilizing data from industry and utility partners,
• validate the platform in a pilot testbed using HIL simulations and data from 

deployed hardware in the field

Project Objectives



• Scalable and dynamically adaptable platform to any PV penetration 
level
• Data accuracy, resolution, availability; system interoperability

• Open-source tools to model and integrate large number of data 
sources for distribution system control
• Reliable & real-time API access to PV, EV, AMI, SCADA, μ-PMU data

• Ease of data integration, processing and validation
• Robustness to missing data

• Integrate predictive analytics: state estimation, topology detection, 
scenario analysis; small predictive errors
• Demonstrate real-time visualization and monitoring 

• Demonstrate the capability of integrating open source sensor 
placement algorithms

Key Metrics 



§ Strategic Planning
§ Data Collection and Integration
§ Development of the Platform
§ What now analytics
§ What if analytics
§ Network Analysis

q Develop advanced topology identification capability
q Develop sensor placement capability
q Develop advanced state estimation capability

Approach to project



• Basic Question: Planning and operations of a reliable, stable 
and efficient distribution system with high PV penetration 
(>100% of peak load) requires adequate monitoring and 
accurate prediction capability that allows scenario analysis 
and closed-loop control of the distribution system

• Vision of the Project: A unified data analytics platform that 
integrates massive and heterogeneous data streams for 
planning and granular real-time monitoring with analytics, 
visualization and control of distributed energy resources

Project Innovations (1/3)d



• Virtual SCADA system
q Data Plug: interface with partner database APIs to stream data; advanced data management and 

validation tools

q DS tomography module: integrates disparate, unreliable data into “virtual SCADA” data streams 
for power system analysis

Project Innovations (2/3)
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• VADER power system analytics tools
q What-now analytics: advanced state estimation, situation awareness – outage detection, topology 

change

q What-if analytics: analyze different scenarios of PV integration for planning; time-space analysis, 
location benefits

Project Innovations (3/3)

DS#
Tomography#

Power#Systems#
Analy5cs#

Raw#Data#

Da
ta
#P
lu
g#

AMI#

PV#

mPMU/Line#
SCADA#

EV#
Weather#

Spark#
DB#

Virtual##
SCADA#Historical##

Data#
What#If#

What#Now#



Use Cases



VADER Use Cases



Adverse event detection



Adverse Event Detection Outputs

<Include>
● Interaction with the 

visualization
● Voltage and power flow 

statistics display
● Toggle before/after what-if 

scenario



Resource Flexibility Analysis



Locational Net Benefits Assessment



Performance Evaluation of Distribution Systems



§ Each utility has a different set of needs and priorities. 
• Some have meters on PVs
• Some have sensors on all switches
• All have common sets of needs…

Lessons Learned



Data



§ Seven feeders of the Camden substation

Data

§ Four feeders of the Mascot substation



§ System data from the seven feeders of the Camden substation

Data



§ System data from the four feeders of the Mascot substation

Data



§ Data comes in different shapes and sizes
§ Developing schemas is time consuming major effort
§ Open schemas to support utility data integration is needed

Lessons Learned



Architecture



Platform evolution
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Lessons learned
• Single instance vs. multi tenant
• Synchronization (HE, HB, daylight savings)
• Raw data vs. processed data
• Encryption
• User and developer interface



Data Analytics



Utilization of Data for Power System Analytics Tools (1/2)
Power System Analytics Types of Data

(1) Topology reconstruction (1.1) Hourly bus voltage magnitudes
* Two weeks of data for training

* Extensive testing & validation using one year of data

(2) Switch configuration 
detection

(2.1) 1-minute resolution of voltage data
* Data for several hours

(3) Line parameter 
estimation

(3.1) Phase angles from μ-PMU data in addition to 
data type (1.1)

(3.2) Active (P) and reactive power (Q), if available
(4) Outage detection (4.1) Bus voltage magnitude and phase angle from μ-

PMU
(5) Machine learning-based 
power flow

(5.1) Data synchronization between utility and third 
parties (e.g. PV data from SunPower), data plug 
module

(5.2) P & Q at each bus
(5.3) SunPower voltage magnitude and its P at solar 
locations will improve estimates



Utilization of Data for Power System Analytics Tools 
(2/2)
Power System Analytics Types of Data

(6) Solar disaggregation (6.1) Net load measurements at the point of disaggregation 
(three scenarios): At substation (SCADA ~4 sec sampling rate) 
/ transformer (aggregated from AMI downstream) / AMI 
meters (15-minute or faster) 

(6.2) Outside temperature from the region of interest

(6.3) solar proxy; data from irradiance sensors and/or active 
power measurements, typically 1-2 minute sampling rate

(6.4) Reactive power, if available, at substation / transformer / 
AMI at same sampling rate as load

(7) Customer load 
forecasting

(7.1) Hourly smart meter active power

* Two weeks of data for training

(8) Clear sky solar 
prediction

(8.1) measured output power of PV system



Solar Disaggregation: gain visibility into behind-the-meter solar
(Emre Kara, Michaelangelo Tabone)

Real-time SCADA measurements 
Typical 4 seconds sampling

AMI: overnight updates 
1-min to hourly sampling rate

Disaggregate solar generation from meter 
readings of net load

2 measurements of net load  in distribution 
systems
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Initial work at LBNL doing 
feeder level solar-
disaggregation has received 
an R&D 100 award.



Inter/Intra Feeder:
Underground, Pole Top, Remote Controlled

Camden Substation

Network Summary
112  Aggregated Loads with 1, 2, 3 phase loads.
123  Switches to Monitor
5.76057e+09 Possible Radial Configurations

Theory Predicts:
AMI + 12 Line Measurements vs. 123 SCADA Sensors

Current Work:
Extending Algorithms for lossy/3-phase networks.

SCE Radial Switch Configuration Detection



Machine Learning-based Power Flow
(Ram Rajagopal)

Availability of topology line parameters
● Traditional state estimation method: require line connectivity and  parameters 

information
● ML method: no need for line Information

Ability to handle missing measurements

● Traditional Method: No. It needs the whole system to be observable.
● ML Method:  Yes. It only builds correlation between available data at available 

time slots.
Ability to conduct voltage forecasting / power flow

● Traditional Method: No. It is static state estimation.
● ML Method:  Yes. It only builds correlation between voltages and power,

forecast power, and recover voltage based on the relationship. 



Machine Learning Based Power Flow -
How does it work and how does it compare

▪ Practical Advantages of Machine learning based Power 
Flow
– Equivalence to physical model

– Robustness against outliers
– Capability of modeling 3rd party controllers
– Flexibility for partially observed systems model 

construction

– Capability of inverse mapping: P, Q to voltage mapping

Yu, J iafan, Yang W eng, and R am  R ajagopal. "M apping R ule Estim ation for Pow er F low  Analysis in D istribution G rids." arX iv preprint arX iv:1702.07948 (2017).
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Lessons learned
• Working with utility data is not a streamlined process
• There are no lack of ideas in data analytics – if you build it 

they come.
• No rigorous way to test analytics performance 
• data is often not available to be shared
• No common data sets for folks to compare performance
• No platforms that allow analytics comparison 



Impact



Industry Engagement - Workshops and Learning Lab
Two workshops hosted at SLAC
Goal: to receive critical review

Two VADER Learning Labs hosted: 
- End of March 2017 @ SLAC: industry 

participation
- End of May 2017 @ California Energy 

Commission: CEC staff participation

Goal: Increase awareness to drive adoption



GRIP - Grid Resilience and Intelligence Platform

• Anticipation building on current 
analytics capabilities have been 
discussed with NRECA and SCE. A 
prioritized list will be developed with 
broader stakeholder input.

• Absorption will focus on 
demonstrating virtual islanding. 

• Recovery validations will focus on 
DER control without 
communications. 

GRIP – Grid Resilience and Intelligence Platform

R ecovery
“Extrem um  Seeking” 

A bsorption
“V irtual Is landing”

A nticipation
Analytics

OMF ADMS VADER

Y1 Y2 Y3

Demonstrations to Validate
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VADER Accomplishments
● Initial set of analytics developed and tested with IEEE-123 Bus Model 

(GridLab-D integration) and some validated with actual data

● Platform demonstration with historical data
● Platform transition to more scalable implementation with real-time data
● Held VADER Workshops and Labs
● Started applying Southern California Edison’s data 

• Solar Disaggregation
• Switch Detection

● Expanded machine learning-based Power Flow to three-phase systems.
● Continue to improve analytics

• Machine Learning-based Power Flow
• Switch Detection
• Solar Disaggregation
• Forecasting
• Topology detection

• Statistical Clear Sky
• PV Power Intraday Forecasting
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Next steps
• Continue to validate existing analytics 
• Implement LNBA as a use case
• Post open source code and documentation on Github

(and make it easy to find)
• Continue to use the platform for other research 

projects
• Baseline study
• Smart Charging Infrastructure Planning Tool 



VADER Team
SLAC
Emre Kara, David Chassin, Mayank Malik, Raffi Sevlian, Supriya Premkumar, Alyona Ivanova, 
Bennet Meyers, Berk Serbetcioglu
Stanford University
Ram Rajagopal, Chin-Woo Tan, Michaelangelo Tabone, Mark Chen, Yizheng Liao, Jiafan Yu, 
Yang Weng, Siobhan Powell

+ 15 Carnegie Mellon University INI Practicum Students



45

Thank you. 

Sila Kiliccote
silak@stanford.edu
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Extra Sildes



§ Problem formulation

Time-series voltage magnitude

Outage 
time

(1) Find: outage time (2) Find: outage location

Normal Outage

CIS/OMS Sensor Data Plug Validation (cont’d)



§ Outage Detection: Probabilistic Description

Data likelihood ratio test

Normal Outage

Outage 
time

Normal: 0.1, 1, 10

Outage: 104, 105, 106

CIS/OMS Sensor Data Plug Validation (cont’d)



§ Status of milestone:  (M3.2.1) is slightly behind schedule; data 
access from utility will continue

§ Path forward: API access to CIS / OMS data, verify the outage 
detection algorithm on both IEEE8-bus and 123-bus systems 
with and without DERs (also for Task 7.3)

CIS/OMS Sensor Data Plug Validation (cont’d)



§ Topology Identification: Statistical Learning

GIS and feeder information (cont’d)

Physical Layer

Statistical Layer

Node: end-user data                       
random variable (Vi)

Edge: statistical link of 
users



§ Our Statistical Approach

GIS and feeder information (cont’d)

tree network}

proof



§ Topology Identification Example

GIS and feeder information (cont’d)

True Estimated



§ Illustration of a “virtual-SCADA” use case (also for Task 3.1)

Virtual SCADA capability for data



q Integration: a unified framework for planning & operations
§ Revised system architecture in Q3: publish-subscribe messaging
• A data pipeline ingesting data from the publishers and routing 

it to various subscribers

Task 4.1: System architecture (cont’d)

VADER Engine

Front End

Integration



Data ingestion performance

System architecture

§ Persistent storage and analytics: 
q Data stored in Cassandra database; database schema architected for 

storing time-series data, spatial & geographical data
q Apache Spark for computing batch analytics; integrate with Python 

& R through PySpark and SparkR for batch processing

§ Exploration and visualization: Two user interfaces

q User Portal; access to data using charts, tables

q Interactive Notebook; custom queries and analytics

Run 1 Run 2 Run 3

Number of Records 1,000 2,000 10,000
Min Ingestion Time (ms) 23.25 22.20 21.13

Max Ingestion Time (ms) 257.18 296.36 1,199.94

Average Ingestion Time (ms) 30.47 30.46 31.30



§ EpiData has developed an architecture for VADER backend that 
relies on open source “BigData” tools for information storage, 
retrieval, and processing. Open source tools:
• Cassandra distributed database
• Spark computing engine for ML analytics engine

System architecture



§ System integration: VADER engine has been integrated with  systems 
that provide input data

VADER engine (cont’d)



§ Traditional state estimation relies on knowing grid information; 
equations (power flow mapping) gives closed-form solution

§ How to estimate states when there is lack of grid information, 
voltage violation, un-modelled active control?

§ Data-driven approach mapping rules; Support Vector Regression

Integrate virtual SCADA with existing state 
estimation tool

?"

STREAM"1"

STREAM"2"

STREAM"3"
Sta.s.cal""
"Es.mate"?"

SCADA"CLOCK"

Mapping Rule: What now analytics

unknown? unknown?



§ Simulation test results using IEEE 123-bus distribution grid: linear 
vs nonlinear models

Integrate virtual SCADA with existing state 
estimation tool (cont’d)

Nonlinear model: SVR with 
2nd poly kernelLinear Model



§ Simulation test results: training and testing data ranges

Integrate virtual SCADA with existing state 
estimation tool (cont’d)

Same range for training and 
testing data

Linear Model Linear Model

Different Ranges Different Ranges

SVR with 2nd poly kernel


