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Presenters
Simon Tindemans
• Assistant professor at Delft University of Technology (NL)
• Visiting researcher at the Alan Turing Institute (UK)
• Research interest: machine learning for risk assessment, efficient 

computation and apportioning of risks

Jochen Cremer
• PhD student (final year) at Imperial College London (UK)
• Research interest: intersection of machine learning and 

mathematical optimization applied to the operation of the power 
system

Disclaimer: the materials presented in this tutorial will be 
somewhat biased towards our own research.
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Opening credits

Collaborators and funders of our work in this area
• Imperial College London: Ioannis Konstantelos, Mingyang Sun, 

Federica Bellizio, Goran Strbac
• RTE: Jean Maeght, Nicolas Omont, Samir Issad, Patrick Panciatici, 

Antoine Marot, Benjamin Donnot

iPST project

Disclaimer: the materials presented in this tutorial will be 
somewhat biased towards our own research.
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Outline

• Dynamic Security Assessment (DSA): what and why?
• The Machine Learning approach to DSA
• The ‘offline’ process

– Classifier training
– Data generation

• The ‘online’ process
– Targeting simulations
– DSA for online control

• Questions

~ 20 mins

~ 30 mins

~ 40 mins
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Introduction

Problem statement
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Powerline crossing at Ems river

CC-AT-SA 3.0 https://commons.wikimedia.org/wiki/File:Serenade_on_Ems.JPG by Frankee 67

double-circuit 380kV
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4 November 2006 – cascading faults 

Source: UCTE Final Report – System Disturbance on 4 November 2006
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Pan-European disturbance
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Load shedding

Source: UCTE Final Report – System Disturbance on 4 November 2006
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The system operator’s challenge

System operators are responsible for the 
reliable supply of power to end users

1. Electricity markets ‘propose’ a solution

2. System operators check this solution 
and prepare for uncertainties

3. Operators can override market 
outcomes, but this is expensive and/or 
carbon-intensive.

4. When multiple TSOs are involved, things 
get harder.
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Uncertainties and decisions

When to act?

now

forecast

• continuous (e.g. wind forecasts)
• discrete (sudden failures, aka contingencies)

Uncertainties

day ahead hour ahead ’corrective’ actions

• most uncertainty
• most options

• limited uncertainty
• restricted options

• ‘no’ uncertainty
• very few actions and 

limited time

e.g. sudden outage
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Reliability, Security and Stability

• “Reliability of a power system refers to the probability of its 
satisfactory operation over the long run.”

• “Security of a power system refers to the degree of risk in its 
ability to survive imminent disturbances (contingencies) 
without interruption of customer service.”

• “(..) Stability is the ability of an electric power system, for a 
given initial operating condition, to regain a state of operating 
equilibrium after being subjected to a physical disturbance, 
with most system variables bounded so that practically the 
entire system remains intact.”

P. Kundur et al., "Definition and classification of power system stability IEEE/CIGRE joint task force on stability 
terms and definitions," in IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387-1401, Aug. 2004.

implies
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Classification of stability

P. Kundur et al., "Definition and classification of power system stability IEEE/CIGRE joint task force on stability 

terms and definitions," in IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387-1401, Aug. 2004.

Time-domain 
simulations
are required
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Foresight through simulations

High-fidelity simulation
• Time-domain 
• All components

Case study
• Three-phase fault
• Initiates line trip

F. R. S. Sevilla and L. Vanfretti, 
"Static stability indexes for 
classification of power system 
time-domain simulations,"
2015 IEEE Power & Energy Society 
Innovative Smart Grid 
Technologies Conference (ISGT), 
Washington, DC, 2015.
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pre-fault operation condition

post fault steady-state 
operation

time-domain trajectory

b

a

a b

Stable

Unstable

System response to a disturbance
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a b

b’

b’’

1. steady-state stable and trajectory stable in b
2. steady-state unstable in b’
3. steady-state stable in b’’, however the trajectory is unstable

Transient stability
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Secure

a

Security is operator-defined:

Example: N-1 security
• Post-fault stability for any 

single equipment fault.
• All operational constraints 

are satisfied at all times

In the remainder, we will 
assume a secure contingency 
list.

Security
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“survive imminent 
disturbances 
(contingencies) ”

There is a trade-off:
• ‘the smaller’ the 

region the more 
secure

• ‘the larger’ the region 
the cheaper to 
operate

Security vs cost
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Introduction

Machine learning for 
dynamic security assessment
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Computational burden

• Dynamic simulations are carried out 
with a detailed model that accounts 
for each asset.

• These simulations must be considered 
for each outage and each operation 
condition

• Result: Too many cases to be 
simulated in real time
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Security assessment: analysis tools
1. Actual experiments

2. Time-domain simulations 10k+ coupled ODEs
~minutes

3. Quasi-steady state 
simulations with AC, linearised
AC or DC power flows

10k+ nonlinear equations
~seconds

4. Proxy (aka emulator) for 
time-domain simulator

e.g. decision tree or NN
~ms

tool of choice
... but slow

quick ...
but biased

based on data + mathematics, 
not physics (watch this space)
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The general idea

Offline analysis Online analysis

Security 
Rules

every few days

proxies of dynamic 
stability

improved 
decision-making

Not a new idea. See e.g.:
Wehenkel, L., (1998). Automatic Learning 
Decision trees and Techniques in Power 
Systems, ISBN 978-0-7923-8068-9.
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Using machine learning for DSA

online 
decision 
making

possible
operating
conditions

(broad)

contingencies

months - week ahead day - hour ahead

classifier/
regressor

(decision tree or other)

forecast
operating
conditions
(narrow)

contingencies

limited simulation
budget

Offline analysis Online analysis

machine 
learning

selected 
scenarios

simulation 
outcomes

control



24

Offline workflow

Classifier training and evaluation
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Using machine learning for DSA

online 
decision 
making

possible
operating
conditions

(broad)

contingencies

months - week ahead day - hour ahead

classifier/
regressor

(decision tree or other)

forecast
operating
conditions
(narrow)

contingencies

limited simulation
budget

Offline analysis Online analysis

machine 
learning

selected 
scenarios

simulation 
outcomes

control
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Extracting indicators from simulations

Examples
• Small stability [S&V 2014]

– Mode identification

• Static [S&V 2015]

– Overload
– Voltage

• Dynamic [S&V 2015]

– Integrated square generator 
angle

F. R. S. Sevilla and L. Vanfretti, "Static stability indexes for classification 
of power system time-domain simulations," 2015 IEEE Power & Energy 
Society Innovative Smart Grid Technologies Conference (ISGT)

F. R. S. Sevilla and L. Vanfretti, "A small-signal stability index for power 
system dynamic impact assessment using time-domain 
simulations," 2014 IEEE PES General Meeting
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Mapping onto classification problem

Features
• Nodal voltages angles, active/reactive injections
• Line active/reactive power
• Topological features

Outcomes
• Secure/insecure, with respect to each contingency [classification]
• Distance to security boundary [regression]
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Decision trees for power system security

insecure

insecure secure

secure

parameter 1

pa
ra

m
et

er
 2

Two-dimensional example

Decision trees:
• Limited expressive power
• Fantastic interpretability
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Example rule
Security rule for N-2 outage for Launay - Taute line in Normandy
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Alternative: random forest (Breiman, 2001)

Use an ensemble of decision trees. For condition !:

s# ! ≅ 1
&'()*

+
,-.( (!)

,-.( ! ∈ {0,1}
Classifier:

,-. ! = 70 8- 9. ! ≤ 0.5
1 8- 9. ! > 0.5

Individual decision trees ,-.( ! are randomized in two ways:
– Random subset of features for training
– Bootstrap aggregation (‘bagging’), i.e. random resampling of 

training data with replacement.

• Good expressive power
• Limited interpretability
• Very few hyperparameters

(a personal favourite)
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Alternative:
Neural networks

• Great expressive power
• Limited interpretability
• Many hyperparameters

Arteaga, J-M. H., Hancharou, F., Thams, F., & 
Chatzivasileiadis, S. Deep Learning for Power 
System Security Assessment. In Proceedings of 
IEEE Powertech 2019 IEEE.
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Prediction = making mistakes

TP FN

FP TN

True positive False nega3ve

False posi3ve True negative

Predicted Class

Secure Insecure

Insecure

Secure
True Class

(Simple) classification error = !"#$!"%
!"#$!&#$!"%$!&%
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HPC implementation

I. Konstantelos, G. Jamgotchian, S. Tindemans, P. Duchesne, S. Cole, C. Merckx, G. Strbac and 

P. Panciatici, “Implementation of a Massively Parallel Dynamic Security Assessment Platform 

for Large-Scale Grids”, IEEE Transactions on Smart Grid, May 2017.

Reduced Trees

Full Trees

Histogram of test errors for four indices 
10,000 operating points

1980 contingencies

11 stability indicators

<0.5% average 
classification error

CURIE 

Supercomputer 

(10,000 cores)
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Offline workflow

Selection and generation of training data



35

Using machine learning for DSA

online 
decision 
making

possible
operating
conditions

(broad)

contingencies

months - week ahead day - hour ahead

classifier/
regressor

(decision tree or other)

forecast
operating
conditions
(narrow)

contingencies

limited simulation
budget

Offline analysis Online analysis

machine 
learning

selected 
scenarios

simulation 
outcomes

control
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Challenge

Generate a set of training scenarios, such that:
• the classifier has a low error rate, …
• for known and unknown scenarios, …
• with finite computational resources.
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Three approaches in the literature

All imaginable states

Historical states Meaningful states
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Approach 1: 
Use all imaginable states
• E.g. upper/lower bounds for injections
• Generates many infeasible or unlikely 

states
• Need clever methods to ‘zoom in’ (see 

table). But is it enough?

A. Venzke, D.K. Molzahn, S. 
Chatzivasileiadis,(2019). Efficient Creation of 
Datasets for Data-Driven Power System 
Applications, arXiv:1910.01794
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Approach 2: Use historical data

• Historical states are (almost) guaranteed to be 
relevant

• They may not be sufficient
– in volume
– in variety

• We need to ‘enrich’ (interpolate/extrapolate) the 
historical data
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Challenge: complex dependency patterns

I. Konstantelos, M. Sun, S. H. 
Tindemans, S. Issad, P. Panciatici and 
G. Strbac, "Using Vine Copulas to 
Generate Representative System 
States for Machine Learning," in IEEE 
Transactions on Power Systems, vol. 
34, no. 1, pp. 225-235, Jan. 2019.
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Decoupling marginal distributions from dependence

41

marginals marginals
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The modelling pipeline

Historical 
Data Model

model training

Samples

Integral transform 
& Spearman’s PCA

Fit 
C-VineClustering

sample generation

• Use copulas to decouple marginals from dependence 
structure

• Construct multivariate C-Vine copula (Bedford and 
Cooke, 2001) using pair copula construction (Joe, 1996)

• We truncate the C-Vine to limit impact of dimension
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Does it work?

• 128 variables (118 loads, 10 wind generators)
• 3 months data, 5-minute intervals
• 10 clusters; 97.5% variance used to select truncation; C-vine 

parametrised using Clayton, Frank, Gaussian, Gumbel, Student-t 
copulas (and rotations)

• Generated 40,000 samples
• Test on 1000 random subsets of 200 observations of sample and 

historical data
• Test metrics

– Kolmogorov-Smirnov for marginals
– Energy test (Aslan & Zech, 2005)
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Statistical match to historical data
Marginals (Kolmogorov Smirnov) Full distribution (energy test)

multivariate 
Gaussian 
copula
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Application test
Model
• IEEE 118 bus system
• Set of four line outages, analyses independently 
• Dispatch determined using OPF
• Post-fault generation redispatch of +- 10% permitted

Training and testing
• For a given state, verify whether post fault solution exists
• Classification using decision tree (Matlab 2017a default 

parameters)
• Training on bus angles and post-fault violations (true/false)
• 10-fold cross-validation
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Impact on machine learning
four different contingencies

MGC = multivariate Gaussian copula ; MGD = multivariate Gaussian distribution
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Approach 3: Improving sample efficiency

parameter 1

pa
ra

m
et

er
 2

Classifiers are computed based on point samples

Obvious bright ideas
• Don’t analyse situations 

that would never occur
• Don’t analyse situations 

for which the outcome is 
obvious
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Parametric approaches
Approaches typically rely on 
three assumptions: 

• Meaningful definition of 
‘distance’ from the security 
boundary.

• ‘Easy’ sampling distributions.
• ‘Nice’ properties of the 

security boundary.

Krishnan et al. (2011), IEEE Transactions on Power SystemsChengxi Liu et al. (2014), IEEE Transactions on Power Systems
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The basic offline learning process

combine machine 
learning

relevant
operating 
conditions

~1ms-min

dynamic 
simulation

~1 min

credible 
contingencies

thousands

millions
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Research: the active learning approach

• Passive learning
– Learner does not influence data gathering process
– Inherently linear

• Active learning (e.g. Settles, Active Learning, 2012)
– Generate data that is useful to the Learner
– Machine learning equivalent of ‘optimal design of experiments’
– Applied when sample generation and/or analysis is expensive

machine 
learningsample analyse assess 

quality
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Active learning process

combine machine 
learning

relevant
operating 
conditions

~1ms-min

dynamic 
simulation

~1 min

credible 
contingencies

sample 
filter

quantify 
importance

reject many
uninteresting points and
reweight remaining points
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Defining importance

1. For condition ! and contingency ", predict score using 
ensemble method (e.g. random forest)

s$ ! ≅ 1
'()*+

,
-./) (!)

-./) ! ∈ {0,1}

2. Define importance 7(!, ") by measuring ensemble disagreement (entropy)

7 !; " = − +
;<=> ?

@/(!) log? @/(!) + 1 − @/(!) log? 1 − @/(!)
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Sample filter

Accept/reject algorithm

Pr #$$%&' (, $ = + + 1 − + /((, $)

Results in:
23456 (, $ = % 27 ( + 1 − % 2489 (, $

where 
27 ( = unbiased distribution

2489 (, $ ∝ / (, $
% = effective exploration
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Small ‘proof of concept’– IEEE 118 bus model

Procedure
1. Check DC load flow feasibility
2. Map actual measurements from 

French transmission grid onto 
network

3. Generate 500,000 random load 
samples

4. For each sample, analyse the impact 
of every single line outage (186)
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Study details

• Offline simulation of importance sampling
– 450,000 states are classified as ‘good’ or ‘bad’ in combination with 186 

contingencies
– Use results as an unbiased ‘pool’ of samples

• Importance sampling parameters
– Exploration fraction ! = 0.5 (conservative choice: max 2x slowdown)
– Minimum acceptance rate 1%
– Update importance functions in batches

• Validation using 50,000 states x 186 contingencies
– Compare classification errors against unbiased samples using identical 

computational budget
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Results

102 103 104 105

average evaluations per contingency

10-5

10-4

10-3

10-2
av

er
ag

e 
te

st
 e

rro
r

Convergence comparison

∝ "#$.&'

∝ "#$.(&
interestingness sampler

normal sampler

3.3x error reduction

4.0x speedup

• Measure performance 
across all decision trees for 
given number of evaluations

• Robust improvement, for 
various importance 
functions

• Active learning advantage 
improves with learning
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0 2 4 6
error (circle = biased) #10-3

0

1

2

3

4

5

6

ev
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ua
tio

ns

#104computational impact, per contingency

error with regular 
sampling

error with biased 
sampling

focusing resources on 
contingencies with large 
prediction error

mean number
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Online workflow

Using machine learning to effectively operate 
simulations
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Using machine learning for DSA

online 
decision 
making

possible
operating
conditions

(broad)

contingencies

months - week ahead day - hour ahead

classifier/
regressor

(decision tree or other)

forecast
operating
conditions
(narrow)

contingencies

limited simulation
budget

Offline analysis Online analysis

machine 
learning

selected 
scenarios

simulation 
outcomes

control
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Challenge

• Quantifying the risk of relying on a Machine Learning 
approach is not trivial

• When moving these Machine Learning approaches 
toward practical tools it is important to understand and 
manage the risk involved

• In comparison: Physics-based methods typically offer 
insights analytically or numerically for assessing the 
confidence of the output



61

The machine learning approach

Close to online
• Study more potential operating conditions instead of only a few
• Replace dynamic simulations (slow) with a machine-learning-based estimator (fast)

Offline
• Prepare (train) an estimator on actual dynamic simulations using similar operating 

conditions

x
x
o

o x
x
o

o
o

o
o

o
o

o
o

o
x x

x x
x x

x x

Offline Close to online
Jochen Cremer, Ioannis Konstantelos, Goran Strbac, “From Optimization-based Machine Learning to Interpretable Security Rules for
Operation”, IEEE Transactions on Power Systems, 2019
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The estimation can be inaccurate

o
o
o

o
o

o
o

o
x x

x x
x x

x x

Close to online

Estimated and actual stability limits are different!

x x
o

o

TP FN
FP TN

Predicted Class

Positive Negative

Negative
PositiveTrue 

Class

This can have a severe effect!

Two types of inaccurate predictions:
FP: Is stable but we think it is unstable (BAD)
FN: Is unstable but we think it is stable (VERY BAD!)
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Combined approach
Machine-learning

o
o
o

o
o

o
o

o
x x

x x
x x

x x

• Fast
• Sometimes inaccurate

o
o
o

o
x

o
o

o
x o

x x
x x

x o
In an ideal world…

o
o
o

o
x

o
o

o
x o

x x
x x

x o

• Slow
• Always accurate

Physics-based
inaccurate

simulated

predicted

Combined approach
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Understanding the costs of inaccurate predictions

TP FN

FP TN

0 !"#

!"$ 0

Predicted Class

Positive Negative

Negative

Positive
True Class

Cost skew: !"# ≫ !"$
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What a classifier can do 
Classify points
• is ! positive?

Rank points
• Is ! ‘more positive’ than !’?

Output a score #(%)
• ‘How positive’ is !?

Output a probability estimate '((%)
• What is the (estimated) probability that ! is positive?

Nikos Nikolaou, “Cost-sensitive learning with AdaBoost”, 2017

!

x

!)

x
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Probability estimation is not trivial
• Typically, classifiers don’t output probability estimates. 

Scores can be used
• E.g. decision tree

Based on training set

Scores s(x) as probability estimates !"($) ?
No!Nikos Nikolaou, “Cost-sensitive learning with AdaBoost”, 2017
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Calibration
• ! " ∈ 0,1 score for operating condition  "

• A classifier is calibrated if '( ) ⟶ ! " , as + ⟶ ∞

• An intuition for a calibrated classifier: E.g., 70% of the operating points with !(") = 0.7 should 
belong to the ‘stable’ class

!(") 

.̂ "
Platt scaling: 
Find .̂ " = 0

0123 4 5 67
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The risk of relying on machine learning
Machine-learning
!"#$%&' = )*)+,- . /01
!23"#$%&' = )* 1 − )+ (1 − ,- . )/08

Predict class with lower risk

o
oo

o
o

o
o

o
x x

x x
x x

x x High risk
Medium risk
Low risk

Residual risk: !"#$%&' ⋁!23"#$%&'
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Combined approach

o
oo
o
o
o

o
o

x xx x
x x
x x High risk

Medium risk
Low risk

Perform simulations on the 
operating conditions with high risk o o

o
o

o o
x

o
x o

x x
x x

x o
simulated
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Multiple contingencies

Perform simulations according to risks

o
oo
o
o
o

o
o

x xx x
x x
x x

High risk
Medium risk
Low risk

o o
ooo

oo

x
x
xx

xx x x
x

ooo
o

Contingency 1 Contingency 2
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A case study
System: IEEE 6 bus system, 1500 conditions (stable 1322, unstable 178)
Machine-Learning: AdaBoost ensemble, cross-validation, train/test 70/30

No Machine-learning Standard classifier Combined approach

300

0

150

15000 750
#simulations

#inaccurate 
predictions

30

0

15

15000 750

30

0

15

15000 750

4E-5

0

Actual
Residual risk

4E-6

0

4E-6

0

false alarms

missed alarms

Only using ML

zero-risk!
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Summary

• Combining Machine Learning and current DSA methods 
results in fast and accurate security assessment

• Zero-risk can be achieved – allowing for no 
disadvantage when using Machine Learning

• Parameter estimations are uncertain
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Online workflow

Using machine learning to ensure stability in 
operations
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Using machine learning for DSA

online 
decision 
making

possible
operating
conditions

(broad)

contingencies

months - week ahead day - hour ahead

classifier/
regressor

(decision tree or other)

forecast
operating
conditions
(narrow)

contingencies

limited simulation
budget

Offline analysis Online analysis

machine 
learning

selected 
scenarios

simulation 
outcomes

control
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Challenge

• Compute appropriate measures to re-establish stability 
once an unstable operating condition is detected

• How conservative do we need to be? Cost versus risk
• Stability is a complex system-level attribute
• Finding cost-effective measures

to ensure stability is even 
more complex
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Our approach
• Using Machine Learning to train a proxy implementable 

in a control approach

o
oo
o
o

o
o

o
x x

x x
x x

x x High risk
Medium risk
Low risk High risk of instability

Medium risk
Low risk

Find low-risk regions

Move operating condition 
to ‘low risk’ region
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Classifier in control

OPF formulation:
min $%&'()*+, -$.)(0)
s.t. , 0 ≤ 0

ℎ 0 = 0
0 ≤ (9 + ;9 1 − >9 ∀@ ∈ B
0 > D(9 + E;9 1 − >9 ∀@ ∈ B

F
9∈G

>9 = 1

;9H = max{(9H: @M ∈ B} − (9H
O;9H = min{ P(9H: @M ∈ B} − P(9H

MILP

Jochen Cremer, Ioannis Konstantelos, Simon Tindemans, Goran Strbac, “Sample-Derived Disjunctive Rules for Secure Power System Operation,” 2018 IEEE International Conference on 
Probabilistic Methods Applied to Power Systems (PMAPS), Boise, USA 2018
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Using a classifier in control is not trivial
• DT tries to approximate the true stability boundary
• Typical measure of DT’s quality: classification error

Classification error cannot predict 
a rule’s performance when used 
for inferring suitable mitigation 

control actions.

Class. error < 10%
Control error > 90% 

Jochen Cremer, Ioannis Konstantelos, Simon Tindemans, Goran Strbac, “Data-driven Power System Operation: Exploring the Balance between 
Cost and Risk”, IEEE Transactions on Power Systems, 2018
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Four different approaches
Asymmetric weighting Single-ε

Condition-specific-ε Probabilistic 

Normalized 
operating cost

Estimated 
risk

User-defined parameter

min 1 − & '( ) + & +())

Jochen Cremer, Ioannis Konstantelos, Simon Tindemans, Goran Strbac, “Data-driven Power System Operation: Exploring the Balance between Cost and Risk”, 
IEEE Transactions on Power Systems, 2018
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Combination approach

Extension by index l for each learner

Optimal Power Flow

Probability estimate for each learner

Soft voting

100%

0%

33%

67%
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The balance of cost and risk

• This approach balances economic cost of dispatching 
with the risk of relying on Machine Learning

• Each operating point has a unique solution

• This approach is a MILP in DC or MINLP in AC
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Case study

• IEEE 39 bus system

• Considering steady state security allows for SCOPF 
comparison

• Kumaraswamy distribution in loads 

• Implemented in Python 3.5.2, scikit-learn

• Optimization environment: Pyomo, Solver: Gurobi 7.02
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Cost-risk

0

1

2

3

4

0

1

2

3

4

0

1

2

0

25

50

75

100 Asymmetric weighting

Single-ε

Condition-specific-ε

(uncalibrated)
(calibrated)

Control 
error k [%]

Cost 
increase f [%]

0

1

2

3

4

0

100

50

0

4

2

high control error ~70%
(test error is ≤0.1%)

minimal cost with 
control error ≤0.1%

reduction 
of  60%

10050

10050

ɛ

ɛ

high control error 
when ignoring stability

0

100

50

10.5
α

0

4

2

10.5
α

x
x x

minimal cost with 
control error ≤0.1%

_
_
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Computational results

• MILP condition-specific approach: 82 binaries
• MILP probabilistic approach: 21 binaries 

• Solver time for all approaches: <0.1sec 
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Summary

• All approaches ensure security (zero risk)

• Cost-risk balance: Probabilistic approach & condition-
specific approach are best

• Condition-specific approach requires iterations in training

• Calibrated probabilistic approach outperforms all other 
approaches in the combination of time, robustness and 
cost-risk balance
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Summary and outlook
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Using machine learning for DSA

online 
decision 
making

possible
operating
conditions

(broad)

contingencies

months - week ahead day - hour ahead

classifier/
regressor

(decision tree or other)

forecast
operating
conditions
(narrow)

contingencies

limited simulation
budget

Offline analysis Online analysis

machine 
learning

selected 
scenarios

simulation 
outcomes

control
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Major open challenges

• Optimal balance between online and offline
– Offline sample distribution
– Dealing with topological changes

• Combination of physical models and data-driven 
approaches

• Coordination with complex control actions

Thank you! We are happy to answer questions
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