
Cyber-Physical Data 

Analytics to Enable 

Resilient Electric Grid

A. Srivastava, Washington State University

Associate Professor, Washington State University

Director, Smart Grid Demonstration and Research Investigation Lab

Technical Lead, UI-ASSIST Center

Contact: anurag.k.srivastava@wsu.edu

June 19th, 2019

IEEE PES SC Big Data & Analytics for Power Systems Webinar



What is resiliency?

How data analytics relate to 
resiliency?

How do we measure and enable 
resiliency?

How data analytics help and use 
cases

Learning based on projects: DOE CREDC, NSF FW-HTF, ARPA-E RIAPS, GMLC 1.3.9 Idaho Falls, 

GMLC: City of Cordova (DOE RADIANCE Project), DOE AGGREGATE, DOE UI-ASSIST



What is resiliency?

How data analytics relate to 
resiliency?

How do we measure and enable 
resiliency?

How data analytics help and use 
cases

Learning based on projects: DOE CREDC, NSF FW-HTF, ARPA-E RIAPS, GMLC 1.3.9 Idaho Falls, 

GMLC: City of Cordova (DOE RADIANCE Project), DOE AGGREGATE, DOE UI-ASSIST



There are millions of People 

in the world today who have 

no access to energy after 

extreme events.



An EMP weapon or strong 

solar flair can be even 

more destructive to the grid

Extreme events

Not a single/ double 

contingency (as in security)



Power Grid: Reliable but Not Resilient

Weather-related outages in US between 1992-2012



Electric Grid Resiliency

7

Integrated Cyber-
Physical Analysis

Future Operation

Cyber Physical

Operational 
Security

and 
Restoration

Reliability

System 
Hardening

IT Security 

Resiliency

Existing Operational 
Practice

Resilience: The ability to supply its critical load 

through (and in spite of) extreme 

contingencies and low resource 

availability
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Withstand any sudden inclement weather or human attack on the 

infrastructure.

Respond quickly, to restore balance in the community as quickly as 

possible, after an inevitable attack.

Adapt to abrupt and new operating conditions, while maintaining smooth 

functionality, both locally and globally.

Predict or Prevent future attacks based on patterns of past experiences, or 

reliable forecasts. 
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Planning

• Design and long 
term planning

• Short term 
planning

Operation

• Situational 
awareness

• Decision support

Weather 
Events?

Cyber 
Attack?

Switch 
location?

DER/ 
Storage 
location?
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Power Systems Data: Example of fixed data

Fixed Data (Assets)

• 7,500 generation plants

• 75,000 substations

• 300,000 miles transmission (100,000 

lines and  transformers)

• 2.2 million miles distribution (1 million 

distribution  feeders)

• 300 million customers

Credit: Prof Anjan Bose, WSU, TAMU  NSF SPOKE



Data Collection by PMUs: Example of Operational Data

• PMU sampling rates: 30 per second

• Assume 100 values per second

If we assume all 100 points in a sub are PMUs

• Average data rate per sub is 10K/sec

• Average data rate for the total of 100 subs in a BA  is 

1M/sec

• Average data rate for the RC is then 10M/sec

Data Analytics Needed for Making Sense of this 

Steaming Operational Data for Cyber or Physical 

Events !!!!

Credit: Prof Anjan Bose, WSU
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Connecting Data Analytics with Resiliency

???

• Predicts the future based on 

past patterns.

• Explores and examines data 

from multiple disconnected 

sources.

• Develop new analytical 

methods and machine learning 

models.

• Leverage data for relevant 

applications.

• Deliver actionable insights 

from the data.

• Store and process the data for 

insights.

• Design and create data 

reports using various reporting 

tools.

• Query database and package 

data for insights.
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System Plane

Attack Plane

Tolerance

Dysfunction

Attack

Red – Not Resilient

Purple – Resilient

Green – Super Resilient

How much 

Tolerance?

Initial Level

Of Resilience

Time taken

To collapse

Proximity to 

collapse

Quantify design 

for better systems
Plane with higher system resilience

Real-time 

Vulnerability 

Quantification

Can we measure resiliency?

How much

Money
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Multi-criteria Decision for Physical 

Resiliency

• Analytical Hierarchical 

Process 

• Topology Parameters

• Weather Parameters

• Infrastructure Parameter

16



Overview of resiliency quantification 

process

Decision 

Making 

Tool
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What is resiliency?

How data analytics relate to 
resiliency?

How do we measure and enable 
resiliency?

How data analytics help and use 
cases

Learning based on projects: DOE CREDC, NSF Microgrid, DOE ARPA-E, GMLC 1.3.9 Idaho Falls, 

GMLC: City of Cordova (DOE RADIANCE Project), DOE AGGREGATE



Resiliency requires 
knowing the threat 

Situational Awareness is 
necessary to take decision

Data analytics helps in 
enhanced awareness

Data Processing, 
Database, 
Interfacing, 

Management

Statistical 
(Regression, 
clustering)

System and 
relational 
analysis 

(Graph Theory) 

Machine 
Learning (Deep 

learning, 
reinforcement)

Visualization 
(Cognitive 
science)

Data Science 

and Analytics

• Predicts the future based on 

past patterns.

• Explores and examines data 

from multiple disconnected 

sources.

• Develop new analytical 

methods and machine learning 

models.

• Leverage data for relevant 

applications.

• Deliver actionable insights 

from the data.

• Store and process the data for 

insights.

• Design and create data 

reports using various reporting 

tools.

• Query database and package 

data for insights.
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Data 
Science 

Everywhere

XBox Face 
Recognition

Facebook 
Face 

recognition

Google 
Home/ 
Maps 

Prediction

Amazon 
Alexa

Apple 
Siri

Self-
driving 
cars



What can go wrong with 
Data Analytics
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Use Case I: Anomaly Detection, Classification, Event 

Detection and Root Cause Analysis using PMU Data

Data

• Physical

– PMU measurements

– CT/PT 

measurements

– Breaker status

– Relay operations

• Cyber

– Network data

• Pcaps, netflows, 

Ids alerts 

– Hosts

• Event logs, Ids 

alerts

???

Cyber-Physical Event Cyber Event

Anomaly 

Physical Event
NO

Physical Event

YES

Normal Operation 
Status

YES

YES

Cyber Event

NO

NO

YES

YES

YESNO NO NOYESNO
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Kronos: Real-Time Power Event on Heterogenous Data Stream

Goal:  Build a lightweight Knowledge 

Base from power events and their 

semantic & temporal relationships for 

explainable event prediction and cause 

analysis, directly from cyber and power 

data streams. 

Long-term Goal:  An interactive NLP-

based Question & Answering system for 

resilient Cyber-power system

(imagine a “Siri” or IBM Watson system 

for cyber-power event and resiliency 

analysis)

With Dr. Wu and Dr. Hahn, WSU and Siemens



Problem Statement

• Input: Streams of events and physical entities (PMU, etc), 

ontology

• Output: A dynamically maintained knowledgebase (Kronos)
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Global Data Streaming framework
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New data

Ensemble based

Cache Data

Ensemble Model

ϵ/ϵ

’

Wt Wt+1

Rule-based 

Classifier

event entities (stars)

Mapping

Event Ontology

2. Retrain

M1 M2 M3 M4 Mk

M1 M2 M3 M4 Mk

Compare Both Windows
" Replace If there's change"

“Run-time stack”

1. accumulate changes

of data/ground truth

2.1 update base detectors

2.2 accumulate changes 

of models

2.3 update ensembler

3. Detect

ϵ’’

Model updates triggered by : 

1. distribution change ϵ; 

2. loss of accuracy ϵ’(when 

having training data)

3. Base detection change ϵ’’; 

windowing technique which updates component weight after each example.

Incremental classifier for the ensemble learning which is trained between 

component reweighting.

Online drift detector that allows the shorten drift reaction time.
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LSTM Auto-encoder Model

• The model consists of two RNNs – the encoder LSTM 

and the decoder LSTM as shown in Figure

• The input to the model is a sequence of vectors (PMU 

data)

• The encoder LSTM reads in this sequence

• Once input vector is read, the decoder LSTM takes over 

and outputs a prediction for the target sequence

• The encoder can be seen as ‘creating a list’ of new 

inputs and previously constructed list (learned weights).

• The decoder essentially unrolls this list, with the hidden 

to output weights extracting the element at the top of 

the list and the hidden to hidden weights extracting the 

rest of the list. 

• Thus the LSTM weights are learned using the auto 

encoder method. 

Fig 3: LSTM Auto encoder Model
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No Single Winner!

Needs tuning effort

Lack of training data

30



31



32



Given a PMU detector D and PMU data X, denote the actual anomaly data set as 𝐵𝑇 , and the anomaly 

reported by D as 𝐵𝐷, the performance of D is evaluated using three metrics as follows.

Precision: Precision measures the fraction of true anomaly data in the reported ones from D, defined as

Recall: Recall measures the ability of D in finding all outliers, defined as

False Positive: False positive (FP) evaluates the possibility of false anomaly data detection; the smaller, 

the better. 
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Computation 

of Active and 

Reactive 

Flows

Data Window from 

SyncAD
X

DBSACN 

Algorithm

Collection Of 

Cluster Change 

instances in V, 

I, P, Q and Fz

FzIV

P

Q

Decision 

Tree 

Cluster 

Change 

Detected

?

Yes

Get New Data 

Window

No

Events 

Detected?

Undetected 

Events

No

Yes

Event Detection Algorithm Architecture
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Decision Tree for Event Classification 

Event Classification Process

• Decision Tree: Active Power 

Event, Reactive Power 

Event and Fault Events.

• Cluster changes in P and I: 

Active Power Event

• Cluster change in V and Q: 

Reactive Power Event.

• Cluster changes V, I, P, Q 

and Fq: Fault event.

38



39

Simulation Results



Case 1:  keyword search (e.g, fault, reactive)



Case 2: Ontology and Correlation 

Monitoring (blue edges)
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Case 3: Map interaction (google map)



• Objective: Sensor data
analytics (specifically using
μPMU) for anomaly
detection, classification,
event detection, root cause
analysis and explanation
generation

• Tasks and Deliverables:

• Provenance-aware
Anomaly Detection and
Prediction

• Online Event Detection
using μPMU datasets

• Root cause detection
based on statistical
causality models

• Explanation generation
and interpretation

Extending for 
microPMU

𝜇𝑃𝑀𝑈1

𝜇𝑃𝑀𝑈2

.

.

.
𝜇𝑃𝑀𝑈3

Event Detection
Time-series modeling

Olympic model, Regression 

model, …

Fault detection 

(Outliers, Changed points, 

Missing data)

Simple threshold, DBScan, 

KSigma, …

Correlation Detection 

between Events

(Extracting edges via 

Granger Causality)

Events

Event Graph G Root Cause 

Analysis

via probabilistic 

models

Causality paths

& lineage information

Provenance

Generating 

explanations

Configuration & Visualization via Graphical User Interface
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Use case II: Cyber-physical Data 
Analytics in Protection Failure

Protection Mal-

operation is #1 

concern 

according to 

NERC

Protection and 

associated 

control is 

becoming more 

digital

44



Abnormal Operation

A fault occurs on line 
2-3 Relays 7 and 8 are 
expected to open 
their corresponding 
breakers but relay 7 
doesn’t respond

To compensate relay’s 
7 malfunction, relays 
1, 3, 10 and 12 should 
open their 
corresponding 
breakers but relay 1 
malfunctions.

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems
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Hypothesis 
Generation

Hypothesis #
Location 

of fault
Initial Incident Consequential Incident

Actual 

Scenario
Line 2-3

Breaker 8 tripped

Relay 7 malfunctioned

Breakers 3,10,12 tripped

Relay 1 malfunctioned

Hypothesis 1 Line 2-4
Breaker 10 tripped

Relay 9 malfunctioned

Breakers 3,8,12 tripped

Relay 1 malfunctioned

Relay 6 Tripped

Hypothesis 2 Line 2-1-2
Breaker 3 tripped

Relay 4 malfunctioned

Breakers 8,10,12 tripped

Relay 1 malfunctioned

Relay 6 Tripped

Hypothesis 3 Line 1-5
Breaker 6 tripped

Relay 5 malfunctioned

Relay 2, 3, 4 malfunctioned

Breakers 8,10,12 tripped

Hypothesis 4 Line 2-5
Breaker 12 tripped

Relay 11 malfunctioned

Breakers 3, 8, 10 tripped

Relay 1 malfunctioned

Relay 6 Tripped

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems
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Data Analytics For Event Classification

Breaker Status and 

Topology of the System

Breaker Status 

Change

Fault Detection

(Physical Data)

Intrusion Detection

(Cyber Data)

IF-Else Conditions based 

Final Decision

Cyber Attack

Physical Fault

Cyber-Physical

PMU Data
Cyber Data

Autoencoder

Signature Based

Algorithm

SCADA
Streaming PMU 

Data

Streaming Cyber 

Data

Cyber Physical Security Analytics for Anomalies in Transmission Protection Systems
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Interne

t

HM

I

Opens 

Email with 

Malware
Admin

Send e-mail 

with 

malware

1. Attacker sends an e-mail with malware

2. E-mail recipient opens the e-mail and the 

malware gets installed quietly

3. Using the information that malware gets, 

hacker is able to take control of the e-mail 

recipient’s PC and get access of two-level 

password
4. Analysis IEC 61850 protocol(GOOSE, SMV packet) 

information and relay setting file

5. Manipulate MMS packet and relay configuration 

session information

6. Takes control of circuit breaker or change the 

setting of relay

Perform

scan the packet 

information

Plan

Execution

Simulating Cyber 
Attack on a Relay

Merging 

unit

S
ta

ti
o

n
 

b
u

s

SEL 421 

protection relay

Station Level Field Level

Bay 

Level

P
ro

c
e
s
s
 b

u
s

Firewall

Substation

Switch

Engineering 

station

PMU
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Relay IP address: 192.168.0.16 || Operator IP address: 192.168.0.23 || Unauthorized IP address:192.168.0.14

Attack Scenario For Relay

Communication between Relay and Un-

authorized IP Address-(Attacker)

Detect Intrusion Using Cyber Data From Relay.

Detecting an Intrusion :
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Algorithm Description :

• Basic Idea : Reconstruction of input feature vector with minimum loss (Mean Square Error)

• Train the algorithm on input data consisting of no anomalies.

Output Result : Reconstructed input feature vector with low MSE.

• Test the algorithm on input data consisting of anomalies.

Output Result : Reconstructed input feature vector with high MSE.

• We want our algorithm to have high MSE on input data consisting of anomalies and low 

MSE on input data consisting of no anomalies.

Detect Intrusion Using Physical Data From PMU
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Architecture Of

Stacked Autoencoder

Loss Function : Mean Squared Error

Optimizer : ADAM

: Input Feature Vector

: Reconstructed Output

Feature Vector

Detect Intrusion Using Physical Data From PMU

51



Dataset # PMU Readings

(Total : 37500 )

Training Dataset (No Fault) 22250

Testing Dataset (No Fault) 11250

Validation Dataset (Fault) 4000

Dataset Description :

Types Of Validation Dataset:

Validation 

Dataset

PMU Readings 

(# Normal Instances)

PMU Readings

( # Anomalous Instances)

Type 1 3979 21

Type 2

(Synthetic Minority 

Oversampling -SMOTE)

3979 3979

Detect Intrusion Using Physical Data From PMU
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Evaluation Metrics

The intersection between actual values and predicted values yield four possible situations:

• True Positive (TP): Positive instances correctly classified.

• False Positive (FP): Negative instances classified as positive.

• True Negative (TN): Negative instances correctly classified as negative.

• False Negative (FN): Positive instances classified as negative.

Classification Measures:

Accuracy is calculated as the number of correctly classified instances over total number of instances evaluated.

Precision is the percentage of correctly predicted instances over the total instances predicted for positive class.

Recall is the percentage of correctly classified instances over the total actual instances for the positive class.

F-Measure is a measure of test accuracy.

Detect Intrusion Using Physical Data From PMU
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Autoencoder Evaluation On Type 1 (Validation Dataset)

Threshold

(Test Data)

Accuracy Precision Recall F-Measure

0.003617

(Minimum)

5.50% 0.99 0.06 0.09

0.003621

(Mean)

50.25% 0.99 0.50 0.66

0.003625

(Maximum)

99.48% 1.0 0.99 1.00

Detect Intrusion Using Physical Data From PMU

54



Decision Based On Data Analytics and Validation Using 

Additional Non-Streaming Data

• PMU 2 and 3 show highest MSE among

all PMUs

• it can be determined that most probably

the fault could have occurred in the line from 

bus 2 and 3 
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Use case III: Load/ DER Disaggregation
• Increasing PV penetration

• Behind-the-meter (Invisible)

• PV with meters (Visible)

• Invisible solar photovoltaic not monitored

• Invisible to utilities and system operators

• Visibility into behind-the-meter solar 
generation is limited

Feeder

Load

Load + PV behind the meter

PV generation in front of meter

• Exact load estimation can help with cold load pickup after the outage

• DER estimation can also help for resiliency driven outage management with DERs in 

microgrids/ active distribution system 

• System net load is a key input when scheduling for the 

short-term operation (minutes/ hours)

• DER estimation can help with voltage control and 

CVR, especially given high percentage of rooftop PV
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Research Question

How do we gain more visibility into the PV generation and 

load behind the meter?

• Data-driven methodology can be used to estimate (ML 

prediction) the power generation of invisible solar power sites 

in short time scale and load/ DER can be disaggregated

57
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Supervised Machine Learning

• A computer system learns from data, which represent some “past 

experiences” of an application domain 

• Our focus: learn a target function that can be used to predict the 

values of a continuous value, i.e. load, power generation

• The task is commonly called Regression: a specific type of 

Supervised learning, complementary to Classification

• Supervision: the data (observations, measurements, etc.) are 

labeled with pre-defined values
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• Data: a set of data records (also called examples, instances) 

described by

 k attributes: X
1
, X

2
, … X

k
(e.g. weather, voltage, power)

 a target value (y): each example has a pre-defined value (e.g. power estimation)

• Goal: learn a regression model from the data that can be used for 

estimating values of new (future or test) instances

 We may use a simple model like linear regression or a more complex model 

• Evaluation: accuracy of estimation

Regression Problem Formulation
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PV/Load Disaggregation

• Data Properties

 High sampling rate

 Heterogeneous data (e.g. different sampling rate, different nature) 

 Many missing points 

• Weather data: 4 to 9 variables

 Diffused irradiance,  global irradiance, humidity, temperature, 

wind direction, wind speed, dew point, pressure, rain

• Challenges

 Large scale data

• More than 31,540,000 rows of data per year (based on HNEI data)

 How can we represent data to expedite model training? 

• Feature extraction

 How can we use future data to upgrade the model? 

• Online Learning, Deep Learning
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S
en

so
r 

D
at

a 

(m
ic

ro
P

M
U

o
r 

S
m

ar
t-

m
et

er
C

o
n
te

x
t 

D
at

a

61



Data Preparation

• Low-pass filter 

 to remove high frequency noise 

data

• Average-based sliding window 

method

 to fill missing values

• Process weather station text 

data 

 to generate clean and structured 

data

• Spline interpolation 

 to match different sampling rates

• Synchronization

 timestamp adaptation for different 

sources of data
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Data Segmentation and Feature Extraction

Implementation

𝑉, 𝑃, 𝐼, … .

meter Data      Weather LabelsTime 
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Datasets (working with HNEI)

• Real Data (Maui Hawaii) --- One Year

 Smart-meter transformer data 

 Smart-meter load data (target value)

 Smart-meter solar panel data (target value) 

 Weather data in text format (9 parameters)

• GridLab-D (IEEE 123 Node Test Feeder) --- One Year

 PMU data: current and voltage for the entire network 

 Weather data (low sampling rate data)

 Seattle weather data (4 parameters)

 5 Solar panels in the network

 Load data (in progress)
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Case Studies

• Real data, Load estimation 

 Target: load value

 Input: transformer smart-meter data and weather data

• Real data, Solar panel power estimation

 Target: solar panel power generation

 Input: weather data

• GridLab-D data, Solar panel power estimation

 Target: solar panel power generation

 Input: weather data

 (Ongoing) GridLab-D data, Load estimation
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Accuracy Metrics 

• R-squared

 Also called coefficient of determination (the

square of the correlation coefficient)

 Represents the fraction of the variance in y

that can be explained by the regression

model

• RMSE

 The Root Mean Square Error for prediction
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Real Data, Load Estimation

• Investigated importance of 

features 

 Most valuable feature: 

irradiance 

• Models we used

 Linear regression,  decision tree based 

regression, deep learning (LSTM)

• Future direction

 Train model based on Load and PV 

capacity from multiple locations

 Weather variation: a generalized 

model that works for weather 

condition in any location

 Active Learning: collect data for load 

based on PV estimation and update 

load estimation model

Scenario/

RMSE (%)

Transformer

Only

Transformer

& PV

Context-

aware

Scenario 1 20 to 40% 12 to 41% 4 to 18%

Scenario 2 18 to 36% 10 to 3% 4 to 13%

Scenario 3 8 to 28% 7 to 12% 2 to 11%

Each scenario corresponds to a 

specific

train/test split : 

S1:  3 months train, one month test

S2:  6 months train, one month test

S3:  11 months train, one month test

67

Models: LR, DT, LSTM



Real Data, PV Estimation

• We found that power generation is 

highly dependent on context

• Using transformer smart meter 

data results in higher accuracy  

• Models we used

 Decision tree based

 Linear regression

 MLP

• Future direction

 Use LSTM

 Train models for different scenarios (PV 

capacity, different weather conditions) 

Scenario/

R2

Transformer

Only

Transformer

and Load

Context-

aware

Scenario 1 0.56 0.63 0.83

Scenario 2 0.66 0.65 0.81

Scenario 3 0.72 0.77 0.89

Each scenario corresponds to a 

specific train/test split: 

S1: 3 months train, one month test

S2:  6 months train, one month test

S3:  11 months train, one month test

Estimation for a day

68
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Use Case IV: Cyber-Physical Analytics for the Transactive 
Energy Systems

Source:  Farrokh A. Rahimi, Ali Ipakchi, Transactive Energy Techniques: Closing the Gap between Wholesale and Retail Markets,

The Electricity Journal, Volume 25, Issue 8, 2012, Pages 29-35
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Data Analytics Based Anomaly Detection  in TES

• Detecting malicious activity within a 

TES environment is challenging due 

to the diverse group of participants

 Prosumers

 Market Participants

 Communication networks

 Transmission and Distribution 

networks

• Systems and networks are 

vulnerable to diverse attacks

• Physical and cyber data are available 

for monitoring.

• Huge information flow : Manual 
detection will be difficult
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Possible Cyber Events in TES

Cyber

Events

Bad Data Denial of

Service
Data

Spoofing

Packet

Loss

Huge

latency

Malicious 

Data 

Attack

Noise or 

Bad 

Sensors

Communication 

Failure

False Data 

Injection

Man in the 

Middle

Denial of Service

• An attacker sends several packets to the host
in order to cause the unavailability of the
resources.

• This can be detected by analyzing cyber
data.

Manipulation of Bid Values

• The Bid Price and Bid Quantities are altered
to random values through a malware
injection.

• The impact can be seen in the cyber,
physical, and market information.
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Cyber Data Physical Data Market Data

Architecture of  Proposed Ensemble Decision Tree Algorithm

Input Data # Combine all three types of data in to a single data 

frame

Ensemble 

Decision Tree 

Algorithm

Detect System State

(Cyber Anomaly, Physical 

Anomaly, Normal Operation)

I/P

I/P : Input

O/P : Output

Check Cyber System Data (log Files, Server

Accesses, Network Traffic)

Validate Physical System (V, I, P, Q)

I/P I/P

I/P

O/P
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Combiner

(Plurality)
Detect System 

State

DATASET FROM

TES 

Sub Sample 1 

Sub Sample 2 

Sub Sample 3

Sub Sample 4 

Sub Sample 10

Model 1

Model 2

Model 3

Model 4

Model 10

UPTO UPTO

Ensemble Decision Tree Algorithm (Supervised)

• Given the data, the ensemble decision tree algorithm detects/classifies cyber and physical events in the Transactive Energy System.

• The proposed algorithm is based on the concept of bagging in which each single decision tree model is built from a random subset

composing the ensemble of decision trees.

• “Confidence” and “Probability” measures are computed while predicting a class at a node.

• After all single decision tree model are created their prediction is combined using a combiner measure called “Plurality” and then the

final class is predicted.
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• CONFIDENCE:
• Imposes a confidence at every node in an individual decision tree model.
• The confidence is calculated using lower bound of "Wilson Score Interval" formula.
• Core Idea of imposing 'confidence' is to balance the proportion of the predicted class with uncertainty of a small number of instances.

• p̂ = proportion of instances for the predicted class at a particular node.

• n : the number of instances at that node .
• z = 1.96

• PROBABILITY:

• The probability of a class at a certain node is the percentage of instances for that class at the node.

• Additive smoothing tends to pull the class probabilities towards their overall proportion in the dataset.

• If there are only a few instances in the leaf leading to the prediction, this smoothing can have a significant impact. If there are a high 

number of instances, the smoothing will have little effect.

• node_total_count : Total number of instances in the node.

• node_class_count : Total number of instances for the class of interest at a 

given node.

• class_prior : Percentage of instances for that class over the total instances in 

the dataset.

• PLURALITY :

• Plurality is based on the premise that each model in the ensemble has one vote for a prediction.

• The class with most votes is returned as the final prediction.

• The resulting prediction is computed by averaging the confidence of the models that are predicting the right value.

Ensemble Model: Measures
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7200V/120V

230kV/12.47kV

10 houses for phase A

10 houses for phase B

10 houses for phase C

7200V/120V

7200V/120V

……

……

……

1.3 MW peak 

unresponsive load

12.47kV/480V

Large Building

Node 

7

The simulated power system includes a 9-bus 
transmission system and  one feeder with 
transactive components at node 7. The HVAC 
devices in each house will participate in  the 
power market.

Source: http://tesp.readthedocs.io/en/latest/TESP_DesignDoc.html

Test System
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TESP Test bed

TESP is a framework designed by PNNL that simulates transactive systems. It includes various
software modules and a number of agents in the form of smart houses.

Mininet

Central 

Controller
Malware 

Injection

TE Agents

M
a
n
ip

u
la

te
d
 

V
a
lu

e
s

Source: 
http://tesp.readthedocs.io/en/latest/TESP_DesignDoc.html

• Mininet has been used to create a network that helps the
house controllers get and send messages from/to the FNCS
broker.

• The network has a tree topology with the central controller
as the root node. There are 30 TE Agents. Each agent has a
house controller.

• The house controller sends the temperature values, bid
values to the FNCS broker, which publishes the information
for the other components to read.

• The attack performed in the study aims at the house

controller and manipulating the bid values which are then
sent to the FNCS.
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Output Labels ΔBid Price ΔBid Quantity

Normal 0 0

Cyber Attack 6 9

Physical 

Outage

0 0

Output Labels ΔBid Price ΔBid Quantity

Normal 0 0

Cyber Attack 0.1 - 2.9 0.1 - 2.9

Physical 

Outage

0 0

Cyber Attack / 

Physical 

Outage

0.1 - 4.7 0.1 - 4.9

Input Features

Bid price

Bid quantity

LMP

Voltages

Generators real and 

reactive power outputs

Total demand

Flows

Class

Scenario 1

Scenario 2

Scenario 1 (High Impact):
- Manipulating bid price and quantity to an arbitrary large value.
- Aim to lead series of events in the operation of power grid.

Scenario 2 (Low Impact):
- Manipulating bid price and quantity to some reasonable values.
- Aim to gain benefits from the market.

Dataset Description

Trained-Tested using 80% and 20% split, respectively.

Scenario 1 (High
Impact): Manipulating
bid price and quantity
to a arbitrary large
value. (Aim to impact
the operation of power
grid)

Scenario 2 (Low
Impact): Manipulating
bid price and quantity
to some reasonable
values. (Aim to gain
benefits from the
market)

Simulation 

Scenarios
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Results: Impact of Cyber Attack on TES
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Scenario 2: Manipulating bid 
price and quantity to some 
reasonable values

Scenario 1: Manipulating bid 
price and quantity to a arbitrary 
large value. 



Confusion matrix is a table containing the predictions and actual values of objective field classes.
The intersection between actual values and predicted values yield four possible situations:
• True Positive (TP): Positive instances correctly classified.
• False Positive (FP): Negative instances classified as positive.
• True Negative (TN): Negative instances correctly classified as negative.
• False Negative (FN): Positive instances classified as negative.

Classification Measures:
Accuracy is calculated as the number of correctly classified instances over total number of instances evaluated.

Precision is the percentage of correctly predicted instances over the total instances predicted for positive class.

Recall is the percentage of correctly classified instances over the total actual instances for the positive class.

F-Measure is a measure of test accuracy.

Phi–Coefficient is the correlation coefficient between the predicted and actual values.

Evaluation Metric Results

Scenarios Accuracy Precision Recall F-Measure Phi-Coefficient

Scenario 1 92.2% 92.0% 91.1% 0.92 0.83

Scenario 2 99.97% 83.32% 99.98% 0.87 0.89
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• Tsunamis

• Avalanches

• Power outages 

disrupting fishing 

business

Cordova

Cordova, AK, serves as a perfect microcosm for prototyping 

innovations for the entire power grid across the nation

Use Case V: Enabling 
Resiliency
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CANVASS?

• Canvass stands for Cyber-Attacks and Network 

Vulnerability Analytics Software for Smart Grids

• It enables unfavorable physical and cyber event 

simulation for power systems

• Free, open-source, platform-independent 

resiliency-computation toolkit

• It has default restoration and resiliency computation 

algorithms – with ability for user to define own 

metrics and scenarios. 

• It enables easy power system modeling and inter-

disciplinary resiliency engineering research by 

abstracting lower level (hard-to-learn) open-source: 

• power simulation software [GridLAB-D], 

• network analysis library [NetworkX], 

• OS-based socket libraries [TCP/IP]

• Packet Manipulation library [ScaPy]

into a single, easy-to-use Python package.

• Multiple interdependent infrastructure modeling, 

such as cyber-physical power grid, along with crew 

transport network. 

• It can interface with Real-Time Simulation software 

through socket programming. 

https://sgdril.eecs.wsu.edu/research-interests-and-grants/industrial-grade-products/pycanvass/ 82



Measuring Resiliency
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EMS/ DMS NOCWeather Center
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CyPhyR: Cyber-Physical Resiliency Tool
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HYPERSIM

GRID modeling Protection Relays & Sensors

PHYSICAL LAYER

SCADA
DATABASE

3-phase voltage and current values

Breaker status

CYBER 
LAYER

Control Center

Data driven and AI based learning 

decision support

Cyber
DATABASE

DATABASE

Network m onitoring 

software

Protection 

software

Cyber data

Network 
packets

Data for 
Training and 

Validation

Voltage and Current phasor

Frequency

IncSys EMS

PMU
DATABASE

Anomaly flag, Classification 

and root cause analysis

ANALYSIS & MANAGEMENT LAYER

SENSOR LAYER

Communication 
Model

DECISION MAKING LAYER 
Operator Visualization/ Human Factor

PingThings
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Takeaway#1: Resiliency is a Complex Problem

Resilient Power  Control

Applications

Secure Cyber 

Infrastructure

Power Grid 

Resiliency

Generation

Automatic Generation Control

Governor Control

Automatic Voltage Regulation

Protection

Transmission

State Estimation

VAR Compensation

Protection

Distribution

Load Shedding

Protection

Advanced Metering Infrastructures

Communication

Authentication

Encryption

Computation

Access control  

Attestation

Forensics

Patch management

Software Audits

System Management

Intrusion Detection

Event Monitoring/Analytics

Security Assessment

Flexible 

Infrastructure

Multiple switch

Macrogrid

Minigrid

Microgrid

Nanogrid

Graceful disintegration 

and interconnection

Flexible management 

and control of resources

Economic and market 

incentive

• Resiliency metric is a MCDM problem • Resiliency is characteristics of the system
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Data Analytics and machine learning approaches needs to be applied after 
analyzing the power system problem carefully. Finding match between 
machine learning strength and power system problem to be solved is 

important.

Machine learning is only applicable in data-rich problems if no system 
model is available (e.g. forecasting)

If model is available with rich data set, typically it will be two step approach: 
apply machine learning to narrow down your possible options and refine it 

with model based approach (e.g. event detection)

Machine learning will not give a good results based on state of the art for highly 
complex and dynamic problems (e.g. transient stability, contingency analysis).

Validation and metric is important for these evolving solution technologies

Takeaway #2: Finding Match in Data Analytics Techniques 
and Power System Problems is very important   
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Takeaway#3: Get Involved in PMU Data 
Analytics and Applications

89

NASPI White Paper on Data Quality Requirements for PMU 
based Control Applications

IEEE Synchrophasor based Power Grid Operation as part of 
Bulk Power System Operation. White paper on a) Challenges 
and Solutions in Implementing PMU based Applications in 
Control Center) and b) Quality-Aware Applications  

https://sgdril.eecs.wsu.edu/workshop_conferences/real-time-
data-analytics-for-the-resilient-electric-grid/
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