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Decision Making Under Uncertainty

A two-stage stochastic programming approach

minimize
x

cTx+ Eω[Q(x, ω)]

subject to Ax = b

x ∈X

where Q(x, ω) is the optimal value of the second-stage problem

minimize
y

q(ω)Ty

subject to T (ω)x+W (ω)y = h(ω)

y ∈ Y

In the first stage, the here-and-now decisions x are made

Then the random outcome ω is realized

In the second stage, the wait-and-see decisions (also known as recourse actions) y
are made, which depend on both x and the realization of ω
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Decision Making Under Uncertainty

An equivalent form of the two-stage stochastic programming problem

minimize
x,y(ω),∀ω

cTx+ Eω[q(ω)
Ty(ω)]

subject to Ax = b

T (ω)x+W (ω)y(ω) = h(ω), ∀ω
x ∈X
y(ω) ∈ Y , ∀ω

A deterministic form when the sample space is finite (π(ω): probability of ω)

minimize
x,y(ω),∀ω

cTx+
∑
ω π(ω)q(ω)

Ty(ω)

subject to Ax = b

T (ω)x+W (ω)y(ω) = h(ω), ∀ω
x ∈X
y(ω) ∈ Y , ∀ω

Deep Learning for Scenario Generation and Scenario Reduction Wenyuan Tang North Carolina State University 4 / 47



Short-Term Power System Operations

Net-zero carbon emissions by 2050: increasing penetration of renewable generation

Intermittent and non-dispatchable nature of renewable generation such as wind:
challenges in renewable energy integration

New operating paradigms for unit commitment and economic dispatch: from a
deterministic approach to a stochastic programming approach

A stochastic day-ahead scheduling problem

minimize commitment cost + expected dispatch cost

subject to power balance constraints

transmission constraints

generating unit constraints

Commitment cost: start-up cost, no-load cost, etc.

Dispatch cost: generation cost, load shedding penalty, etc.

Generating unit constraints: generation capacity constraints, ramping constraints,
minimum up-time/down-time constraints, etc.
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Scenarios in Stochastic Programming

What is the randomness in the stochastic day-ahead scheduling problem?

Random outcome ω: wind power generation (or its forecast error) on the next day

Stochastic process ξ(ω): mapping ω to a real-valued vector indexed by time

ξ(ω) = (ξ1(ω), . . . , ξ24(ω))

It is hard to characterize or find the multivariate probability distribution of ξ

Even if the true distribution is known, the resulting stochastic programming problem
may not be computationally tractable: some discretization is needed

Approximating a stochastic process by scenarios

A scenario is a single realization of the stochastic process

s = (s1, . . . , s24)

We typically assume equally likely scenarios

π(s) = 1/|S|, ∀s ∈ S
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Scenarios of Wind Power Generation

Figure: Scenarios (12 time trajectories) of wind power generation issued on 4th April 2007 at 00:00
UTC for the whole onshore capacity of Western Denmark (Source: [Morales et al. 2014])
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Scenario Generation

Scenarios can be viewed as a type of forecasts

Solving the stochastic programming problem: sample average approximation (SAA)

Eξ[Q(x, ξ)] ≈ 1

|S|
∑
s∈S

Q(x, s)

The SAA method has desirable asymptotic properties

To yield high quality decisions, we need to build a high quality scenario set

Scenario generation: given historical time series data, generate a number of
representative sample paths into the future

Traditional approach

Use historical data to fit a statistical model (such as ARIMA)

Then generate random samples from the statistical model (Monte Carlo sampling)

However, tractable statistical models with simplified assumptions may not well
capture the underlying temporal dynamics
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Scenario Generation

Non-parametric methods

Radial basis function network [Sideratos et al. 2012]

Fuzzy prediction interval [Sáez et al. 2015]

Regular vine copula [Wang et al. 2018]

Sparse Bayesian learning, kernel density estimation [Lin et al. 2019]

Infinite Markov switching autoregressive [Xie et al. 2019]

However, those supervised models require extensive domain knowledge for feature
selection, and are difficult to tune and implement

Most of the methods utilize information at multiple sites to improve the accuracy:
they may not be applicable when only a single time series is in consideration

Unsupervised models are preferred: generative adversarial networks (GANs)
[Goodfellow et al. 2014] and many variants of GANs, including the sequence
generative adversarial network (SeqGAN) [Yu et al. 2017]

We will adapt the SeqGAN for scenario generation of hourly wind power generation
(or its forecast error) on the next day

Deep Learning for Scenario Generation and Scenario Reduction Wenyuan Tang North Carolina State University 9 / 47



Scenario Reduction

Good discrete approximations often require the generation of a large number of
scenarios, which may render the underlying optimization problem intractable,
especially in the presence of integer variables (such as unit commitment decisions)

To regain tractability, we need to trim down the number of scenarios while
deteriorating the accuracy of the approximation as little as possible

Scenario reduction: given a large scenario set, generate a small scenario set that is
representative of the original one

Scenario reduction can be viewed as a time series clustering task

Like common clustering algorithms, the generated scenarios do not necessarily
belong to the original scenario set

Traditional approach

Define a measure (such as the Euclidean distance) to quantify the similarity or the
distance between two scenario sets

Solve an optimization problem (which is generally nonconvex) to maximize the
measure
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Scenario Reduction

Measure based methods

Fortet–Mourier probability metrics [Heitsch and Römisch 2009]

Space and moment distance [Li et al. 2016]

Radial basis kernel function [Wang et al. 2017]

Nested distance [Beltrán et al. 2017]

Probability metrics and correlations [Hu and Li 2019]

However, those measure based methods depend on a predefined measure, which
may deteriorate the generalization capability

It is difficult to describe all the patterns in the large scenario sets, since the number
of scenarios is reduced dramatically

Time series clustering methods are preferred: smoothed formulation of dynamic
time warping (DTW) [Cuturi and Blondel 2017], and mixture of autoencoders [Dizaji
et al. 2017, Chazan et al. 2019]

We will integrate a mixture of autoencoders with fuzzy clustering for scenario
reduction of forecast errors of hourly wind power generation on the next day
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Fully Connected Neural Network

The deep in deep learning: successive layers of increasingly meaningful
representations, which are learned jointly via neural networks

Fully connected neural network (FNN): every neuron (unit) in each layer is
connected to every neuron in the next layer

Universal approximation theorems imply that neural networks can represent a wide
variety of interesting functions when given appropriate weights

Figure: Simple and deep FNNs (Source: Internet)
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Convolutional Neural Network

Convolutional neural network (CNN): learn translation-invariant patterns and spatial
hierarchies of patterns

The convolution operation extracts patches from its input feature map and applies
the same transformation to all of these patches, producing an output feature map

Filters (in the depth axis) encode specific aspects of the input data

The max-pooling operation downsamples feature maps

Finally, we need the fully connected layers to learn the global patterns

Figure: CNN for handwritten digit classification (Source: Internet)
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Recurrent Neural Network

FNNs and CNNs have no memory: they are called feedforward networks

Recurrent neural network (RNN): process sequences by iterating through the
sequence elements and maintaining a state containing information relative to what it
has seen so far

In theory, the simple RNN is able to retain information about inputs seen many time
steps before

In practice, such long-term dependencies are impossible to learn, due to the
vanishing gradient problem

Figure: Simple RNN (https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Long Short-Term Memory

Long short-term memory (LSTM): a special kind of RNNs that are explicitly designed
to remember information for long periods of time

Four interacting neural network layers (instead of one) in the repeating module

Forget gate: what information to throw away from the cell state

Input gate: what new information to store in the cell state

Output gate: what information to output (and going to be the next hidden state)

Figure: LSTM (https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Generative Adversarial Network

Generative adversarial network (GAN): a generative model in which a generator
network completes against an adversary, the discriminator network

Generator: directly produce samples

Discriminator: attempt to distinguish between samples drawn from the training data
and samples drawn from the generator

Learning in a GAN can be formulated as a zero-sum game: at convergence, the
generator’s samples are indistinguishable from real data

Figure: GAN (https://sthalles.github.io/intro-to-gans/)
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Autoencoder

Autoencoder: a neural network that is trained to attempt to copy its input to its output

Hidden layer h: describes a code (latent representation) used to represent the input

Encoder h = σ(x): maps the input into the code

Decoder x′ = σ′(h): maps the code to a reconstruction of the input

σ′(σ(x)) = x is not useful: autoencoders are restricted to copy only approximately

We are interested in h (instead of x′) taking on useful properties

Figure: Autoencoder (https://en.wikipedia.org/wiki/Autoencoder)
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Sequence Generative Adversarial Network

Issues when applying GAN to generating sequences

First, GAN is designed for generating real-valued, continuous data but has
difficulties in directly generating sequences of discrete tokens (such as texts)

Second, GAN can only give the score for an entire sequence: for a partially
generated sequence, it is non-trivial to balance its current score and its future score

The first issue is minor: wind power generation (or its forecast error) is continuous;
but discretization may still be preferred for convenience

The second is critical: some values may be abnormal while the overall sequence
has a good score, which may lead to unreasonable unit commitment decisions

Sequence Generative Adversarial Network (SeqGAN)

Consider the sequence generation procedure as a sequential decision making
process, solved by reinforcement learning: the state is the generated tokens so far
and the action is the next token to be generated

Regard the generative model as a stochastic parameterized policy: employ Monte
Carlo search to approximate the state-action value for evaluating policy gradient
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Sequence Generative Adversarial Network

LSTM LSTM

C1

h1

Ct-2

ht-2

C0

h0

Ct-1

ht-1

y1 yt-1

x1 xt-1

LSTM

yt

xt

yT,1

yT,2

yT,N-1

yT,N

Real sequences

Wind generation in the previous day

A partially generated scenario

Sample N
complete scenarios

x1 xT x1' xT'

x1 xT y1 yT

Real sequences
used to train D

G

Generated 
sequences

D
Policy gradient D

xT

Rewards

Input of the generator: 24 hourly wind power generations in the previous day

Output of the generator: for each hour, softmax is used to obtain the discrete
distribution of wind power generation (which can then be sampled for scenarios)

The generator maximizes the reward to go from the beginning (state in t:
st = y1:t−1 = (y1, . . . , yt−1), action in t: yt)

max
θ

J(θ) =
∑
y1

Gθ(y1|s1)QGθDφ(s1, y1)
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Sequence Generative Adversarial Network

LSTM LSTM

C1

h1

Ct-2
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yt
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complete scenarios

x1 xT x1' xT'
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Real sequences
used to train D

G
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sequences

D
Policy gradient D

xT

Rewards

An unbiased estimation for policy gradient (via which the generator is trained)

∇θJ(θ) ≈
T∑
t=1

Eyt∼Gθ(yt|y1:t−1)[(∇θ logGθ(yt|y1:t−1))Q
Gθ
Dφ

(y1:t−1, yt)]

The discriminator minimizes the cross-entropy loss

min
φ
−Ey∼pdata [logDφ(y)]− Ey∼Gθ [log(1−Dφ(y))]
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Sequence Generative Adversarial Network

LSTM LSTM
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D
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xT

Rewards

The discriminator only provides a reward value Dφ(y) (probability of being real) for a
finished sequence y

How to evaluate the state-action value function for each t?

Q
Gθ
Dφ

(y1:t−1, yt) =

{
(1/N)

∑N
n=1Dφ(y1:t, y

n
t+1:T ), t < T

Dφ(y1:T ), t = T

where y1t+1:T , . . . , y
N
t+1:T are sampled by Monte Carlo given y1:t and Gθ
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Generated Scenarios of Forecast Errors
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Figure: 20 scenarios of forecast errors for April 29, 2019, based on the BPA data

The least safe margin for SeqGAN is larger: more robust decisions

SeqGAN follows the fast ramping events better
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Generated Scenarios of Wind Power Generation

SeqGAN Vanilla LSTM Multivariate KDE
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Figure: 20 scenarios of wind power generation for December 25, 2012, based on the NREL data

SeqGAN generates more diverse scenarios which lead to more robust decisions

SeqGAN captures the patterns better (not too diverse to be useful)
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Assessment of Generated Scenarios of Forecast Errors

Skill score: measure of accuracy of forecasts such as scenarios

All the skills scores introduced here are negatively oriented (the lower the better)

N generated scenarios

s(i) = (s
(i)
1 , . . . , s

(i)
24 ), i = 1, . . . , N

Observation
z = (z1, . . . , z24)

Mean squared error (MSE)

1

24

24∑
t=1

(
1

N

N∑
i=1

s
(i)
t − zt

)2

Energy score

1

24

24∑
t=1

(
1

N

N∑
i=1

|zt − s(i)t | −
1

2N2

N∑
i=1

N∑
j=1

|s(i)t − s
(j)
t |

)
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Assessment of Generated Scenarios of Forecast Errors

Energy score

MSE
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SeqGAN achieves the best MSE

SeqGAN achieves a better energy score when the uncertainty is high
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Assessment of Generated Scenarios of Wind Power Generation

For wind power generation, we are more interested in event-based measures

Brier score: measure the deviation of the generated scenarios from the observation
with respect to capturing the predefined events (such as large ramping events)

1

24

24∑
t=1

(
1

N

N∑
i=1

ft(s
(i))− ft(z)

)2

where ft(s) indicates whether the predefined event occurs in hour t in s

Event SeqGAN LSTM KDE

10% up in 1 hour 0.2148 0.2500 0.2240

20% up in 2 hours 0.1866 0.2167 0.1960

10% down in 1 hour 0.1745 0.1930 0.2151

20% down in 2 hours 0.1617 0.2178 0.1917

Table: The Brier scores for 1 peak week of 1 site in the NREL data
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Assessment of Generated Scenarios of Wind Power Generation

Variogram score of order p

24∑
t1=1

24∑
t2=1

(
|zt1 − zt2 |

p − 1

N

N∑
i=1

|s(i)t1 − s
(i)
t2
|p
)2

p = 1 p = 2

Case SeqGAN LSTM KDE SeqGAN LSTM KDE

1a 0.505 0.553 0.530 0.497 0.584 0.546

1b 0.346 0.350 0.388 0.278 0.287 0.306

2a 0.530 0.572 0.626 0.448 0.461 0.491

2b 0.506 0.588 0.554 0.421 0.538 0.457

3a 0.462 0.574 0.513 0.346 0.439 0.381

3b 0.349 0.389 0.432 0.324 0.363 0.424

Table: The Variogram scores for 1 peak and 1 off-peak week of 3 sites in the NREL data
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Case Study on a Modified IEEE 24-Bus System

Day-ahead scheduling: two-stage stochastic mixed-integer linear programming

For each algorithm, we generate 100 scenarios, and evaluate the expected cost

We also evaluate the realized cost which depends on the actual observation

The scenario set generated by SeqGAN is the most representative
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Scenario Reduction

Problem statement: given N scenarios (with equal probabilities)

s(i) = (s
(i)
1 , . . . , s

(i)
24 ), i = 1, . . . , N

generate K (K � N ) scenarios and assign probability pk for each k

r(k) = (r
(k)
1 , . . . , r

(k)
24 ), k = 1, . . . ,K

Mixed Autoencoder Based Fuzzy Clustering (MAFC)

First, several deep autoencoders map time series to latent representations

The deep hypothesis spaces in the autoencoders provide high generalization
capability and capture the complex temporal dynamics

Second, those latent representations are fed into a membership DNN, which outputs
the degree to which each scenario belongs to each cluster

Third, based on the membership degrees, fuzzy time series clustering is employed
to evaluate the centroids

Compared with hard clustering, fuzzy clustering is better at preserving the patterns
in the original scenario set

Deep Learning for Scenario Generation and Scenario Reduction Wenyuan Tang North Carolina State University 33 / 47



Mixed Autoencoder Based Fuzzy Clustering

Autoencoder 1 Autoencoder 2 Autoencoder K

Membership
DNN

h1 h2 hK

h1, h2, ... , hK

Centroid
generator

r(1), r(2), ... , r(K)

Latent representations

Centroids

w1, w2, ... , wK

Membership functions

Aggregated
 lossOriginal scenario s

p1, p2, ... , pKProbabilities

Reconstructions

x1, x2, ... , xK

K autoencoders: extract the latent representations h(i)
1 , . . . ,h

(i)
K of each s(i)

z
(i)
k : output of the membership DNN before the last activation function (softmax)

Membership degree w(i)
k : the degree to which s(i) belongs to cluster k

w
(i)
k =

ez
(i)
k∑K

l=1 e
z
(i)
l
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Mixed Autoencoder Based Fuzzy Clustering

Autoencoder 1 Autoencoder 2 Autoencoder K

Membership
DNN

h1 h2 hK

h1, h2, ... , hK

Centroid
generator

r(1), r(2), ... , r(K)

Latent representations

Centroids

w1, w2, ... , wK

Membership functions

Aggregated
 lossOriginal scenario s

p1, p2, ... , pKProbabilities

Reconstructions

x1, x2, ... , xK

x
(i)
1 , . . . ,x

(i)
K : reconstructions of s(i)

Centroids under fuzzy clustering

r(k) =

∑N
i=1(w

(i)
k )mx

(i)
k∑N

i=1(w
(i)
k )m

where the hyperparameter m controls the level of fuzziness (the higher the fuzzier)
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Mixed Autoencoder Based Fuzzy Clustering

Autoencoder 1 Autoencoder 2 Autoencoder K
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Assign probability pk to each cluster k

pk =
1

N

N∑
i=1

w
(i)
k

Loss function augmented by sample-wise entropy

L =
1

N

N∑
i=1

K∑
k=1

pk‖s(i) − c(k)‖2 − α
N∑
i=1

K∑
k=1

(w
(i)
k )m log(w

(i)
k )
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Setup

Bonneville Power Administration (BPA): capacity of 4,450 MW

Elia (Belgian grid operator): capacity of 3,667 MW

Both data sets have day-ahead forecasts so that we can focus on forecast errors

For each data set, we fit a kernel density estimation model, and then sample 2,000
scenarios as the original scenario set

For each original scenario set, the task is to produce reduced scenario sets with 10
and 20 scenarios, respectively

Benchmark algorithms

Simultaneous backward reduction (SBR)

k-Shape

Global alignment kernel (GAK)

Smoothed formulation of dynamic time warping (SoftDTW)

k-means

Principal component analysis (PCA) with k-means

Mixed autoencoders with DNN (MAFC without fuzzy clustering)
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Assessment of Scenario Reduction

Cosine distance
1

N

N∑
i=1

K∑
k=1

pk

(
1− s(i) · r(k)

‖s(i)‖‖r(k)‖

)
While none is close to 0, MAFC achieves the best score

Method BPA-10 BPA-20 Elia-10 Elia-20

MAFC 0.885 0.888 0.896 0.896

SBR 1.009 1.023 0.924 0.944

k-Shape 0.998 0.999 0.986 1.002

GAK 0.915 0.914 0.951 0.960

SoftDTW 0.981 0.986 0.959 0.974

k-means 0.944 0.962 0.962 0.966

PCA 0.935 0.942 0.942 0.954

DNN 0.905 0.896 0.928 0.914
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Assessment of Scenario Reduction

Euclidean distance
1
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N∑
i=1

K∑
k=1

pk

∥∥∥s(i) − r(k)∥∥∥2
MAFC achieves average scores, because this metric penalizes HILP scenarios
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Assessment of Scenario Reduction
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Case Study on a Modified IEEE 24-Bus System

Objective error: difference between expected costs under S and underR

Policy error: obtain first-stage decisions under S andR respectively, and then
evaluate the realized costs under S and calculate the difference
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Outline

1 Introduction

2 Overview of deep learning models

3 Scenario generation: methodology

4 Scenario generation: numerical experiments

5 Scenario reduction: methodology

6 Scenario reduction: numerical experiments

7 Conclusion
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Conclusion

Stochastic programming is a natural approach to short-term power system
operations under high penetration of renewable generation

To yield high quality decisions (such as day-ahead unit commitment decisions), we
need to build high quality scenario sets that are representative of the underlying
multivariate probability distributions

We may also need to trim down the scenario set for the tractability of the
optimization problem (which possibly involves integer variables)

While scenario generation and scenario reduction have been extensively studied,
generalization capability and feature engineering remain challenges

In SeqGAN for scenario generation, the observation in the previous day (instead of a
random noise) is used as the input, and the Monte Carlo method is employed to
estimate the scores of partially generated sequences at each time step

In MAFC for scenario reduction, a mixture of deep autoencoders map the original
scenarios to latent representations which are fed into a membership deep neural
network, and fuzzy clustering is employed to better preserve the patterns

Both statistical metrics and test cases demonstrate the superior performance of the
proposed deep learning approaches
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