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Behind-the-meter distributed energy resources
Prosumers

Smart grids

This paper reviews approaches for facilitating the integration of small-scale distributed energy resources (DER) into
low- and medium-voltage networks, in the context of the emerging transactive energy (TE) concept. We focus on
three general categories: (i) uncoordinated approaches that only consider energy management of an individual
user; (ii) coordinated approaches that orchestrate the response of several users by casting the energy management
problem as an optimization problem; and (iii) peer-to-peer energy trading that aims to better utilize the DER by
establishing decentralized energy markets. A second separate, but important, consideration is that DER inte-
gration methods can be implemented with diverse levels of network awareness, given their capability to address
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Rise of the Prosumer Scenario

* By 2050, a tide of consumers take up on-site
generation (46%) and electric vehicles (27%)

* The role of centralised power and liquid fuels
declines considerably

e Customers choose their level of control from
a wide variety of plans

* The network becomes a platform for
transactions

Source: CSIRO Future Grid Forum, 2013.
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Renewables Thrive Scenario

* 100% renewables in centralised power ELECTRICITY IN 2050 @
supply by 2050

High electric vehicle uptake (37%)
 Strong demand control BERR 5 @ % P
(0] (0}

Batteries are used widely in houses, cars and
at large scale at power stations

Scenario Snapshot

@ CHANGES TO BILLS @ cost @ RENEWABLES
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Leaving the Grid Scenario

* Around a third of consumers completely

disconnect from the grid

* PV and battery storage are the key

technologies

* Disconnecting from the grid as a residential
consumer is projected to be economically
viable from around 2030-2040 as battery

costs fall

Source: CSIRO Future Grid Forum, 2013.
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Set and Forget Scenario

* Consumers sign up to voluntary demand
control schemes

* Appliances can be automated to adjust their
power use when certain conditions are met

* Dynamic pricing to incentivise users’ action

* Consumers do not play an active role in
demand control but rely on utilities for the
solutions to integrate and operate the
schemes

* Energy Sources:
* onsite generation and EVs (19%)
* centralised power and liquid fuelled
transport (81%)

Source: CSIRO Future Grid Forum, 2013.
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Technology cost is dropping

Payback period for PV-battery systems (2015)

Payback (number of years) for different types of households
NS I e s
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Australian Energy Market Operator (AEMO), “Emerging Technologies Information Paper,” 2015. 8/59



Cost reduction drivers
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Morgan Stanley Research, “Australia Utilities Asia Insight: Solar & Batteries” 2016.
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Projected installed capacity of rooftop PV and distributed battery storage in the NEM
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Global rate of electricity market decentralisation
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Source: AEMO ENA Open Energy Networks, 2018. (from Bloomberg New Energy Finance. 2017 New Energy Outlook.)
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What does that mean for the electricity network?
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Increasing penetration of rooftop solar PV creates network problems
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Increasing penetration of rooftop solar PV creates network problems
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Increasing penetration of rooftop solar PV creates network problems
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Increasing penetration of rooftop solar PV creates network problems

. 1% o}
Transmission 4o ° . . ]
g Network issues
O
o
[ ]

MV Distribution 0 O g . 100%
LV Distribution ’ °
Consumer W
Prosumer 5 Z:C%Q 50
(@] . ©
(0] . ° °
. ' : o [ o a o
o) O—o e} 0 /o
e ()—==
0 ° @ 0
o) @ o)

‘ 13/59



Increasing penetration of rooftop solar PV creates network problems
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Digitalisation of the energy landscape

* Ubiquitous connectivity (Internet of Things)
* Artificial intelligence (‘smart’ devices)
* Blockchain (distributed energy marketplace)

Global investments in digital electricity infrastructure and software

USD (2016) billion

80 | Electricity systems software
M Industrial energy management software
60 )
m Building energy controls
m m EV chargers
m Smart grid infrastructure
= Smart meters
20
0 m Other

2014 2015 2016 Globalgas  India Video game
power power industry
generation  sector  revenues

International Energy Agency (IEA), “Digitalization & Energy”, 2017.
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DER coordination and management approaches

» System oriented: maximise social welfare Network-aware Network-oblivious

¢ Customer oriented: minimise electricity bill _s

* Network awareness: network impact
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[1] J. Guerrero, D. Gebbran, S. Mhanna, A. C. Chapman, and G. Verbi¢, “Towards a transactive energy system for integration of distributed energy resources: home energy
management, distributed optimal power flow, and peer-to-peer energy trading,” Renewable and Sustainable Energy Reviews, vol. 132, p. 110000, October 2020. 17/59
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Home energy management (HEM)

Distributed energy resources (DER):

. PV .
Rooftop solar PV System Battery Grid
H

Charge
Controller

> Battery storage

e Electric vehicle

o

* Fuel cells

* Flexible loads (thermal and shiftable) Fuel Cell Demand
Active DER management: l ‘ 777777777777777777777
* Reduce electricity bill gt‘grrargae' () ater :’ ELeecrtr:Z?lEEnZ?;gyy

* Increase PV self-consumption
* Improve comfort

[2] H. Tischer, G. Verbic, “Towards a smart home energy management system - A dynamic programming approach,” in 2011 IEEE Innovative Smart Grid Technologies - Asia.

[3] D. Azuatalam, K. Paridari, Y. Ma, M. Férstl, A. C. Chapman, and G. Verbi¢, “Energy management of small-scale PV-battery systems: A systematic review considering practical
implementation, computational requirements, quality of input data and battery degradation,” Renewable and Sustainable Energy Reviews, vol. 112, pp. 555-570, September 2019.
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Home energy management: Generic formulation

* Scheduling energy use over a horizon

 Typically cast as a sequential decision making problem under uncertainty:

K
F™ — minimise E Z Ck (5K, 7(sk), 0(k))
T k=0

* Where C: cost, s: state, 7: policy, ®: random disturbances, k: time step

* Many devices with possibly complex couplings — large state and action spaces

» Can be solved using either dynamic programming ot mathematical programming (typically
mixed-integer linear programming)

* Can be computationally challenging

[4] C. Keerthisinghe, G. Verbi¢, and A. C. Chapman, “A Fast Technique for Smart Home Management: ADP with Temporal Difference Learning,” IEEE Transactions on Smart Grid,
vol. 9, no. 4, pp. 3291-3303, July 2018.
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Home energy management: Linear programming (LP) formulation

» User demand split into appliances (e.g. pool pump, HVAC, water heater) requires MILP

 Users predict their demand and generation for time-slot t € T

* Net electric energy required by agent a # 0: x5! = [x;‘ﬁ‘, .. ,xgﬁlpm}

* Users can feed power into the grid: x3%' = X3, — X, ,, such that P, At < xJ§' < P At

Inverter
Xat Xat
- ~ <l @
PV Array X‘l—::?dl Meter Grid
Xbatt
Battery ! User agent a

[1] J. Guerrero, D. Gebbran, S. Mhanna, A. C. Chapman, and G. Verbi¢, “Towards a transactive energy system for integration of distributed energy resources: home energy
management, distributed optimal power flow, and peer-to-peer energy trading,” Renewable and Sustainable Energy Reviews, vol. 132, p. 110000, October 2020.
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HEM: LP formulation

* Then, the optimization problem of a local HEMS for each user is given by:
ft/tou +
minimise ) o7 —o'x;,
XacXa teT
subject to power balance constraints
DER operational constraints

vVte T

* Power balance constraints:
+ _ Ioad inv batt,dem batt ch
= o)

at

inv [ batt,grid pv
Xat = MNa ( Xat T Xat
batt,dis ___batt,dem + Xbatt,grid

X at
21/59
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Home energy management: Linear programming (LP) formulation

* Since the feed-in tariff is assumed to be always less than the retail tariff, each term in the

summation is convex

» Reformulating a piece-wise affine objective function can only be applied to the minimisation of a

convex function

_.~"Grid supply charge

-
-
-
-

o .Feed—in payment

0 z (kWh)

22/59



HEM: LP formulation

* Battery model:

batt __ batt,dis batt,ch
Xat = Xat — Xait

,f;att,chAt < X:.a;tt,ch < ﬁatt’ChAt
att,dis batt,dis _- <batt,dis
PUPRAL < <YRIRAL

batt,dis

X
h batt ch “at
batt batt + nS c

€z Wt _eat At dis
a

ggatt < ebatt S égatt

batt,start L
ebatt Ta At _ egatmm
batt,end .

ebatt T > egatt,flnal
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Home energy management with operating envelopes

» Operating envelopes determine the amount of power a prosumer can inject to the grid
* They can be obtained from the power flow Jacobian matrix:

P 0P
_ |3y e
J=10a aa
v

* Impact of prosumer power injection on voltage at the connection point i:

aV; aV;
svi= (2) 04 () s

* Requires state estimation, currently not done in distribution networks
» Operating envelopes are location dependent, which raises the question of fairness

24/59
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Prosumer aggregation
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Market structure: Passive vs. active demand side

Deregulated

[ Generators ]
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Market structure: Passive vs. active demand side

Deregulated with prosumers
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Market structure: Passive vs. active demand side
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Market structure: Passive vs. active demand side
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Market structure: Passive vs. active demand side
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Market structure: Passive vs. active demand side
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Canonical DER coordination problem

* We assume a distribution system operator (DSO) responsible for reliable and secure operation

The DER coordination problem can be written in general form:

minimise F(x), xe€X

Objective F(x) depends on the framework (typically cost minimisation)

» Feasible set X includes aggregator, agent and network decision variables (X = Xp U X3 U X,)

- |
| ! |
| : |
b | ) Aggregator
| |
N /‘ . User agent
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State of the art: Retailer VPP (VPP 0.0)

+ Direct load control by a retailer (no optimisation)
controller
» Batteries used to mitigate price exposure

* Batteries located in different MV networks

* Users have no control over when VPP uses their batteries

 Battery controller (heuristic):
* Self-consumption maximisation

* Price arbitrage
* Consumer demand profiles not considered
* Suboptimal!

* Example: AGL Tesla VPP

* Demand response mechanism rule change (24 October
2021)

28/59



System-focused VPP (VPP 1.0)

* The objective of the aggregator is to minimise cost (maximise social welfare):
minimise  f(xo)
X2€X5,X0€X0

subjectto Y xi¥ =xor, VtET
ac4\0

* Aggregator cost function 7(xo) = Y ;c+ C(xo¢) can represent cost of electricity in wholesale
market (energy and ancillary services), system losses, or cost of auxiliary supply, e.g. diesel

* Quadratic function captures generation cost of a wide range of technologies:
C(x0,t) = c2(x0,¢)? + C1%0,t + Co

* Consumer DER are controlled by the aggregator
* Multiperiod to account for inter-temporal couplings
* Rolling-horizon approach to reduce computational burden and forecast error (akin to MPC)
29/59



Consumer-focused VPP (VPP 2.0)

* The objective of the aggregator is to minimise system and customer cost:

minimise  f(Xp) + X
X2€Xa,X0€X0 ( 0) Zg’\oga( a)

subjectto ) xi¥ =xo, VIET
aca\0

o Term ga(xa) = Y e 0VUx;, — o'x_, represents users’ electricity cost

* Note the optimisation problem of user agents (home energy management problem):

minimise ). o}"®x;", — o"x;,

Xa€Xa teT

* Consumer preferences now also considered

30/59



Consumer-focused VPP (VPP 2.0): Solution approach

* Large-scale optimisation problem solved in a distributed fashion using dual decomposition
» Power balance constraint is ‘relaxed’ and put in the objective, which gives (partial) Lagrangian:

Lvpp(x,A) = f(x0) +7Y Z 9a(Xa) + Z A ( Z ngt _ Xo,z)
aca\0 teT aca\0
* Lagrange dual function: D(A) == m|n|m|s)e(0 Lvpp(x, M)

XaE€Xa,X0€
* Lagrange dual function is separable so it can be solved in parallel:

D(A) := minimise (DO()\.)—i— ) Da().))

Xa€Xa,Xo € X0 acA4\0

* Distributed optimisation using price coordination
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* User agents solve: -
A) = minimi ;\'k net
Da(A) == m'n'er?ése ga(Xa) + Lier Xat
Xa
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Consumer-focused VPP (VPP 2.0): Solution approach

* User agents solve: o2 - Xnet
a a
D.(A) ‘= minimi MK ynet —
a(A) := minimise ga(Xa) + Lreq M3
a

* Aggregator solves:

/
&
Do(A) := minimise f(Xo) — Y seq MXo ¢ . .
XoE.Xo
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Consumer-focused VPP (VPP 2.0): Solution approach

* User agents solve: o - xpet
Da(A) == minimise ga(Xa) + X sca M x5e! — D ‘
X2€X, ’ & +
$'b o@/
* Aggregator solves: 2]
Do(A) := minimise f(Xo) — Y seq MXo ¢ . .
XoEXo
* Lagrangian multiplier update: .

AT =0 ok (Lacao0 X5 —Xo)
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Consumer-focused VPP (VPP 2.0): Solution approach

* User agents solve:

Iy
Da(A) := minimise ga(Xa) + Lieq Vx5S ‘ — B ‘
e » 7
>

* Aggregator solves:

Do(A) := minimise f(Xo) — Y seq MXo ¢ . .
XoEXo

* Lagrangian multiplier update: .
xk—H _ xk + (X,k (Zaeﬂ\o Xget _ XO)
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Consumer-focused VPP (VPP 2.0): Solution approach

* User agents solve: N - 1
Do(h) = minimise ga(x:) +Lier Mt (@) T (3
ae a ’
* by k4
* Aggregator solves: >
Do(A) := minimise f(Xo) — Y seq MXo ¢ ’ .
XoEXo
* Lagrangian multiplier update: ‘

xk—H _ xk + (X,k (Zaeﬂ\o Xget _ XO)

* Not so straightforward if the problem
contains integer variables

[5] S. Mhanna, A. C. Chapman, and G. Verbi¢, A fast distributed algorithm for large-scale demand response aggregation,” IEEE Transactions on Smart Grid, vol. 7, no. 4, pp.
2094-2107, July 2016.
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OPF: Problem formulation (VPP 3.0)

* OPF DER aggregation problem is formulated as (X = X U X, xg € X3):

minimise  f( X X,
miinise, fx) +72, oalx)

 Feasible set .X;, of network variables x, € X;, Vt € 7 is defined by:

* Power balance constraints Vi € A(, pgj = Gg,i =0 Vi€ A\ 0:
PPl = Vit Y, vj.i(gjcosBy + bysinj )
jexN

g d _ .
Q7 =afr = vie Y vit(gysin 6, — bjcos8j)
JEN

* Voltage and power constraints: v < v;; <V, p<p;<p,g<q:<q

* Problem is not decomposable because pg, = pgﬁt appears both in X, and X3
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OPF: Decomposition approach

» To decompose the problem, we create two copies of powers injected, p;, at each bus i where
agent ais located, and introduce the following coupling constraints:

Pit = Pits {Vae A\0|4 C 9\[}7 vte T

Vo 7 Vi V Vit Vijo
| ot | R | | _
B :

Sot Iot i 3 iﬁw
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OPF: Decomposition approach

* OPF problem in a general form:

minimise  f(xp) + X,
s 2 ( 0) 'Yaezﬂ:\oga( a)

subjectto p,=p., Vac 4

* Augmented Lagrangian:

L(Xn,Xa,l ) = f Xn + Z Ga xa)"’ Z ( a,t Pat ﬁa,t)‘i’g(pa,t*f)a,t)z)

acAa\0 teT
» Solution using Alternating Direction of Multipliers Method (ADMM):

X5+ = arg min L(x,, x5 05)
XpEXn
X = arg min L(x" x,, ML) Vaea\o
Xa€X,
A’/‘;+1 L A-k‘f‘p( k41 p/a<+1) Va e .Ql\O
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VPP evolution
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CONSORIT

Trial

Bruny Island Battery

$4.2M project ($2.9M ARENA)
2016-2019, 5 partners

32 PV-battery systems to solve a network
congestion problem

Network-aware coordination
Reward structures (non-linear pricing)
Social science research (customer acceptance)

s v ot i .
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Peer-to-peer energy trading




P2P vs pool market

O
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P2P energy market

* Prosumer form a local energy market
» Excess energy is shared with neighbours
* Limited to a single LV network

Trades can be facilitated by a third party
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P2P energy trading: Multi-bilateral economic dispatch

* Problem formulation:

maximise Y wi+ ) wp

p°.p° acs acB
subjectto  p; >0 VieS,jeB
pj <0 VieB, jeS$
p; < p5 <P Vaes
PR Vae
Pij = Pii v(i,j) € (S, B), ¥(j,7) € (B,5)

* Welfare of seller i € §: w} = Y c g T;pj — C; (p})
* Welfare of buyer j € B: wP = uP(pP) — Lics TP

[6] E. Sorin, L. Bobo, and P. Pinson, “Consensus-Based Approach to Peer-to-Peer Electricity Markets with Product Differentiation,” IEEE Transactions on Power Systems, vol. 34,
no. 2, Mar. 2019.
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P2P energy trading: Multi-bilateral economic dispatch

+ Sellers’ production cost: ¢(p®) = 3 (p°)* +Bp° +7°

* Buyers’ utility (d“ >0, gipg <0, u(0)= 0):

Bp— %(p°)? ito<pr < B
“(Pb):{ﬁ2 2( ) . B b 0
55 ifs<p

* The reciprocity constraint p; = pji implies: Y.ics Y jcaTiPj = Yjec 8 Lics NiPji

* The objective becomes:

maximise Y g2 Y )+ )Y cipy

P .p° acB acs i€SjeB

Product differentiation can be imposed by adding transaction cost } - s} -z Cjjpjj
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Auction-based P2P energy trading: Preliminary concepts

* Many-to-many market (cf. one-to-one and one-to-many)
» Set of agents 4 = 4, U Aq:

* Buyers 4,,b=1,2,...,Np

* Sellers 45, s=1,2,...,Ns Sellers 4 Buyers 4,

~

Trade ® € Q: (b, 5,0, Ty), Where 0, is transaction price TN P

and T, is amount of traded energy E : []1
* Buyers’ utility: ; >< i
I i —2 |

up(dy) 2 [ 7(%) ~ Locg, Oulla if Q & 2 '.“ ’, ,-’
o 0 otherwise '\ 3 Q=" =3,

Sellers’ utility:

us(gs) 2 Yoeq, CoTo —Vs(gs) if Qs ¢ O
s\9s) = 0 otherwise
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Auction-based P2P energy trading: Continuous double auction (CDA)

* CDA is a many-to-many auction, with multiple buyers and sellers (e.g. eBay)
* Buyers and sellers can make offers at any time during the trading period
* Requires an auctioneer, which can be an automated software agent

= Seller’ bids and buyers’ asks can be stored in a distributed ledger (e.g. Blockchain), resulting in
a fully decentralized marketplace

* Bid op = (b, 0y, Tp, t): offer from buyer b to purchase quantity , at a maximum unit price o,
* Ask og = (s, 0, T, t): offer from seller s to sell quantity s at a minimum unit price o
* Thin market: finding an ’optimal’ bidding strategy impossible

* Automated zero intelligence plus (ZIP) traders use an adaptive mechanism, which can give
performance very similar to that of human traders in stock markets

 Limit prices forbid the trader to buy or sell at a loss (ToU for buyers, FiT for sellers)
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Auction-based P2P energy trading: Continuous double auction (CDA)

* Bids and asks are queued and published in an order book
* The current best (uncleared) bid/ask called the outstanding bid/ask o}/o}

* Matching between new bid/ask and outstanding ask/bid results in a trade ® = (b, s, O, )

Order Book
120 S
335 21 ‘New ask

000 e

80|

5 60 spread
40|
20|
0 3511 3515 3519 3521 3531 3535 3555  35.56
Prices [$/kWh] Hbids D asks
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Auction-based P2P energy trading: Matching theory

Decentralised matching mechanism based on stable matching theory
* Agents bid in the market and choose bids/asks that maximise their utility
o Let Q% == Ugpen (25 N Q%) be the set of all optimal matches

* The set of trades 2 C 2 that maximises the utility of buyers is given by

p=argmax vp(dp) — Y 0gme p, VHE
D ey
* The set of trades 2 C 2 that maximises the utility of sellers is given by
Q = arg max { Y agme— vs(gs)} , Vse A4

s (IS 9N
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Matching theory-based P2P energy trading: Price adjustment

* Ascending auction: prices in the bidding can only increase

» Steps in each iteration: price adjustment, proposals, acceptance/rejection

* At each iteration k, let “at® = [0?, 03, .. fQ|] denotes the |Q| x 1 vector of bid prices from
each buyer b € 4, for each a trade ® € Q

* For each seller, s € 4, let “a® = [, 05, . .. ocfm] be the |Q2| x 1 vector of its ask prices for
each trade m €

Initialization. _ _ _ _ Price adjustment process____ _ _ _ _ _______
Buyers , | EEssssssssseEEEEE ST ifweQandw € Q,\ Q then
ng —arg max {n(ds) — ¥, c0, abm} Vb € AbJ if o%, > a2, then
" O* ag, — ag + okt O

else

L il

| |

i

w l

i

] eller. s ] ol ab 4 gkl
| T T Rk I PO A

p j R e S —————— J end if
7777777777 : T N

Matching?
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Auction-based P2P energy trading: Network permission structure

* Network impact of bilateral transactions estimated through sensitivity coefficients
* Voltage sensitivity coefficients (VSC)

AP, N vy e
A’VilziRe V, 87 - Update
‘ V/‘ P Estimate network state
voltage and estimation.
. . power flow Block high
* Power transfer distribution factors (PTDF) variations risk agent

APi API Agents
. . ; Received
i /
q),].,/ = In, - wlnl = o o continually
AP; AP asks A2, e

* Loss sensitivity factors (LSF)

WFloss _ ppe v V. o
p, ° 9P,

[7] J. Guerrero, A. C. Chapman, and G. Verbi¢, “Decentralized P2P energy trading under network constraints in a low-voltage network,” IEEE Transactions on Smart Grid, vol. 10,
no. 5, Sep. 2019.
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Comparative analysis




LV distribution test system

* 30 consumers (black)
20 prosumers with only 5kW PV ( )

50 prosumers with 5kW PV and 5kW/9.8 kW h battery
(green)

Distribution transformer (red)

Ausgrid Solar Home Electricity Data demand profiles g
Flat, ToU and FiT tariffs

[}
S}

o
1

1
ul
8

Price [¢/kWh]
—_ 8 B

3
T
-

o

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time
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Voltage variation without mitigation

* Voltage at each connection point as a function of net power injection
* Serves as an input to HEMS-OE

1.20

Node voltages dispersion

Voltage [pu]
2 o

N
o
(&)]

1.0 :
%.5 1.0 1.5 2.0 25 3.0 35 4.0 4.5 5.0
Net power injected by each user [kW]

49/59



Network congestion (transformer capacity): Flat vs. ToU tariff

Transformer capacity [%]
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Network voltages: Flat vs. ToU tariff

Flat tariff

Voltages Ievels at users' buses HEMS 112

°
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g2
2 §§ 1.04
1
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Exported energy and cash flows: Flat vs. ToU tariff

Flat tariff ToU tariff

Total energy exported by users Total energy exported by users

2000 T T 2000 T T
1500 1500
= =
= 1000 = 1000
= =,
500 500
0 0
HEMS HEMS-OE VPP OPF P2P  P2P-NPS HEMS HEMS-OE VPP OPF P2P  P2P-NPS

Users' incomes
T T

Users' incomes
T T

150 T T
125
100

50
25

HEMS HEMS-OE VPP OPF P2P  P2P-NPS HEMS HEMS-OE VPP OPF P2P  P2P-NPS
Users' expenses

Users' expenses
T T

250 T T
200 h 200

— 150 — 150

& &

100 h — 100
50 - h 50

0
HEMS HEMS-OE VPP OPF P2P  P2P-NPS HEMS HEMS-OE VPP OPF P2P  P2P-NPS
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Cash flow comparison

Flat tariff
HEMS HEMS-OE VPP OPF P2P P2P-NPS
Income [$] 104.29 91.85 104.24 103.77  52.71 127.38
Expenses [$] -217.83 -164.02 -150.59 -151.66 -107.31 -107.95
Net balance [$] -113.54 -72.17 -46.35  -47.89 -54.6 19.43
ToU tariff
HEMS HEMS-OE VPP OPF P2P P2P-NPS
Income [$] 104.29 91.85 104.35 104.3 45.9 136.13

Expenses [$] -165.63 -139.61 -1561.1 -134.23 -119.12 -121.39
Net balance [§] -61.34 -47.76 -46.75  -29.93  -73.22 14.74
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P2P transaction prices: Flat vs. ToU tariff

Price [¢/kWh]
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Critical difference analysis

Energy exported
Flat tariff ToU tariff
€D =0.901 €D =0.901
— !
6 5 4 3 2 1 6 5 4 3 2 1
vpp 4.72 r 101 p2p-Nps 342 J‘W" ol p2p
H%h’gls:ffﬂ 2818 s or  Obb 432 \ 2.729_{ems-oE
p2pP-Nps 4100 HEMS 4.09
Net cash flow balance
Flat tariff ToU tariff
CcD=0.754 CcD=0.754
6 5 4 3 2 1 6 5 4 3 2 1
PzP-NPsm—‘ I T ‘J—QHEMS PZP'NPSﬁM“ T "{'724529
Vpp4.043 28641Ems-0e  OPF436% — R
vpp3691 ] HEMS
SpF3.971 3157 pop HEMS. O 3,536 — |
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Conclusions

* DER coordination can take many shapes and forms
* Active network management is required to avoid network problems (DSO)

* Optimisation-based approaches:
* Communication between agents: massive random access, scheduling interval > 5min

* How to reward prosumers? Dual variables of the power balance equation?

* P2P approaches:
* Easily incorporated into existing market framework

* Require DSO to ensure network constraints are not violated

* PV curtailment depends on electrical distance (can be unfair)
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Fair DER Coordination with Volt-Var Control and PV Curtailment

Occurrences

Energy per day [kWh]

600
400

200
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0 12 0 L1 12 10 L1 12 10 L1 12 10 L1 12 10 L1 12 10 L1 12
Voltage [p.u.] Voltage [p.u.] Voltage [p.u.] Voltage [p.u.] Voltage [p.u.] Voltage [p.u.] Voltage [p.u.]
I Exported
h) [ Curtailed i) i k) 1) m) n)
20 40 20 40 20 40 20 40 20 40 20 40 20 40

Prosumers' index

Prosumers' index

Prosumers' index

Prosumers' index

Prosumers' index

Prosumers' index

Prosumers' index

[8] D. Gebbran, S. Mhanna, Y. Ma, A. C. Chapman, and G. Verbi¢, “Fair coordination of distributed energy resources with Volt-Var control and PV curtailment,” Applied Energy,

vol. 286, p. 116546, Mar. 2021.
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Hierarchical distributed power supply

Future digital grid
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Hierarchical distributed power supply

Future digital grid

* New technologies: DER, power electronics o f [0
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* New structures: microgrids, VPPs o g : N o[ .
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