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Power Distribution Grid Data
• Where does the data come from?

• SCADA (supervisory control and
data acquisition); Smart Meters;
Protection Devices; (micro)PMUs
(phasor measurement units)

• Measures voltage/current/frequency
at different resolutions

• What are smart meters?
• Different from conventional energy

meters
• Stay in your homes (not every home

has it)
• Measure energy and voltage
• 15/30/60-minute resolution

• What are barriers to apply big data
techniques in power industry?
• Critical infrastructure
• Conservative
• Confidentiality

SCADA
/PMU

Smart 
Meters

4

microPMU

ECpE Department

Fig. 1 Power distribution grid.



Our Real Data from Utilities
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• We have NDAs with following utilities: MidAmerican Energy, Alliant Energy, Cedar Falls Utilities, Algona
Municipal Utilities, Maquoketa Valley Electric Coop, Bloomfield, …

• We have multi-year PMU/SCADA/Smart Meter data from utility partners.

Data Type Utilities Measurement 
Locations Data Length Renewable 

Penetration
Historical 

Commands

AMI & SCADA MVEC 14,000 customers
24 months with 

continuous 
updating

~45% relative 
to peak Yes

AMI & SCADA Alliant 10 substations
24 months with 

continuous 
updating

~35% relative 
to peak Yes

AMI CFU 2,500 customers
18 months with 

continuous 
updating

~10% relative 
to peak Yes

PMU & SCADA MidAmerican 3 Substations
24 months with 

continuous 
updating

~40% relative 
to peak Yes

AMI & SCADA Algona 3,000 customers 30 months Unknown N/A

AMR & SCADA Bloomfield 1,329 customers 18 months 10% N/A
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Smart Meter Data Collection

6
K. K. Kee, S. M. F. Shahab and C. J. Loh, “Design and development of an innovative smart metering system with GUI-based NTL detection platform”
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• More AMI data and circuit models:

• Duration: 4 years (2014 - 2018)

• Measurement Type: Smart Meters and SCADA
• Detailed circuit models of all feeders in Milsoft and 

exact smart meter locations
• Data Time Resolution: 15 Minutes – 1 Hour
• Customer Type:

7

Exemplary Smart Meter Data from Utilities

Utilities Substations Feeders Transformers Total 
Customer

Customers 
with Meters

3 5 27 1726 9118 6631

Residential Commercial Industrial Other
84.67% 14.11% 0.67% 0.55%
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Smart Meter Measurement 
Data For Load Monitoring
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Sample Customer 
Energy Consumption

Sample Customer Voltage

Network Topology/Model 
Information 

Exemplary Smart Meter Data from Utilities
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An exemplary distribution system and associated SM data 
from our utility partner:

• 2 substations
• 4 load tap changing substation 

transformers (69/13.8 kV)
• 14 feeders (83 miles)
• 1489 overhead line sections
• 2582 underground cable 

sections
• 5 capacitor banks
• 361 switching devices
• >1000 distribution 

transformers
• 5212 customers

• Time period: 4 years (2015-
2018)

• 4321 residential customers
• 696 small commercial customers
• 146 large commercial customers
• 17 industrial customers
• 32 other customers
• Time resolution:

 Hourly – residential, small 
commercial

 15-min – large commercial, 
industrial

System Information SM Data

Exemplary Smart Meter Data from Utilities
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With permission from our utility partner, we share a real distribution 
grid model with one-year smart meter measurements [1]. This dataset 
provides an opportunity for researchers and engineers to perform 
validation and demonstration using real utility grid models and field 
measurements.

 The system consists of 3 feeders and 240 nodes and is located in 
Midwest U.S.

 The system has 1120 customers and all of them are equipped with 
smart meters. These smart meters measure hourly energy 
consumption (kWh). We share the one-year real smart meter 
measurements for 2017.

 The system has standard electric components such as overhead 
lines, underground cables, substation transformers with LTC, line 
switches, capacitor banks, and secondary distribution 
transformers. The real system topology and component 
parameters are included.

 You may download the dataset at: 
http://wzy.ece.iastate.edu/Testsystem.html , including system 
description (in .doc and .xlsx), smart meter data (in .xlsx), 
OpenDSS model, and Matlab code for quasi-static time-series 
simulation.

Test system diagram

The dataset has been 
viewed/downloaded more 

than 10,000 times since June 
12, 2019

Data Sharing



Smart Meter Data Quality Problem
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SM data quality problems:
• Outliers/Bad Data
• Missing Data
• Data Reset
• Repetitive Data

Reasons that cause SM data quality problems:
• Intermittent errors – large noise or temporary failures due to the 

communication failure or meter malfunction.

• Systematic errors – deterioration of measurements due to age, 
temperature, weather, and other environmental effects [2].

ECpE Department



Smart Meter Data Quality Problem
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Smart Meter Data Quality Problem
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Solution for Missing/Bad Data identification:
• Exclude the outage cases, the missing data is identified based on invariant record.

• A statistical outlier detector (e.g., z-score) is used to identify the bad data. 

The samples with z-score outside a range of 5 are identified as the bad data.

Solution for Missing/Bad Data Correction:
• The discontinuously missing/bad data is filled/corrected by taking an average of the 

two neighboring measurements. 

• The continuously missing/bad data is filled/corrected by taking an average of the 
1000 random samples generated from historical demand probability distributions. 
These probability distributions were developed for each hour using probability 
density estimators (e.g., kernel density estimation (24 PDFs in total) ).

How to identify and correct the missing/bad data?
Smart Meter Data Pre-processing

ECpE Department
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Smart Meter Data Analytics
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How Smart Meter Data Benefits Utility Operations? 
• The high-resolution data from SMs provides rich information 

to model consumption behaviors of consumers.
• Load profiling
• Load forecasting
• Peak contribution estimation
• Behind-the-metering generation modeling

• The large amount of customer metering data provides an 
unique opportunity for using data-driven techniques to 
improve distribution grid real-time monitoring and control.
• Distribution system state estimation 
• VVC/CVR
• Outage detection
• Demand response implementation

ECpE Department
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Fig. 2 Number of publication about SM data 
analytics [3].

Fig. 3 Number of publication in nine most popular 
journals in 2017 [3].

• In recent year, researchers have put considerable efforts in SM data 
analytics.

• The number of publications increases rapidly from 2012.

Smart Meter Data Analytics

ECpE Department



18Fig. 4 Taxonomy of SM data analytics [3].

Smart Meter Data Analytics
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What is Machine Learning?
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“Learning is any process by which a system improves performance 
from experience.”

- Herbert Simon

Computer
Data

Program
Output

Traditional Programming

Computer
Data

Output
Program

Machine Learning
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Types of Machine Learning
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Supervised learning
- Given training data with desired labels
- Classification (categorical labels)
- Regression (real-valued labels)

Unsupervised learning
- Given training data without desired labels 
- Data clustering
- Independent component analysis
- Probability distribution estimator
- Dimension reduction

Reinforcement learning
- Given a sequence of states and actions with rewards
- Output is a policy
- Policy is a mapping from states to actions
- Decision making Fig. 5 Artificial intelligence methods.

ECpE Department



Supervised Learning: Regression
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Regression Model:
• Given , , , , … , ,
• Learn a function to predict given 

• When is real-valued, this learning process is called regression.

Based on slide by Eric Eaton
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Supervised Learning: Classification
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Classification Model:
• Given , , , , … , ,
• Learn a function to predict given 

• When is categorical, this learning process is called classification.

Tiger Cat
Based on slide by Eric Eaton
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Unsupervised Learning: Clustering
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Clustering Model:
• Given , , … ,
• Represent a form of data summarization
• Discover hidden structures and patterns behind the ’s
• Group data with similar patterns together

Based on slide by Eric Eaton
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• Probabilistic techniques
• Identify the cluster with a certain probabilistic model whose 

unknown parameters have to be found.
• Assume the data were generated from a mixture of k

probability distributions.
• One advantage of probabilistic-based models is that they can 

be easily generalized to different types of data. 
• For numerical data, we may use a Gaussian mixture model.
• For categorical data, we may use a Bernoulli model.
• For sequence data, we may use a hidden Markov model.

24

Unsupervised Learning: Clustering
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• Distance-based techniques
• Optimize global criteria based on the distance between data.
• Distance-based algorithms can be generally divided into two 

types:
• Flat: e.g., k-Means, k-Medians.
• Hierarchical: e.g., agglomerative, divisive.

• Distance-based algorithms can be used with almost any data 
type when an appropriate distance function is created for that 
data type.

• For high-dimensional data, the quality of the distance 
functions reduces because of many irrelevant dimensions [5].

25

Unsupervised Learning: Clustering
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• Density-based techniques
• Optimize local criteria based on density distribution of 

data.
• Classical density-based clustering methods: Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) 
and Statistical Information Grid (STING)

• One advantage is that these methods can handle outliers
within the dataset.

• Hard to use in a discrete or non-Euclidean space and the 
density computations becomes significantly difficult to 
define with greater dimensionality.

26

Unsupervised Learning: Clustering
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Reinforcement learning

• Agent and environment interact at discrete time step: 
0,1…

• Agent observes state at step : ∈
• Produces action at step : ∈
• Gets resulting reward: ∈
• Gets resulting next state: 

Based on slide by Sutton & Barto

Fig. 6 Artificial intelligence methods [6].
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Reinforcement learning

Objective: Win the game!

State: Position of all pieces

Action: Where to put the 
next piece down

Reward: 1 if win at the end 
of the game, 0 otherwise

Based on slide by Fei-Fei Li & Justin Johnson & Serena Yeung

Fig. 7 The game of Go.

ECpE Department



One Commonly-used Machine Learning technique: 
Artificial Neural Network
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• Artificial neural network (ANN) is one of the most important machine learning 
techniques that simulates the learning mechanism of biological neural network. 

• Computation units in ANN are defined as neurons which are connected to one 
another through weights.

• An ANN computes a function of the inputs by propagating the computed values from 
the input neurons to the output neurons and using the weight as intermediate 
parameters [8].

Fig. 8: The synaptic connections between neurons. The image in (a) is from “The Brain:
Understanding Neurobiology Through the Study of Addiction [7]. The image in (b) is from “Neural Networks And Deep 
Learning [8].” 

ECpE Department
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Input to Hidden Layer
Hidden to Hidden Layer
Hidden to Output Layer

One Commonly-used Machine Learning technique: 
Artificial Neural Network

̅
	∀ ∈ 1,… , 1

̅
where, is the nonlinear activation function (i.e., sigmoid, hyperbolic tangent, or 
rectified linear unit.)

Fig. 9 Multi-layer ANN structure.
Fig. 10 Single layer ANN structure (perceptron) [8].

ECpE Department
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How can we determine the hyperparameters of ANNs (i.e., number of layers, the number 
of neurons, and the types of activation.) ?
• Manually or automatically select optimum hyperparameter combinations by using high 

computation complexity strategies, such as grid search and random search [9].

How can we ensure the generalization ability of ANNs ?
• In order to ensure the generalization ability of ANNs, different strategies are developed 

to prevent overfitting problem which occurs when the model shows low bias but high 
variance, such as early stopping, regularization, cross-validation, dropout, etc.

ANNs can be utilized to perform the supervised learning (regression/classification), 
the unsupervised learning (clustering, generative model), and the reinforcement 
learning (deep reinforcement learning).

A deep neural network (DNN) is an ANN with multiple layers between the input and 
output layer.

One Commonly-used Machine Learning technique: 
Artificial Neural Network

ECpE Department
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Case Study I – A Multi-
Timescale Data-Driven Approach 
to Enhance Distribution System 

Observability

33
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Distribution system state estimation (DSSE) is the process of 
inferring the values of distribution system’s state variables using a 
limited number of measured data at certain locations in the system 
[10]. 

Fig. 11 DSSE function in smart grid environment [10].

Case Study I: Background

ECpE Department
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At presents, distribution systems can be divided into three groups 
according to the observability: fully observable systems, partially 
observable systems and fully unobservable systems. 

Fig. 12 Distribution systems with different observability.

Case Study I: Background

ECpE Department



Case Study I: Overview Framework
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Fig. 13 Overall structure of the proposed method. 

ECpE Department

Problem Statement: 
Inferring hourly consumption data from customer 
monthly billing information as pseudo-measurements

Challenges:
• Loss of correlation between consumption time-

series at different time-scales
• Unobserved customers’ unknown typical 

behaviors

Solution Strategy: 
Extending observability from observed customers to 
unobserved customers

Proposed Solution:
• Using data clustering for capturing customer 

typical behaviors
• Multi-timescale load inference (stage by stage 

inference chain)
• Using state-estimation-based Bayesian learning 

for inferring unobserved customers’ typical 
behaviors
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• Hourly load variations cannot be directly observed at the monthly level.

• An efficient inference model needs to keep the high correlation level between 
different time resolution data.

Fig. 14 Correlation between different customers’ smart meter and 
correlation between Consumption at Different Time-Scales.

ECpE Department

Evidence from Data: How to maintain high correlation 



Using Observed Customers’ Data for Training Multi-
Timescale Load Inference Chain Models

38

EM – Monthly Consumption
EW – Weakly Consumption
ED – Daily Consumption
EH – Hourly Consumption

 Extends observability using data of customers with smart 
meters to obtain a stage-by-stage consumption transition 
process (Maintains High Correlation!)

Fig. 15 Multi-timescale learning structure.
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• Layer I maps total monthly consumption, , to the set 
of weekly consumption values 
using ANNs connected in series.

• To capture the temporal correlation between 
consumption behaviors, each week’s estimated 
consumption is also fed to the next ANN corresponding 
to the following week’s consumption.

• Above idea is generalized to all the layers of the 
proposed multi-timescale load inference method.

ECpE Department

Multi-Timescale Load Inference Chain Model Description 
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min

∆
where, is the combination parameter at iteration , is the set of learning parameters, 

is the training objective function’s Jacobian, is the identify matrix, is the error 
vector, is the matrix transposition operation, and ∆ defines the learning parameter 
updates at each iteration. 

• The Levenberg-Marquardt (LM) backpropagation method is used to update the ANN 
weight and bias variables [24].

• The training objective function and the update equation of LM algorithm can be written 
as:

• In each iteration, the value of is updated based on the change of approximated 
performance index . If a smaller value is obtained, the is divided by some factor 

1. Otherwise, is multiplied by for the next iteration.

ECpE Department

How to Update the ANN Weight and Bias



41

• For each ANN, the dataset is randomly 
divided into three separate subsets for 
training (70% of the total data), 
validation (15% of the total data), and 
testing (15% of the total data).

• Early stopping mechanism and noise 
injection strategy are utilized to reduce 
the overfitting in the training process.

• Several hyper-parameters are 
calibrated using the grid search 
methods.
• The number of hidden layer.
• The number of neurons.
• The value of learning rate.

Fig. 16 Calibration result for ANN. 

ECpE Department

Hyperparameter Calibration Results
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Sensitivity Analysis of Observability

Fig. 17 Performance of quantifying learning reliability. 



Observed Customer Daily Load Pattern Bank 
Formation and Training Multi-Timescale Models
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• Problem: Performance of Multi-
timescale Chain Models Highly 
Depend on Typical Daily Consumption 
Patterns of Different Customers

• Solution: Assign a Multi-Timescale 
Model to Each Typical Load Behavior 
Pattern Discovered From Observed 
Loads (Method: Spectral Clustering)

• Train Load Inference Chain Models 
Using the Data of Observed Customers 
Belonging to Each Cluster (Ci)
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• Spectral clustering can work with arbitrary complex data, because it does not 
make assumptions on the shapes of clusters. 

• Spectral clustering is able to handle the high-dimensional time-series load 
data, because it leverages the inherent redundancy of the entire distance 
matrix and enhances distance representations of newly embedded data in a 
lower dimensional space.

• Unlike the standard spectral clustering that relies on a scaling parameter to 
measure the similarity between two data samples, a local parameter strategy is 
applied in our work. This strategy not only provides a way for automatic pick 
the but also effectively exploits the local statistics for handling multi-scale 
data.

Advantages of the spectral clustering:

ECpE Department

Spectral Clustering
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Using the spectral clustering to develop the consumption pattern 
bank can be summarized as a three-step algorithm:

1)  The first step is to transform SM dataset into an undirected similarity 
graph .

2)  The data points are embedded in a space, in which the clusters 
are more observable, with the use of the eigenvectors of the graph 
Laplacian. 

3) A classical clustering algorithm (e.g., k-mean) is applied to 
partition the embedding.

ECpE Department

Spectral Clustering
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Fig. 18 Example illustrating three steps of spectral clustering [21].

Fig. 19 Spectral clustering on toy datasets [22].

Undirected Graph G

ECpE Department

Spectral Clustering
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(a)

(b)

• The spectral clustering is 
utilized to classify different 
load shapes and to create the 
consumption pattern banks.

• Fig. 17(a) shows the typical 
load patterns for different types 
of customers for weekends.

• Fig. 17(b) shows the typical
load patterns for different types 
of customers for weekdays.

• Red represents Industrial, blue 
represents commercial, and 
black represents residential 
customers.

Fig. 20 Typical pattern banks for weekday and weekend.

ECpE Department

Numerical Results: Customer Behavior Pattern Bank



Unobserved Customers’ Pattern Identification and Hourly 
Consumption Inference
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• Basic Idea: Pick the Cluster that has the 
Best State Estimation Performance for 
Each Customer

• Methodology: Assign and Update 
Probability Values to Different Clusters 
Based on State Estimation Residuals 
(Recursive Bayesian Learning)

• Outcome: Pick the Most Probable 
Cluster for Each Unobserved Customer 
and Use its Corresponding Chain Model 
for Hourly Load Inference
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BCSE algorithm:

• Three-phase feeder model
• Use branch current magnitudes 

and phase angles as state 
variables

• Insensitive for branch impedance
• Better performance in computation 

speed and memory usage 
• Weighted Least Square (WLS) 

estimator

min Σ

Σ
Δ Σ

Δ
Note: z is the real measurement, x is the state variable, h(.) is the 
nonlinear measurement function, Σ is the weight matrix that represents 
the users confidence in the measured data

ECpE Department

Branch Current State Estimation

Fig. 21 A 18-node real utility feeder case.
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• The probability of each typical load pattern is computed using the residuals of the 
BCSE algorithm and the recursive Bayesian learning model. 

• The residuals are calculated by comparing the real measurements of several feeder-
level devices and the estimated values from the BCSE.

• Applying the Bayes theorem and assuming a Gaussian distribution for measurement 
error, a recursive expression for updating the probability of each load pattern over time 
can be written as [25]:

Where, is the iteration count, , is the residual vector of the i’th class with respect to 
j’th customer and is computed by the corresponding state and real measurement 
vectors, Φ is a diagonal matrix that represents the variances corresponding to the 
branch current real/imaginary part residuals.

,

exp 1
2 , ∗ Φ ∗ , ∗ ,

∑ exp 1
2 , ∗ Φ ∗ , ∗ ,

ECpE Department

BCSE-aided Recursive Bayesian Learning Model
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Fig. 22 Inferring the hourly demand of an unobserved 
residential load in one month (average estimation 

error ≈ 8.5% of total energy)

Fig. 23 Impact of accurate consumption pattern 
identification on the accuracy of the inference 
(industrial load patterns are close and stable)

Numerical Results: Unobserved Individual 
Customer Hourly Load and Pattern Inference 



Numerical Results: DSSE Performance Using the 
Proposed Method
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Fig. 24 BCSE-based state estimation performance 
using the proposed load inference model.

• Apply the MAPE criterion to evaluate 
the accuracy of BCSE based on the 
proposed pseudo load estimation.

• The MAPE values for the voltage 
magnitude and phase angle are around 
0.704% and 0.24%, respectively.

• In the previous work [11], the MAPE 
values are around 0.73% and 0.36%, 
respectively with 20% maximum 
Gaussian error for  pseudo 
measurements.

ECpE Department
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Case Study II - A Data-Driven 
Framework for Assessing 

Cold Load Pick-up Demand in 
Service Restoration
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What is CLPU?
• In distribution systems, thermostatically controlled loads (TCLs) are

diversified during normal operation, and undiversified in restoration

Outage

Loss of 
diversity

Loss of 
diversity

• It is necessary to assess historical CLPU demand, and extract useful
information to predict CLPU demand in future restorations

• Serious consequences: restoration failure, transformer aging and
overloading, and unacceptable voltage drops

• The phenomenon of losing load diversity is called Cold load pick-up
(CLPU) and can cause considerable demand increase

55
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• Typical exponential CLPU model

• CLPU ratio is used to predict CLPU demand in future restorations 

Real CLPU at the feeder level

To be 
predicted

Observed

	

To be 
estimated

Observed

-- Normal demand    

-- Undiversified demand at the time of restoration    

-- Estimated normal demand    
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Literature Review
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• Previous works have mainly focused on model-driven
methods to obtain CLPU ratios [1-3]
 Use thermostatically controlled load models and thermal

parameters to model houses

• Drawbacks:
 Need to collect detailed house-level thermal parameters

 Need to model individual thermostatically controlled load

[1] K. P. Schneider, E. Sortomme, S. S. Venkata, M. T. Miller, and L. Ponder, “Evaluating the magnitude and
duration of cold load pick-up on residential distribution using multi-state load models,” IEEE Trans. Power Syst.,
vol. 31, no. 5, pp. 3765–3774, Sep. 2016.
[2] D. Athow and J. Law, “Development and applications of a random variable model for cold load pickup,”
IEEE Trans. Power Del., vol. 9, no. 3, pp. 1647–1653, Jul. 1994.
[3] E. Agneholm and J. Daalder, “Cold load pick-up of residential load,” IEE Proceedings - Generation,
Transmission and Distribution, vol. 147, no. 1, pp. 44–50, Jan. 2000.
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Overall Framework
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 Obtain CLPU ratio at feeder-level,
using LS-SVM prediction
approach

 Determine customer demand
increase, using GMM and
probabilistic reasoning

 Obtain useful statistics at feeder-
and customer-level to fully
quantify CLPU demand

-- Feeder-level normal demand    

-- Undiversified feeder-level demand at 
-- Estimated feeder-level normal demand at 

-- Temperature

, 	-- Historical customer-level normal demand
-- Historical customer contribution factor

, -- Joint distribution of  and 

, -- Customer demand at the time of restoration
-- Estimated customer demand increase due to CLPU

∗, ∗ -- Trained model Parameters
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Feeder-Level CLPU Demand Assessment

59

• Objective: Obtain CLPU Ratios from historical outage events, 
and develop a CLPU ratio regression model

• Methodology: Estimate the feeder-level normal demand 
assuming the outage did not happen 

• Algorithm: Least-squares support-vector machines (LS-SVM)
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LS-SVM
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• What is Support Vector Machine (SVM)?
 It is a supervised machine learning algorithm
 It can be used for classification or regression

• How does SVM work?
Let’s start with classification.
In this scenario, 
 hyper-plane “B” can successfully 

segregate the two classes.
 hyper-plane “A” and “C” cannot.

• Why do we choose LS-SVM?
 Advantages: good generalization capability, and low susceptibility 

to local minima, etc.
Let’s start with SVM.



ECpE Department

LS-SVM
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• How does SVM work?

In this scenario, hyper-planes A, B and C all 
can segregate the two classes.

Which hyper-plane is best?

• By drawing perpendicular lines, we can know that 
maximizing the distances between nearest point 
and hyper-plane can determine the optimal hyper-
plane. 

• This distance is called margin, the nearest points 
are called support vectors. 

• A large margin means less chance of 
misclassification, and this is what we want.
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LS-SVM
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• How does SVM work?

In this scenario, the previous 
linear hyper-plane cannot work.

What can we do?

Solution: Introduce higher-order features. 
For instance, instead of using the original p
features:

, , … , ,
we enlarge the feature space to 2p:

, , , , … , , .
In general, a kernel, which has a form of

, is used to enlarge feature space.           ,
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LS-SVM
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• How does SVM work?
Now we extend the classification to regression.
• Similarly, for regression, we use support vectors to determine an

optimal margin.

Liner regression Nonliner regression
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LS-SVM
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• How does SVM work?
• In our problem, we have

 A regression model: 

 w and b are regression parameters, where 	 ,…,



 denotes the nonlinear transformation. 

Regression 
model

Previous demand 

Current temperature
Current demand

• To train the regression model, first, we define:

, … , ,
where, denotes the normal demand at time 1, nlag is the 
time lag, is the temperature at time t.

 	denotes	the	normal	demand	at	time	
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LS-SVM
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• Then, maximizing the margin is formulated as

min
,
		

s. t.	 	 , 1, … ,

where, , … , , . 

• By introducing a “Least Square” term, we obtain LS-SVM

min
, ,

		 ∑

. . 		 , 1, … ,

where, denotes the estimation residual, is a regularization constant.
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LS-SVM
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• The solution is given by

∗
∗

0				Ω
1 0

where,

, … , , 1, … , 1 , , … , ,	

• To solve this optimization problem, the Lagrangian, L, is constructed as 
a function of regression parameters:

L	 , , ; J ,

where, are Lagrange multipliers. 

, 	
|| ||

, 				 , 1, … , , is the width of 
Gaussian Kernel. 
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∗ , ∗

• Then, the normal demand at the time of restoration is estimated as

where, , … , , , ∗ , … ,
∗

, ,
is the time of restoration, ∗ is the optimal time lag which is obtained 
by grid search.

• Finally,  we calculate the CLPU ratio via 

when, is the recorded undiversified feeder demand at . E{·} denotes the 
empirical averaging operator, this is based on the consideration that 
follows a distribution due to estimation errors.



ECpE Department

Feeder-Level CLPU Ratio Result

68

Developed CLPU ratio regression model

 CLPU ratio increases and saturates with outage duration
 CLPU ratio is sensitive to ambient temperature

Expected CLPU ratio with respect to
temperature and outage duration
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At the feeder level, we obtained historical CLPU ratios. Can we apply the 
same approach to the customer level?

• Individual customer consumption can 
be quite stochastic.

• Considering this uncertainty, the 
feeder-level approach cannot be 
directly applied to customer-level 
demand estimation.

• We seek to use GMM and
probabilistic reasoning to estimate 
the distribution of normal customer 
demand at the time of restoration.
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• Objective: Quantify the CLPU demand increase caused by 
outage.

• Methodology: Estimate the distribution of customer-level 
normal demand assuming the outage did not happen 

• Algorithm: Gaussian mixture model (GMM) and probabilistic 
reasoning



Why do we need GMM?
• The estimated feeder-level normal demand, , follows a distribution due 

to regression residuals.
• The historical customer contribution factor,	 	,	also follows a distribution 

due to the uncertainty of customer demand. Note that historical	 	is 
calculated by 	 	=	 , 	/	 	.

• The bivariate pair, , , forms a 2-dimensional empirical histogram.
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• This 2-dimensional histogram does 
not strictly fit a single distribution 
model. Therefore, a mixture model 
should be used to represent the 
empirical histogram. 

• In our problem, we used Gaussian 
mixture models (GMM).
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How does GMM work?
• It approximates arbitrary probability density functions (PDFs) using a 

weighted summation of Gaussian density components

The 1-dimension empirical histogram (bars) is approximated
by two Gaussian density components (yellow and green lines)
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• For our problem, we approximate the joint 2-dimensional PDF of and 
, using multiple Gaussian functions

Empirical histogram GMM-based estimation
-- Estimated feeder-level normal demand at -- Historical customer contribution factor

, ,

where, denotes a bi-variate Gaussian function, is the weight 
corresponding to each , is the total number of Gaussian functions. Note 
that and the parameters in are determined by the maximum likelihood 
(ML) estimation, using the empirical histogram.  
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• Note that the estimated customer-level normal demand, ̂ , is determined by
̂

• Until now, we know the joint distribution of 	and	 , that is, , , 
therefore, we can compute the distribution of the estimated customer-level 
normal demand using

̂ ,
∗

̂ , ,
1

• Finally, the distribution of demand increase of the ith customer is 
calculated as

,

where, , is the actual customer demand at the time of restoration, which 
is recorded by smart meter.  

Estimate customer-level normal demand and demand increase?
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Distributions of aggregate demand 
increase of a group with different 
number of customers

(a) Distribution of estimated customer 
normal demand. (b) Distribution of 
customer demand increase.



ECpE Department

Customer-level Result

76

Expected customer contribution to CPLU 
demand as a function of outage duration and 

ambient temperature in summer
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• We have archived a large amount of real smart meter data from 
our utility partners, which provides an unique opportunity to 
improve distribution grid modeling.

• The development of machine learning techniques provides a 
useful tool to process and analyze smart meter data.

• A data-driven load inference method is developed for enhancing 
distribution system observability.

• We have used smart meter data to model the cold load pick up, 
which can help utilities design restoration plans.



Reference:

79

[1] F.  Bu,  Y.  Yuan,  Z.  Wang,  K.  Dehghanpour,  and  A.  Kimber, "A  time-series distribution test system based on real utility data," North American 
Power Symposium, pp. 1–1, Oct. 2019.
[2] Zhong, Shan, and Ali Abur, "Combined state estimation and measurement calibration," in IEEE Trans. Power Syst., vol. 20, no. 1, pp. 458–465, Feb., 
2005.
[3] Y. Wang, Q. Chen, T. Hong and C. Kang, "Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges," in IEEE Trans. on 
Smart Grid, vol. 10, no. 3, pp. 3125-3148, May 2019.
[4] Zaharchuk G, Gong E, Wintermark M, et al. "Deep learning in neuroradiology,“ American Journal of Neuroradiology, 39(10), pp.1776-1784, 2018.
[5] Charu C. Aggarwal and Chandan K. Reddy. " Data Clustering: Algorithms and Applications, " 2013.
[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,2016. http://www.deeplearningbook.org.
[7] National Institutes of Health. "The brain: Understanding neurobiology through the study of addiction," 2007.
[8] Aggarwal, Charu C. "Neural networks and deep learning," Cham: Springer International Publishing, 2018.
[9] J.  Bergstra and  Y.  Bengio,  “Random  search  for  hyper-parameter  opti-mization,”Journal of Machine Learning Research, vol. 13, pp. 281–305,Feb. 
2012.
[10] K. Dehghanpour, Z. Wang, J. Wang, Y. Yuan and F. Bu, "A Survey on State Estimation Techniques and Challenges in Smart Distribution Systems," 
in IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 2312-2322, March 2019.
[11] H. Wang and N. N. Schulz, " A revised branch current-based distribution system state estimation algorithm and meter placement impact, " IEEE Trans. 
Power Syst., vol. 19, no. 1, pp. 207–213, Feb. 2004.
[12] Energy Information Administration. (2017) Annual Electric Power Industry Report. [Online]. Available:https://www.eia.gov/electricity/data/eia861/
[13] A. Angioni, T. Schlosser, F. Ponci, and A. Monti, “Impact of pseudo-measurements from new power profiles on state estimation in low-voltage grids,” 
IEEE Trans. Instrum. Meas., vol. 65, no. 1, pp. 70–77, Jan. 2016.
[14] Y. Li and P.J. Wolfs,“A hybrid model for residential loads in a distribution system with high PV penetration,” IEEE Trans. Power Syst., vol. 28 ,no. 3,
pp. 3372–3379, Aug. 2013.
[15] B. Stephen, A. J. Mutanen, S. Galloway, G. Burt, and P. Jrventausta,“Enhanced load profiling for residential network customers,” IEEE Trans. Power 
Del., vol. 29, no. 1, pp. 88–96, Feb. 2014
[16] D. Gerbec, S. Gasperic, I. Smon, and F. Gubina, “Allocation of the load profiles to consumers using probabilistic neural networks,” IEEE Trans. Power 
Syst., vol. 20, no. 2, pp. 548–555, May 2005. 
[17] E. Manitsas, R. Singh, B.C. Pal, and G. Strbac, “Distribution system state estimation using an artificial neural network approach for pseudo measurement 
modeling,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1888–1896, Nov. 2012
[18] Y. R. Gahrooei, A. Khodabakhshian, and R. A. Hooshmand, “A new pseudo load profile determination approach in low voltage distribution  networks,” 
IEEE Trans. Power Syst., vol. 33, no. 1, pp. 463–472, Jan.  2018. 

ECpE Department



Reference:

80

[19] J. A. Jardini, C. M. V. Tahan, M. R. Gouvea, S. U. Ahn, and F. M. Figueiredo, “Daily load profiles for residential, commercial and industrial low 
voltage consumers,” IEEE Trans. Power Del., vol. 15, no. 1, pp. 375–380, Jan. 2000.
[20] D. T. Nguyen, “Modeling load uncertainty in distribution network monitoring,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2321–2328, Sep. 2015.
[21] Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for nonlinear dimensionality reduction." science 290.5500 
(2000): 2319-2323.
[22] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” Proceedings of the 17th International Conference on Neural Information Processing 
System, pp. 1601–1608, 2004.
[23] U.Luxburg, “A tutorial on spectral clustering,”Statistics and Computing,vol. 17, no. 4, pp. 395–416, Mar. 2007.
[24] C. L. et al., “Levenbergmarquardt backpropagation training of multilayerneural networks for state estimation of a safety-critical cyber-
physicalsystem,” IEEE Trans. Ind. Inf, vol. 14, no. 8, pp. 3436–3446, Aug. 2018.
[25] R. Singh, E. Manitsas, B. C. Pal, and G. Strbac, “A recursive Bayesian approach for identification of network configuration changes in 
distribution system state estimation,” IEEE Trans. Power Syst., vol. 25, no. 3,pp. 1329–1336, Aug. 2010.
[26] D. Athow and J. Law, “Development and applications of a random variable model for cold load pickup,” IEEE Trans. Power Del., vol. 9, no. 3, pp. 
1647–1653, Jul. 1994.
[27] W. W. Lang, M. D. Anderson, and D. R. Fannin, “An analytical method for quantifying the electrical space heating component of a cold load pick up,” 
IEEE Trans. Power App. Syst., vol. PAS-101, no. 4, pp. 924–932, Apr. 1982.
[28] K. P. Schneider, E. Sortomme, S. S. Venkata, M. T. Miller, and L. Ponder, “Evaluating the magnitude and duration of cold load pick-up on residential 
distribution using multi-state load models,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3765–3774, Sep. 2016.
[29] V. Kumar, R. Kumar H. C., I. Gupta, and H. O. Gupta, “DG integrated approach for service restoration under cold load pickup,” IEEE Trans. Power 
Del., vol. 25, no. 1, pp. 398–406, Jan. 2010.
[30] A. Al-Nujaimi, M. A. Abido, and M. Al-Muhaini, “Distribution power system reliability assessment considering cold load pickup events,” IEEE Trans. 
Power Syst., vol. 33, no. 4, pp. 4197–4206, Jul. 2018.
[31] B. Chen, C. Chen, J. Wang, and K. L. Butler-Purry, “Multi-time step service restoration for advanced distribution systems and microgrids,” IEEE Trans. 
Smart Grid, vol. 9, no. 6, pp. 6793–6805, Nov. 2018.
[32] A. Arif et al., “Optimizing service restoration in distribution systems with uncertain repair time and demand,” IEEE Trans. Power Syst., vol. 33, no. 6, 
pp. 6828–6838, Nov. 2018.
[33] J. C. Lpez, J. F. Franco, M. J. Rider, and R. Romero, “Optimal restoration/maintenance switching sequence of unbalanced three-phase distribution 
systems,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6058–6068, Nov. 2018.
[34] J. Aubin, R. Bergeron, and R. Morin, “Distribution transformer overloading capability under cold-load pickup conditions,” IEEE Trans. Power Del., vol. 
5, no. 4, pp. 1883–1891, Oct. 1990.
[35] F. Edstrom, J. Rosenlind, K. Alvehag, P. Hilber, and L. Soder, “Influence of ambient temperature on transformer overloading during cold load pickup,” 
IEEE Trans. Power Del., vol. 28, no. 1, pp. 153–161, Jan. 2013.

ECpE Department



Reference:

81

[36] V. Gupta and A. Pahwa, “A voltage drop-based approach to include cold load pickup in design of distribution systems,” IEEE Trans. Power Syst., vol. 
19, no. 2, pp. 957–963, May 2004.
[37] J. J. Wakileh and A. Pahwa, “Optimization of distribution system design to accommodate cold load pickup,” IEEE Trans. Power Del., vol. 12, no. 1, pp. 
339–345, Jan. 1997.
[38] R. E. Mortensen and K. P. Haggerty, “A stochastic computer model for heating and cooling loads,” IEEE Trans. Power Syst., vol. 3, no. 3, pp. 1213–
1219, Aug. 1988.
[39] C. Chong and R. P. Malhami, “Statistical synthesis of physically based load models with applications to cold load pickup,” IEEE Power Eng. Rev., vol. 
PER-4, no. 7, pp. 33–33, Jul. 1984.
[40] K. P. Schneider, J. C. Fuller, and D. P. Chassin, “Multi-state load models for distribution system analysis,” IEEE Trans. Power Syst., vol. 26, no. 4, pp. 
2425–2433, Nov. 2011.
[41] E. Agneholm and J. Daalder, “Cold load pick-up of residential load,” IEE Proc.—Gener., Transmiss. Distrib., vol. 147, no. 1, pp. 44–50, Jan. 2000.
[42] K. Dehghanpour, Z. Wang, J. Wang, Y. Yuan, and F. Bu, “A survey on state estimation techniques and challenges in smart distribution systems,” IEEE 
Trans. Smart Grid, vol. 10, no. 2, pp. 2312–2322, Mar. 2019.
[43] M. Espinoza, J. A. K. Suykens, R. Belmans, and B. D. Moor, “Electric load forecasting: Using kernel based modeling for nonlinear system 
identification,” IEEE Control Syst. Mag., vol. 27, no. 5, pp. 43–57, Oct. 2007.
[44] National Oceanic and Atmospheric Administration, 2018. [Online]. Available: https://www.noaa.gov/
[45] J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor, and J. Vandewalle, Least Squares Support Vector Machines. Singapore: World Sci., 2002. 
[46] Z. S. Hosseini,M.Mahoor, and A. Khodaei, “Ami-enabled distribution network line outage identification via multi-label SVM,” IEEE Trans. Smart Grid, 
vol. 9, no. 5, pp. 5470–5472, Sep. 2018.
[47] H. Jiang, Y. Zhang, E. Muljadi, J. J. Zhang, and D. W. Gao, “A shortterm and high-resolution distribution system load forecasting approach using 
support vector regression with hybrid parameters optimization,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3341–3350, Jul. 2018.
[48] Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of smart meter data analytics: Applications, methodologies, and challenges,” IEEE Trans. Smart 
Grid, vol. 10, no. 3, pp. 3125–3148, May 2019.
[49] A. G. Glen, L. M. Leemis, and J. H. Drew, “Computing the distribution of the product of two continuous random variables,” Comput. Statist. Data 
Anal., vol. 44, no. 3, pp. 1–14, Jul. 2002.
[50] R. Singh, B. C. Pal, and R. A. Jabr, “Statistical representation of distribution system loads using Gaussian mixture model,” IEEE Trans. Power Syst., 
vol. 25, no. 1, pp. 29–37, Feb. 2010.
[51] G. Valverde, A. T. Saric, and V. Terzija, “Stochastic monitoring of distribution networks including correlated input variables,” IEEE Trans. Power Syst., 
vol. 28, no. 1, pp. 246–255, Feb. 2013.
[52] D. A. Reynolds, “Gaussian mixture models,” in Encyclopedia of Biometrics, 2nd ed. New York, NY, USA: Springer, 2015, pp. 827–832.
[53] S. A. Billings, Nonlinear System Identification: NARMAX Methods in the Time, Frequency, Spatio-Temporal Domains. Hoboken, NJ, USA: Wiley, 
2013.

ECpE Department



Reference:

82

[54] J. Suykens, J. D. Brabanter, L. Lukas, and J. Vandewalle, “Weighted least squares support vector machines: Robustness and sparse approximation,” 
Neurocomputing, vol. 48, no. 1, pp. 85–105, Jun. 2002.
[55] S. Bashash and H. K. Fathy, “Modeling and control of aggregate air conditioning loads for robust renewable power management,” IEEE Trans. Control 
Syst. Technol., vol. 21, no. 4, pp. 1318–1327, Jan. 2013.
[56] V. V. Petrov, Sums of Independent Random Variables. New York, NY, USA: Springer-Verlag, 1975.
[57] J. Beirlant, E. Dudewicz, L. Gyorf, and E. van der Meulen, “Nonparametric entropy estimation: An overview,” Int. J. Math. Statist. Sci., vol. 6, pp. 17–
39, Jul. 2001.

ECpE Department



ECpE Department

83

Thanks!
Q & A


