

Unlimited Benefit from Grid Edge Synchronized Measurement Data

Yilu Liu (Liu@utk.edu) University of Tennessee and Oak Ridge National Laboratory

Partial list of UTK/ORNL sensor locations in US/Canada

Worldwide Monitor Deployment Map (UTK)

Disturbance Propagation Playback 2-26-08

Contact Link: http://fnetpublic.utk.edu/index.html

On-line Event Location -TDOA

Sample automatic event alert

Event Estimation:

640MW EI Generator Trip at 20:28:00UTC, on 09/09/2014 near Paradise power plant (SERC) ((Muhlenberg,KY,42337; Latitude: 37.2578, Longitude: -86.9792)

PLEASE KEEP THIS INFORMATION CONFIDENTIAL.

Frequency Disturbance and Oscillations

7

Typical Three area oscillates in El

11/09/2013 12:12:32 UTC

8

Frequency: 0.217Hz

Ambient Online Oscillation Monitor

fnettest.eecs.utk.edu

FNET Mode Estimation Result

INTERCONNECTION: WECC \$ FDR: 689 \$ @

(Duration for 5mins; Select Region to Zoom In, Double Click to Return Normal)

Frequency of Mode #1 (0.1-0.3Hz)					Frequency of Mode #2 (0.3-0.5Hz)				
0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.1 0.05 0	******				0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.1 0.1 0.05 0	**********	******	*******	P
13:58	13:59	14:00	14:01			13:58	13:59	14:00	14:01
Damping Ratio of Mode #1 (%)				Damping Ratio of Mode #2 (%)					
						1		TOTAL CONTRACTOR OF THE OWNER	

Measurement Derived Grid Model for Oscillation Damping

- Real-time data-driven model based oscillatory mode representation
- Apply to NAPA, TERNA, and Saudi Grids
- Demonstrate on CURENT HTB

Realtime update Grid transfer functions

Control effect on CURENT HTB

Case Study - Terna Grid Oscillations

- Developed the controller using measurement-driven model •
- Terna: TSO in Italy •

0.25Hz oscillation detected by FNET/GridEye on May 21, 2018

Tunis

00) Occasio Inst Occas

Algiers

Z1: Bosnia & Herzegovina

11

Case Study - NYPA Grid

- Transfer function model was constructed by utilizing measurements.
- Utilized the measurement-driven model to design oscillation damping controller.

Oscillation detected by FNET/GridEye

Source: NYISO

Case Study - SEC Grid

- Modal analysis (five operation areas)
- Transfer function model development & controller design

\checkmark Detection of forced oscillation

Step 1) Detection of abnormal envelope height of phase angle

Step 2) Find the dominant mode.

✓ Confirmed Forced Oscillation Cases

B. Start from 2016-06-17 07.12.40, El

Recent Major Forced Oscillations

A Comprehensive Method to Mitigate Forced Oscillations

- Source Location + Forced
 Oscillation Control
 - A new source location algorithm based on mode angle: Not require system topology information and power/current measurements, easy for implementation.
 - Modulate active power of utility-scale BESSs to reduce the forced oscillation energy to a safe level, leave sufficient time for source location.

Procedure to mitigate forced oscillation

Source Location Algorithm Based on Mode Angle

- Mode angle: Angle of the oscillating phasor at a specific time.
- The source area usually has the most leading mode angle, and mode angle gradually decrease from source area to other areas.

Mode angle: PMU1(red) is leading PMU2(blue) by 35°

Validation Using Simulated Forced Oscillation Events

 Simulation examples (<u>Dark red</u> area has most leading mode angle.

Source locates in TVA area

Local forced oscillation

Validation Using Actual Forced Oscillation Events

 El forced oscillation examples (<u>Dark red</u> area has most leading mode angle.

01/11/2019 08:44 Florida

04/07/2020 09:36 NYISO

Replication of January 11, 2019 Forced Oscillation

- 70k-bus El planning model: Light load
- Fast valving feature of TGOV3 model was used to excite forced oscillation
- Forced oscillation magnitudes in bus frequency are consistent with event report

TGOV3 governor model (Source: PSS/e manual)

Forced Oscillation Control Strategy

- Simply based on droop control
- Controller input: Local bus frequency
- Controller output: Paux of electricatecontrol model (REECCU1)

Simulation in 70k-bus El Model

• Scenario 1: Source in Florida (Jan. 11, 2019 event)

Simulation in 70k-bus El Model

Scenario 2: Source in ISO-NE

Detect FIDVR (Fault Induced Delay of Voltage Recovery)

EI 09/18/2007 10:21:23 UTC)

Islanding Detection of Bulk Grid & Micro Grid

Off Grid Detection for Hospitals and Data Centers

Line Trip Detection and Location

Angle Stability using Relative Angles

Center-of-Inertia (COI) angle vs the rest of the bus angles

Interconnection Inertia Monitoring

Dynamic Model Validation - Eastern Interconnection

- Synchrophasor measurement collected by FNET/GridEye is used to calibrate the simulated frequency response.
- Governor deadband is adjusted to reflect the actual system performance.

Case Study: a 1100 MW Generation Trip in North Carolina

Dynamic Response Estimation by Transfer Function

Dynamic Equivalent Identification Method of Large-Scale Power Systems Using Multiple Events

Technical approach

- Derive dynamic equivalents based on transfer function between tie line flow and boundary PMU measurements
- Improve robustness of equivalents by involving multiple events in the parameterization process

Merits

- Derive dynamic equivalents using measurements without knowledge of external system
- Tracking the dynamic equivalents under changing system conditions

NPCC to be reduced

AI-Based Tuning of Dynamic Equivalents

Technical approach

- Derive the structure of the equivalents using DYNRED
- Apply AI algorithm to tune the parameters of the equivalents to match dynamic responses with measurements

Merits

 Improved the accuracy of the DYNRED based equivalents in representing dynamics of the study area

Grid Frequency for Digital Audio Authentication

Spectrograph of Sound Recording, 4/1/09

- Recorded by PC sound card (only background noise)
- 60Hz component is clearly visible

Compared Huston Police Department Data with FDR

- Audio record: Houston 05-07-2009,11:00-11:20 CDT
- Sample rate: 11kHz

35

 Recorded from equipment ground loop hum

Digital Recording Authentication using Power System Frequency

Power system frequency can be extracted from digital recordings and compared with FNET reference database to authenticate the recordings.

Timing Assistance by Chip Scale Atomic Clock

SA. 45s Chip-Scale Atomic Clock

- World's first commercially available chip scale atomic clock
- GPS is noisier than CSAC for averaging time < 5000 seconds

Stand deviation of frequency and angle errors

	GPS- FDR	Atomic clock-FDR
Angle	0.0041	0.0046
Frequency	1.45e-4	1.42e-4

Magnetic and Electric Fields based measurements contactless

Phase One EPRI project is to complete the current sensor frequency measurement feasibility study

Synchronized Point-on-Wave (SPOW) from Mobile UGA

GPS time-indexed sample data

Voltage from phase-to-ground fault

Real-Time Signal-to-Noise Ratio Estimation

Project Goals:

- Implement SNR algorithm in the UGA for real-time SNR estimation
- HTB needs driven

Real time SNR measurement with Signal generator (a) 20dB reference; (b) 40dB reference (b) 60dB reference

Real-time SNR estimation with wall signal at different SNR window sizes

Extended UGA functions

- Normal UGA
 - Synchrophasor measurement
 - Power quality parameter measurement
- Extended UGA
 - Synchrophasor measurement
 - Power quality parameter measurement

• Point on Wave (POW) data record

Anomaly detection and POW record

- Anomaly detection
 - Time domain real time anomaly detection
 - o 30s POW record before and after anomaly trigger
- Frame types
 - Two kinds of data / configuration frame following IEEE C37.118.2 protocol
 - The power quality parameters and POW data are put in analog data sections

Anomaly detection algorithm

Zhan L, Xiao B, Li F, Yin H, Yao W, Li Z, Liu Y. Fault-tolerant grid frequency measurement algorithm during transients. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States); 2020 Jan 10.

High-speed Frequency Measurement-Recursive Computation

Ultra-High-Rate Algorithm evolves from the measurement algorithm used by FNET/GridEye Frequency Disturbance Recorders (FDRs) whose measurement accuracies and reliability have been proven by ~300 units deployment across the nation's grid and over 15 years field operation.

High-speed Grid Frequency Measurement Advantage

Extremely low computation

~ 3 orders of computation time reduction compared to popular DFT based algorithms.

Benefits

- Measurement rate: Orders of higher grid measurement rate (kHz vs typical 60 Hz)
- Hardware friendly: easy hardware integration into grid edge devices.
- Grid Applications: enhanced grid visibility, high-frequency event detection, accurate oscillation source location, accurate RoCOF estimation, fast DER control/protection, stability predication, etc.

Extremely Low Computation Cost

Samulina	Window	Computation		
Rate	Size (cycle)	DFT Algorithm	Proposed Algorithm	Faster
1440 Hz	5	1.279	0.002	650x
	10	2.396	0.002	1200x
	20	4.611	0.002	2300x
2880 Hz	5	2.590	0.002	1300x
	10	4.870	0.002	2400x
	20	9.240	0.002	4600x

Application Example: High-Frequency Event Detection

15 Hz sub-synchronous oscillation

 Traditional 60 measurements per second could not capture the high-frequency oscillation due to low measurement rate.

 Ultra-high-rate frequency measurement algo successfully captured the highfrequency oscillation.

Window size: 1.5 cycles

Prediction starts sooner with data rate increase

New Deployment - Puerto Rico Grid

FNET monitoring system operated by other countries

Some figures are illustrative only

Related web links:

FNET Live Display : <u>http://fnetpublic.utk.edu/gradientmap.html</u>

How to install FDR: <u>http://www.youtube.com/watch?v=9Vt2OIVoBJc&NR=1</u>

Sample oscillation alert: http://fnetapp.eecs.utk.edu/FNETOsciEventReport/20120110_202749_EI_OsciSummary.html

FL Event Movie; <u>http://www.youtube.com/watch?v=bdBB4byrZ6U&feature=related</u>

CA Blackout Movie: http://www.youtube.com/watch?v=YsksUyeLu2Y

April 27 Storm TVA line trip Movie: http://www.youtube.com/watch?v=KmK2VMG57gw&feature=related

2011 Virginia Earthquake Movie: http://www.youtube.com/watch?v=XUN-h-k8kBg&feature=related

2003 blackout movie: <u>http://www.youtube.com/watch?v=eBucg1tX2Q4&feature=related</u>

Worldwide Measurement Map: http://powerit.utk.edu/worldmap/

UTK Powerlt Lab: <u>http://powerit.utk.edu</u>

NSF/DOE Center: http://curent.utk.edu

