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Motivating Questions in a Bigger Picture

* Deep learning (DL) has seen tremendous recent successes in
many areas of artificial intelligence. It has since sparked great
interests in its potential use in power systems.

* Potential applications in power system operations
— Forecasting?
— Monitoring?
— Optimization?
— Control?



Issues with using DL in Power Systems

e Predictability (regardless of complexity)
— DL has been very successful in highly predictable situations.
* Image, speech, ...
— Much more challenging for fundamentally unpredictable situations.
e Stock market, ...
 Forecasting?
— Availability of input information/signals

 Complexity (assuming good predictability)

— DL appears to be very powerful in solving problems of much higher
complexity than before.

* Playing games (Deep RL)
* Monitoring, optimization, and control?
— Availability of data and labels
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Real Time Power System Monitoring: Motivation

 Our power system’s efficient, reliable and secure operation is
crucially dependent on effective monitoring of the system.

 The real-time information on the current grid status is not only key
for optimizing resources to economically maintain normal system
operation, but also crucial for identifying current and potential
problems that may lead to blackouts.

 With increasing penetration of renewables, EVs, and other DERs,
power systems become even more dynamic. Faster power system
monitoring that offers more accurate actionable information is
needed.

* This tutorial focuses on steady state.
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General FormUIatiOn Noiseless
measurements_ AC PF model

1

* Observation model y(t) = h(x(t), s(t); ) + v(t) «— noise

VN TT—

Nodal complex Component Component

: : voltages statuses parameters
* Desired function f(s,z,y; ) °

— Situational Awareness
* State estimation: f(-) =@

* Outage detection: f() = 8

— Preventive Analysis
* Voltage stability analysis: f() is the voltage stability margin.
 Contingency analysis: f() is whether the system is N-k secure.

* (Approximately) compute f(-) based ony --- Inference.
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The Role of Physical Model

 Data-driven vs. Model-driven
— Limitations of data-driven method

Insufficient real-world data, lack of labels, dealing with “rare
events”.

— Model-driven methods have been mainstream in power
systems.

Information embedded in the physical models is
absolutely crucial.

However, challenges arise for model-driven approaches in
providing effective solutions in fundamentally hard
problems.
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Physical Model based Inference

State estimation  min ||y — h(z, s)]||”
€r

Joint component outage detection and state estimation min ||y — h(zx, 8)||2
,S

)

Voltage stability margin estimation

— Heuristic: Compute the smallest eigenvalue of the Jacobian from
solving the power flow equations

Checking N - k security

—  Check if the system can continue to operate under every combination
of k-component outages of interests, by re-solving the power flow
equations (or OPF for corrective contingency analysis).

Limitations — Computational Complexity in Real Time
- Non-convexity
- Combinatorial, Fundamentally hard
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The Role of Physical Model (cont.)

Data-driven + Model-driven

Power system has very clearly understood physical models
(e.g., the AC power flow model).

The quantities that we measure in a power system all
follow these physical laws.

The information embedded in the physical models is
absolutely crucial.

How do we maximumly incorporate the information in a
physical model in a data-driven approach?
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Machine Learning based Monitoring

* Generative model p(x,s,y) =p(x, s)p(y|x, s)
N

* |Inference based ony Physical model

— Find a predictor function F'(y) which, given inputs y,
outputs values that are closest to f(x, s, y).

lr?neigl__Ew,s,y [L (f(mv S, y)? F(y))]

« Target function (assuming no constraints on F): F*(y)

[“Elements of Statistical Learning”, Hastie, Tibshirani & Friedman 09]

— E.g,if L(f,F) = (f — F)% then F*(y) =Eg 4y [f(z,s,9)y]

F*(y) is often computationally intractable to
evaluate, or even just to express.
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A Learning-to-Infer Method

* We would like to find a predictor function F(y) so that

— F(y) matches the target function F*(y) as closely as possible,
and

— F(y) takes a form that allows fast evaluation of its value.

min By sy (L (f(2,8,9), F(y))

-~ Hllgn ]Ea:,s,y [L (f(w7 S, y)? Fﬁ(y))]
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A Learning-to-Infer Method

* We would like to find a predictor function F(y) so that
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FI%%Ew s,y [L (f(il?, Svy)a F(:U))]
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A Learning-to-Infer Method

* We would like to find a predictor function F(y) so that

— F(y) matches the target function F*(y) as closely as possible,
and

— F(y) takes a form that allows fast evaluation of its value.

FI%%Ew s,y [L (f(il?, Svy)a F(:U))]

@mén]Em,S,y L (f(x,s,vy), Fa(y ~m1n ZL f(;zis Y'), Fa(y"))

Monte Carlo samples drawn from p(z,s,y) = p(z, s)p(y|z, s)

* An empirical risk minimization problem: Training a discriminative
model Fg(y) with MC samples from a generative model.



General Method

Table 1.1 The Learning-to-Infer Method

Offline computation:
1. Generate a data set {x’, s*, 4"} using Monte Carlo simulations
with the power flow and sensor models.
2. Select a parametrized function class F = {Fz(y)}.
3. Train the function parameters 3 with {x*, s*, y*}.
Online inference (in real time):
1. Collect instant measurements y from the system.
2. Compute the prediction Fg-(y).
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General Method

/ Online Inference Offline Computation\

Target

Function > Simulator
for System Physical
Monitoring Toe
Real-time Simulated
Measurements Data
Train

K Predictor (‘/\ Learner
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Key Advantages

Labeled data can be generated in an arbitrarily large amount, often
efficiently.

Many types of labels are built-in.
* Very complex predictor models can be trained to ensure good
approximation of F*(y).
Overfitting is much less of an issue as additional data can
always be generated from the physical model.

e Offline computation can be maximumly exploited to offer the best
real-time inference performance.

* [Information from complex physical models, represented by the
simulated data, are seamlessly integrated with that from real-time
Sensor measurements.

* Accelerate key procedures in power system operation, e.g.,
contingency analysis, security constrained OPF.
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Case Study 1: Multi-Line Outage Identification

e Motivation

— Missing/incorrect information of multi-component failures is a major
cause of large-scale blackouts in power systems.

— E.g., cascading failures can develop very quickly in wide-area power
networks.

Case: The cascading failures in the 2011 Southwest blackout caused 7
million people out of power in 11 minutes.

— The depth of cascading failures can be much beyond “N-1".

— System operators need real-time and accurate information about
complex failure scenarios to effectively contain failures.

— At any time instant, given all the available measurements y, how do we
infer the current topology/failure scenario s?

* One big hypothesis testing problem

The complexity grows exponentially with the number of unsure

line statuses. ;



Related work

* Real-time line outage identification (use instant measurements)

Exhaustive search based: [Tate & Overbye 08], [Zhao et al. 14],
[Garcia et al. 16]

Exploiting sparsity: [Zhu & Giannakis 12]
Graphical model based: [Chen et al. 14]
Sequential detection: [Heydari & Tajer 17]

* Non-real-time topology identification (collect data over a certain
period)

[He & Zhang 11] [Bolognani et al. 13] [Li et al. 13] [Yuan et al.
16] [Kekatos et al. 16] [Gera et al. 17] [Weng et al. 17] [Deka et
al. 17]



Challenges

 Complexity: The complexity grows exponentially with the
number of unsure line statuses.

* Real-time requirement: very low complexity algorithm
needed.

* Use only instant measurements.

* High accuracy.
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Learning to Infer

e A Probabilistic formulation

Optimal inference of grid topology s depends on p(s|y), Vs.

— Even listing them has an exponential complexity.

* We focus on marginal inference, i.e., compute p(s;|y)-
— Still, summing out all s;, k # [ is exponentially complex.

— The MAP detector argmax o 13 P(s1|y) has a very
complicated decision boundary.

* Learning to Infer:
— Desired function f(-) = p(s;|y), VI

— Approximate, by offline training, the posterior p(8l|y) with
functions that enable real-time online inference.



Learning to infer

 Goal: Find a variational distribution g(s|y) to approximate p(s|y), s.t.

— The model of g(s|y) has sufficient expressive power to closely
represent complicated p(s|y).

— Giveny, q(s/|y) can be easily computed for real-time inference.

* Optimize the variational distribution via empirical risk
minimization:

I
. 1 AP
min E, [D(p|lqs)] < max Es.,, [logqs(s|y)] = maXYZloqu(s y?)]

B P i=1 /

MC samples drawn from the generative model.

Y. Zhao, J. Chen and H. V. Poor, "A Learning-to-Infer Method for Real-Time Power Grid Multi-Line Outage
Identification," in IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 555-564, Jan. 2020.
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Numerical experiments
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* Neural networks with shared features are used as the predictor models.
 1.8M data for training are sufficient.
200K testing data contains 100% unseen topologies from the training data.

* Training time: 3 hours on a GPU. Testing time: under a millisecond per data
sample.

* Results: the accuracy is 0.997 --- on average 1.0 misidentified line status
label

— Great generalizability.
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Numerical experiments (cont.)
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Figure 5: Scalability of the Learning-to-Infer method, from
the IEEE 30 bus system to the IEEE 300 bus system.
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Numerical experiments (cont.)

* |EEE 118-bus system with AC power flow model
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Figure 7: Progressions of the training and testing accuracies,
the IEEE 118-bus system, with the AC power flow model
employed.
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Case Study 2: Voltage Stability Margin Estimation

e Motivation

— Voltage collapse is one of the major causes of large-scale black-outs
[Kundur et al. 04].

— Increasing penetration of renewables brings higher variabilities into
power system operations.

— Determining the system stability margin in real time is greatly
valuable for system operators to maintain situational awareness of
the system and a safe operating margin.

— We study voltage stability from a static analysis perspective.

» Bifurcation [Ajjarapu & Lee 92].
 ACPF’s Jacobian becomes singular.
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Problem

 Goal: Given any stable operating condition, estimate its “distance”
to voltage instability in real time.

e Stability region C: all the power profiles S that do not induce voltage
instability.

* Voltage stability margin of any S: the (Euclidean) distance from S to
the instability region C¢:

dist (§,C°) & SI,nEigC |S — S7]|2

e The desired function f(-) = dist (S5,C°)

Challenges of computing f(-)
— No computationally efficient
representation of C¢

— High dimensional problem

— Non-convexity of Cand C¢




Related work

e Continuation power flow (CPF) method [Ajjarapu & Christy 92]

* [terative method to find locally worst case margin [Dobson& Lu
93]

A 2 A1
/t -_ﬁ
— - -7
no
Ao

Figure 2. Insecure point A¢ in load power parameter space

 Power flow’s Jacobian’s smallest singular value [Tiranuchit &
Thomas 88] [Lof et al. 92]



Observations

* Itis computationally easy to verify if any S is stable or not, i.e.,
obtain the 0/1 label of S, (AC power flow).

* Itis computationally easy to compute the distance from S to C*
along any given direction (CPF).

* [tis computationally costly to (approximately) compute the
voltage stability margin of S, f(-) = dist (S,C¢) , as in principle
all directions need to be explored.



Learning to Infer

* General procedure
— Generate samples based on the power system model

— Train a predictor of the stability margin based on the
generated samples

— Use the offline trained predictor for online inference of the
margin

Challenge: Lack of Labels

— Computing accurate approximation of stability margins is very

computationally heavy --- Even for offline computation, generating
such labeled data for training is very time consuming.
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Learning to Infer

e (Observation

— Although computing a stability margin is hard, verifying if an
operating condition is stable or not is fast.

* Solution: Transfer Learning

— Generate a sufficient large dataset of data/operating conditions
with 0/1 stability classification labels only.

— Learn “as much as possible” from this 0/1 labeled data set.

— Generate a relatively small dataset of data/operating conditions
with stability margin labels.

— Transfer what we learn from the large 0/1 labeled data set to
further learning from the much smaller margin labeled data set.

J. Li, Y. Zhao, Y. Lee and S. Kim, "Learning to Infer Voltage Stability Margin Using Transfer
Learning," 2019 IEEE Data Science Workshop (DSW), pp. 270-274, 20109.



Overall training structure

e Offline: Sample a very large number of § with its 0/1 labels.

« Offline: Sample only a small number of S with f(-) = dist (S,C°)
(approximately) computed.

» Offline: Use the large 0/1 labeled data set of labeled S to learn a
binary classifier E(S) that characterize the boundary of C.

* Offline: Use the small data set of § labeled with voltage stability
margins, and employ the intermediate features learned by the
classifier }}(5) to further learn a margin estimator using regression.

* Online: Apply the learned margin estimator to any newly observed
S to estimate its voltage stability margin in real time.



Predictor Design

* Learning voltage stability boundary

Input Hidden  Output

 Predicting voltage stability margin layer  layer layer

— Reuse the features from classification
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Data Set

e The IEEE 300-bus test case.

* Generate directions: starting with one base case, multiply each P
and Q with i.i.d. U[0,1]. 720K directions generated.

* Generate 1.4M (720K feasible & 720K infeasible) points using CPF,
close to the stability boundary.

 Generate 11.4K points with voltage stability margin approximately
computed.

e Search along every coordinate followed by the iterative method in
[Dobson & Lu 93].

* Data augmentation.
S

S




Numerical Experiments

 Learning voltage stability boundary
— 1M samples for training, 440K for
testing

—  Testing classification accuracy of
99.11%

* Predicting voltage stability margin

— Transfer Learning

e 10K samples for training, 1.4K for
testing

* Testing MSE: 0.001979214
* Testing R2: 0.9989559

* Testing computation time:
2.46ms/profile

— Baseline: Jacobian’s SSV
* Testing MSE: 1.503076
* Testing R2: 0.204

* Testing computation time:
89.65ms/prof 34
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Numerical Experiments (cont.)

 Zooming in for points very close
to the boundary. 05

— Transfer Learning
* Testing MSE: 0.000725.

* Testing computation time:
2.45ms

True Margin
© © ©
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— Baseline: Jacobian’s SSV Fig. 1 Scatter plot from using transfer learning.
* Testing MSE: 0.001017

o
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T

* Observation: SSV’s predictive
accuracy improves as the
operating condition moves
toward the boundary; Transfer _—
learning still outperforms SSV.

SSV of Jacobian
35 Fig. 2 Scatter plot from using Jacobian’s SSVs.
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Applying to OPF and contingency analysis

st P+ JQi = D i VilVi = Vi) iy, Vi
P, < P; < P;, Vi € Source
Q. <Q; < Q,, Vi € Source
P;+3Qi=Lp;+jLgi, Vi € Load

other operational constraints

* Solving OPF with stability margin guarantees.
— Related work: [Tiranuchit & Thomas 88], “optimal posturing”.

* Very fast screening of contingencies with stability margin

requirements.
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Other Applications

* AC State estimation
— [Zhang et al. 19], unrolling

Zi&
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Fig. 2.  Prox-linear net with K = 3 blocks.
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Fig. 3.  Plain-vanilla FNN which has the same per-layer number of hidden units as the prox-linear net.

* Dynamic security assessment
— See the previous tutorial by Tindemans and Cremer.
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Other Applications

* Learning-based OPF
— [Ngetal. 18] [Pan et al. 19][Chen et al. 20]

* Learning-based N-k security check (ongoing)
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Summary

* A Learning-to-Infer Method is developed for addressing
fundamentally hard problems in power system monitoring, by
exploiting the information in the physical model via a data-driven
approach.

* Two case studies, multi-line outage identification and voltage

stability margin estimation, demonstrate the power of this
methodology.

 Many more applications

— Each has its own specific challenges and requires novel
learning algorithm design.
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