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Motivating Questions in a Bigger Picture

• Deep learning (DL) has seen tremendous recent successes in 
many areas of artificial intelligence. It has since sparked great 
interests in its potential use in power systems. 

• Potential applications in power system operations
– Forecasting? 
– Monitoring? 
– Optimization? 
– Control? 
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Issues with using DL in Power Systems

• Predictability (regardless of complexity)
– DL has been very successful in highly predictable situations.

• Image, speech, …
– Much more challenging for fundamentally unpredictable situations.

• Stock market, ... 
• Forecasting? 

– Availability of input information/signals

• Complexity (assuming good predictability)
– DL appears to be very powerful in solving problems of much higher 

complexity than before. 
• Playing games (Deep RL)
• Monitoring, optimization, and control?

– Availability of data and labels
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Real Time Power System Monitoring: Motivation

• Our power system’s efficient, reliable and secure operation is 
crucially dependent on effective monitoring of the system. 

• The real-time information on the current grid status is not only key 
for optimizing resources to economically maintain normal system 
operation, but also crucial for identifying current and potential 
problems that may lead to blackouts. 

• With increasing penetration of renewables, EVs, and other DERs, 
power systems become even more dynamic. Faster power system 
monitoring that offers more accurate actionable information is 
needed. 

• This tutorial focuses on steady state. 
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General Formulation

• Observation model

• Desired function
– Situational Awareness

• State estimation:

• Outage detection:

– Preventive Analysis
• Voltage stability analysis:           is the voltage stability margin.
• Contingency analysis:            is whether the system is N-k secure. 

• (Approximately) compute          based on y --- Inference. 
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The vector of all measurements at a time instant t is denoted by,

y(t) = h(x(t), s(t);↵) + v(t), (1.7)

where a) x(t) represents the states of the system, i.e., the nodal complex voltages,
b) s(t) represents the component statuses, i.e., the on-o↵ binary variables of
whether each system component (among, e.g., transmission lines, generators,
transformers) is in failure or not, and c) ↵ represents the system component
parameters, which typically stay constant for relatively long time scales. The
function h(·) represents the noiseless measurements, which is determined by the
power flow equations (1.6), and v(t) is the measurement noise. In this section,
we focus on semi-steady states of power systems, and hence drop the time index
t in the notations.
Based on the observed measurements, the tasks of power system monitoring

can be casted as computing a desired function f(s,x,y;↵). The goal of comput-
ing f(·) can be categorized into two types, a) situational awareness, where we
estimate the current values of certain variables in the system, and b) preventive
analysis, where we infer what changes of certain variables in the system can lead
to system-wide failures, and thus provide an estimate of the robustness of the
system against potential disruptions. Examples of situational awareness include

• Power system state estimation, where f(·) = x, i.e., the nodal voltages, and

• Component outage detection, where f(·) = s, i.e., the component statuses.

Examples of preventive analysis include

• Voltage stability analysis, where f(·) is the voltage stability margin, and

• Contingency analysis, where f(·) is whether the system is N � k secure.

As such, computing f(s,x,y;↵) based on y (cf.(1.7)) for situational awareness
is an inference problem. As the focus of this section is power system monitor-
ing in real time, we assume the knowledge of the long-term system component
parameters ↵, and hence drop ↵ in the notations later on.

Model-Based Approaches and Limitations
The inference problems from y to f(·) have traditionally been solved by model-
based approaches since power systems have well-defined physical models (cf. (1.6)
and (1.7)).
For situational awareness, state estimation can be formulated as solving a
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The Role of Physical Model

• Data-driven vs. Model-driven
– Limitations of data-driven method 

Insufficient real-world data, lack of labels, dealing with “rare 
events”.

– Model-driven methods have been mainstream in power 
systems.

Information embedded in the physical models is
absolutely crucial. 

However, challenges arise for model-driven approaches in 
providing effective solutions in fundamentally hard 
problems. 
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Physical Model based Inference

• State estimation

• Joint component outage detection and state estimation 

• Voltage stability margin estimation
– Heuristic: Compute the smallest eigenvalue of the Jacobian from 

solving the power flow equations 

• Checking N - k security
– Check if the system can continue to operate under every combination 

of k-component outages of interests, by re-solving the power flow 
equations (or OPF for corrective contingency analysis). 

1.3 Power SystemMonitoring with Deep Learning: Real-Time Inference 13

nonlinear least square problem, assuming s is known, (Abur & Gomez-Exposito
2004)

min
x

ky � h(x, s)k2. (1.8)

Joint component outage detection and state estimation can be formulated as a
mixed continuous (x) and discrete (s) search problem.

min
x,s

ky � h(x, s)k2. (1.9)

In both problems, the observation model h (implied by the power flow model
(1.6)) plays a key role in developing practical algorithms for solving the prob-
lems. For preventive analysis, computing the voltage stability margin can be
formulated as finding the minimum disturbance in the system input (power in-
jection) such that there is no feasible (or acceptable) voltage solution from the
power flow equations (1.6). A popular approach to approximate this margin is
to compute, as a surrogate, the smallest eigenvalue of the Jacobian from solv-
ing the power flow equations (Tiranuchit et al. 1988, Lof, Smed, Andersson &
Hill 1992). Checking N � k security is another combinatorial search problem,
where one needs to check if the system can continue to operate under every
combination of k-component outages, by re-solving the power flow equations.
However, such physical model-based approaches for power system monitor-

ing face several notable limitations. First, the non-linear nature of the power
flow models (1.6) often leads to optimization problems that are non-convex and
computationally hard to solve (e.g., (1.8)). Moreover, inference of discrete vari-
ables (e.g., component statuses, N � k insecurity) is fundamentally hard due to
the combinatorial complexity (e.g. (1.9)). More recent model-based approaches
to solve these problems include convex relaxation, sparsity enforcement, and
graphical models (Kekatos & Giannakis 2012, Zhu & Giannakis 2012, Chen,
Zhao, Goldsmith & Poor 2014).

1.3.2 Machine Learning based Monitoring

As opposed to model-based approaches, what we will describe next is a machine
learning-based paradigm that both takes advantage of the power of deep learning
and exploits the information from the physical models.
We begin with a general statistical model. Consider the system states x, com-

ponent statuses s and sensor measurements y are random variables that follow
some joint probability distribution

p(x, s,y) = p(x, s)p(y|x, s). (1.10)

Notably, the conditional probability p(y|x, s) is fully determined by the obser-
vation model (1.7), which is again determined by the power flow equations (1.6)
and the noise distribution.
Generative Model (1.10) represents a generative model (Bishop 2006) with
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Limitations – Computational Complexity in Real Time
- Non-convexity
- Combinatorial, Fundamentally hard
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The Role of Physical Model (cont.)

• Data-driven + Model-driven
– Power system has very clearly understood physical models 

(e.g., the AC power flow model). 

– The quantities that we measure in a power system all 
follow these physical laws. 

– The information embedded in the physical models is 
absolutely crucial. 

– How do we maximumly incorporate the information in a 
physical model in a data-driven approach? 
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Machine Learning based Monitoring

• Generative model

• Inference based on y
– Find a predictor function             which, given inputs y, 

outputs values that are closest to                    . 

• Target function (assuming no constraints on F):
[“Elements of Statistical Learning”, Hastie, Tibshirani & Friedman 09]

– E.g., if                                   ,   then 
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power flow equations (1.6). A popular approach to approximate this margin is
to compute, as a surrogate, the smallest eigenvalue of the Jacobian from solv-
ing the power flow equations (Tiranuchit et al. 1988, Lof, Smed, Andersson &
Hill 1992). Checking N � k security is another combinatorial search problem,
where one needs to check if the system can continue to operate under every
combination of k-component outages, by re-solving the power flow equations.
However, such physical model-based approaches for power system monitor-

ing face several notable limitations. First, the non-linear nature of the power
flow models (1.6) often leads to optimization problems that are non-convex and
computationally hard to solve (e.g., (1.8)). Moreover, inference of discrete vari-
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1.3.2 Machine Learning based Monitoring

As opposed to model-based approaches, what we will describe next is a machine
learning-based paradigm that both takes advantage of the power of deep learning
and exploits the information from the physical models.
We begin with a general statistical model. Consider the system states x, com-

ponent statuses s and sensor measurements y are random variables that follow
some joint probability distribution

p(x, s,y) = p(x, s)p(y|x, s). (1.10)

Notably, the conditional probability p(y|x, s) is fully determined by the obser-
vation model (1.7), which is again determined by the power flow equations (1.6)
and the noise distribution.
Generative Model (1.10) represents a generative model (Bishop 2006) with
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which a) x, s are generated according to a prior distribution p(x, s), and b)
the noise-free measurements h(·) are also computed by solving the power flow
equations (1.6), based on which the actual noisy measurements y follow the
conditional probability distribution p(y|x, s).
The goal of inferring some desired function f(x, s,y) from observing y can

be formulated as providing a predictor function F (y) which, given inputs y,
outputs values that are “closest” to f(x, s,y). For example, in the case of state
estimation, f(x, s,y) = x, and the goal is to find F (y) that predicts the ground
truth x in the closest sense.
Rigorously, the inference problem can be formulated as follows,

min
F2F

E
x,s,y

[L (f(x, s,y), F (y))] (1.11)

where a) F is some class of functions from which a predictor F (·) is chosen,
and b) L(f, F ) is some loss function that characterizes the distance between f

and F . We note that (1.11) is in general an infinite dimensional optimization
problem. In practice, we typically restrict ourselves to some parameterized class
of functions, so that the optimization becomes over a set of parameters, and is
finite dimensional.
Importantly, when F contains all possible functions, the optimal solution of

(1.11), denoted by F

⇤, minimizes the expected loss among all possible predictor
functions. We call this unconstrained optimal predictor F ⇤(·) the target function.
For example, if L(f, F ) = (f � F )2, i.e., the squared error loss (assuming the
desired function f(·) takes numeric values), it can be shown that the target
function is the conditional expectation,

F

⇤(y) = E
x,s|y [f(x, s,y)|y] . (1.12)

In this case, the goal of inference is to compute this conditional expectation.
Recall that the joint distribution p(x, s,y) is in part determined by the nonlinear
power flow equations (1.6). This makes computing the conditional expectation
(1.12) di�cult even for f as simple as f = x as in state estimation. The physical
model-based approaches such as (1.8) are precisely exploiting the role of power
flow equations in p(x, s,y) to simplify the computation of (1.12). More generally,
computing (1.12) faces the challenges discussed in the previous section, which
significantly limit the e↵ectiveness of physical model-based approaches.

A Learning-to-Infer Apprach
There are two fundamental di�culties in performing the optimal prediction using
the target function F

⇤(y):

• Finding F

⇤(y) can be very di�cult (beyond the special case of L(·) being the
squared error loss), and

• Even if F ⇤(y) is conceptually known (see, e.g., (1.12)), it is often computa-
tionally intractable to be evaluated.
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evaluate, or even just to express. 
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Importantly, when F contains all possible functions, the optimal solution of
(1.6), denoted by F ⇤, minimizes the expected loss among all possible predictor
functions. We call this unconstrained optimal predictor F ⇤(·) the target function.
For example, if L(f, F ) = (f � F )2, i.e., the squared error loss (assuming the
desired function f(·) takes numeric values), it can be shown that the target
function is the conditional expectation,

F ⇤(y) = E
x,s|y [f(x, s,y)|y] . (1.7)

In this case, the goal of inference is to compute this conditional expectation.
Recall that the joint distribution p(x, s,y) is in part determined by the nonlinear
power flow equations (1.1). This makes computing the conditional expectation
(1.7) di�cult even for f as simple as f = x as in state estimation. The physical
model-based approaches such as (1.3) are precisely exploiting the role of power
flow equations in p(x, s,y) to simplify the computation of (1.7). More generally,
computing (1.7) faces the challenges discussed in the previous section, which
significantly limit the e↵ectiveness of physical model-based approaches.

A Learning-to-Infer Apprach
There are two fundamental di�culties in performing the optimal prediction using
the target function F ⇤(y):

• Finding F ⇤(y) can be very di�cult (beyond the special case of L(·) being the
squared error loss), and

• Even if F ⇤(y) is conceptually known (see, e.g., (1.7)), it is often computation-
ally intractable to be evaluated.

To address these two issues, we begin with an idea from variational inference
(Koller & Friedman 2009): we would like to find a predictor function F (y) so
that

• F (y) matches the target function F ⇤(y) as closely as possible, and

• F (y) takes a form that allows fast evaluation of its value.

If such an F (y) is found, it provides fast and near-optimal prediction of the
desired function f(x, s,y) based on any observed y. In fact, this procedure can
precisely be formulated as in (1.6), where the class of functions F is set so that
any F 2 F allows fast evaluation of F (y).
Solving the optimization problem (1.6), however, requires evaluating expecta-

tions over all the variables x, s and y. This is unfortunately extremely di�cult
due to a) the non-linear power flow equations embedded in the joint distribution,
and b) the exponential complexity in summing out the discrete variables s.
To overcome this di�culty, the key step forward is to transform the varia-

tional inference problem into a learning problem (Zhao, Chen & Poor 2019), by
approximating the expectation with the empirical mean over a large number of
Monte Carlo samples, generated according to (ideally) p(x, s,y) (cf. (1.5)). We
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power flow equations (1.6). This makes computing the conditional expectation
(1.12) di�cult even for f as simple as f = x as in state estimation. The physical
model-based approaches such as (1.8) are precisely exploiting the role of power
flow equations in p(x, s,y) to simplify the computation of (1.12). More generally,
computing (1.12) faces the challenges discussed in the previous section, which
significantly limit the e↵ectiveness of physical model-based approaches.
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squared error loss), and

• Even if F ⇤(y) is conceptually known (see, e.g., (1.12)), it is often computa-
tionally intractable to be evaluated.
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• Even if F ⇤(y) is conceptually known (see, e.g., (1.12)), it is often computa-
tionally intractable to be evaluated.

To address these two issues, we begin with an idea from variational inference
(Koller & Friedman 2009): we would like to find a predictor function F (y) so
that

• F (y) matches the target function F ⇤(y) as closely as possible, and

• F (y) takes a form that allows fast evaluation of its value.

If such an F (y) is found, it provides fast and near-optimal prediction of the
desired function f(x, s,y) based on any observed y. In fact, this procedure can
precisely be formulated as in (1.11), where the class of functions F is set so that
any F 2 F allows fast evaluation of F (y).
Solving the optimization problem (1.11), however, requires evaluating expec-

tations over all the variables x, s and y. This is unfortunately extremely di�cult
due to a) the non-linear power flow equations embedded in the joint distribution,
and b) the exponential complexity in summing out the discrete variables s.
To overcome this di�culty, the key step forward is to transform the varia-

tional inference problem into a learning problem (Zhao, Chen & Poor 2019), by
approximating the expectation with the empirical mean over a large number of
Monte Carlo samples, generated according to (ideally) p(x, s,y) (cf. (1.10)). We
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However, such physical model-based approaches for power system monitor-
ing face several notable limitations. First, the non-linear nature of the power
flow models (1.1) often leads to optimization problems that are non-convex and
computationally hard to solve (e.g., (1.3)). Moreover, inference of discrete vari-
ables (e.g., component statuses, N � k insecurity) is fundamentally hard due to
the combinatorial complexity (e.g. (1.4)). More recent model-based approaches
to solve these problems include convex relaxation, sparsity enforcement, and
graphical models (Kekatos & Giannakis 2012, Zhu & Giannakis 2012, Chen,
Zhao, Goldsmith & Poor 2014).

1.2.2 Machine Learning based Monitoring

As opposed to model-based approaches, what we will describe next is a machine
learning-based paradigm that both takes advantage of the power of deep learning
and exploits the information from the physical models.
We begin with a general statistical model. Consider the system states x, com-

ponent statuses s and sensor measurements y are random variables that follow
some joint probability distribution

p(x, s,y) = p(x, s)p(y|x, s). (1.5)

Notably, the conditional probability p(y|x, s) is fully determined by the obser-
vation model (1.2), which is again determined by the power flow equations (1.1)
and the noise distribution.
Generative Model (1.5) represents a generative model (Bishop 2006) with which
a) x, s are generated according to a prior distribution p(x, s), and b) the noise-
free measurements h(·) are also computed by solving the power flow equations
(1.1), based on which the actual noisy measurements y follow the conditional
probability distribution p(y|x, s).
The goal of inferring some desired function f(x, s,y) from observing y can

be formulated as providing a predictor function F (y) which, given inputs y,
outputs values that are “closest” to f(x, s,y). For example, in the case of state
estimation, f(x, s,y) = x, and the goal is to find F (y) that predicts the ground
truth x in the closest sense.
Rigorously, the inference problem can be formulated as follows,

min
F2F

E
x,s,y

[L (f(x, s,y), F (y))] (1.6)

,min
�

E
x,s,y

[L (f(x, s,y), F
�

(y))]

where a) F is some class of functions from which a predictor F (·) is chosen,
and b) L(f, F ) is some loss function that characterizes the distance between f
and F . We note that (1.6) is in general an infinite dimensional optimization
problem. In practice, we typically restrict ourselves to some parameterized class
of functions, so that the optimization becomes over a set of parameters, and is
finite dimensional. 11
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which a) x, s are generated according to a prior distribution p(x, s), and b)
the noise-free measurements h(·) are also computed by solving the power flow
equations (1.6), based on which the actual noisy measurements y follow the
conditional probability distribution p(y|x, s).
The goal of inferring some desired function f(x, s,y) from observing y can
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outputs values that are “closest” to f(x, s,y). For example, in the case of state
estimation, f(x, s,y) = x, and the goal is to find F (y) that predicts the ground
truth x in the closest sense.
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where a) F is some class of functions from which a predictor F (·) is chosen,
and b) L(f, F ) is some loss function that characterizes the distance between f

and F . We note that (1.11) is in general an infinite dimensional optimization
problem. In practice, we typically restrict ourselves to some parameterized class
of functions, so that the optimization becomes over a set of parameters, and is
finite dimensional.
Importantly, when F contains all possible functions, the optimal solution of

(1.11), denoted by F

⇤, minimizes the expected loss among all possible predictor
functions. We call this unconstrained optimal predictor F ⇤(·) the target function.
For example, if L(f, F ) = (f � F )2, i.e., the squared error loss (assuming the
desired function f(·) takes numeric values), it can be shown that the target
function is the conditional expectation,

F

⇤(y) = E
x,s|y [f(x, s,y)|y] . (1.12)

In this case, the goal of inference is to compute this conditional expectation.
Recall that the joint distribution p(x, s,y) is in part determined by the nonlinear
power flow equations (1.6). This makes computing the conditional expectation
(1.12) di�cult even for f as simple as f = x as in state estimation. The physical
model-based approaches such as (1.8) are precisely exploiting the role of power
flow equations in p(x, s,y) to simplify the computation of (1.12). More generally,
computing (1.12) faces the challenges discussed in the previous section, which
significantly limit the e↵ectiveness of physical model-based approaches.
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There are two fundamental di�culties in performing the optimal prediction using
the target function F

⇤(y):

• Finding F

⇤(y) can be very di�cult (beyond the special case of L(·) being the
squared error loss), and

• Even if F ⇤(y) is conceptually known (see, e.g., (1.12)), it is often computa-
tionally intractable to be evaluated.
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However, such physical model-based approaches for power system monitor-
ing face several notable limitations. First, the non-linear nature of the power
flow models (1.1) often leads to optimization problems that are non-convex and
computationally hard to solve (e.g., (1.3)). Moreover, inference of discrete vari-
ables (e.g., component statuses, N � k insecurity) is fundamentally hard due to
the combinatorial complexity (e.g. (1.4)). More recent model-based approaches
to solve these problems include convex relaxation, sparsity enforcement, and
graphical models (Kekatos & Giannakis 2012, Zhu & Giannakis 2012, Chen,
Zhao, Goldsmith & Poor 2014).

1.2.2 Machine Learning based Monitoring

As opposed to model-based approaches, what we will describe next is a machine
learning-based paradigm that both takes advantage of the power of deep learning
and exploits the information from the physical models.
We begin with a general statistical model. Consider the system states x, com-

ponent statuses s and sensor measurements y are random variables that follow
some joint probability distribution

p(x, s,y) = p(x, s)p(y|x, s). (1.5)

Notably, the conditional probability p(y|x, s) is fully determined by the obser-
vation model (1.2), which is again determined by the power flow equations (1.1)
and the noise distribution.
Generative Model (1.5) represents a generative model (Bishop 2006) with which
a) x, s are generated according to a prior distribution p(x, s), and b) the noise-
free measurements h(·) are also computed by solving the power flow equations
(1.1), based on which the actual noisy measurements y follow the conditional
probability distribution p(y|x, s).
The goal of inferring some desired function f(x, s,y) from observing y can

be formulated as providing a predictor function F (y) which, given inputs y,
outputs values that are “closest” to f(x, s,y). For example, in the case of state
estimation, f(x, s,y) = x, and the goal is to find F (y) that predicts the ground
truth x in the closest sense.
Rigorously, the inference problem can be formulated as follows,

min
F2F

E
x,s,y

[L (f(x, s,y), F (y))] (1.6)

,min
�

E
x,s,y

[L (f(x, s,y), F
�

(y))]

where a) F is some class of functions from which a predictor F (·) is chosen,
and b) L(f, F ) is some loss function that characterizes the distance between f
and F . We note that (1.6) is in general an infinite dimensional optimization
problem. In practice, we typically restrict ourselves to some parameterized class
of functions, so that the optimization becomes over a set of parameters, and is
finite dimensional.
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denote the Monte Carlo samples by {xi, si,yi; i = 1, . . . , I}. Accordingly, (1.6)
is approximated by the following,

min
F2F

1

I

IX

i=1

L
�
f(xi, si,yi), F (yi)

�
. (1.8)

In practice, we typically set F to be a parameterized set of functions, with the
parameters denoted by �. We thus have the following problem,

⇡ min
�

1

I

IX

i=1

L
�
f(xi, si,yi), F

�

(yi)
�
. (1.9)

With a data set {xi, si,yi} generated using Monte Carlo simulations, (1.9) can
then be solved as a deterministic optimization problem. The optimal solution of
(1.9) approaches that of the original problem (1.6) as I ! 1.

Notably, the problem (1.8) is an empirical risk minimization problem in ma-
chine learning, as it trains a discriminative predictor F

�

(y) with a data set
{xi, si,yi} generated from a generative model p(x, s,y). As a result of this of-
fline learning/training process (1.9), a near-optimal predictor F

�

⇤(y) is obtained.
Table 1.1 summarizes this “Learning-to-Infer” approach.

Table 1.1 The Learning-to-Infer Method

O✏ine computation:

1. Generate a data set {xi, si,yi} using Monte Carlo simulations
with the power flow and sensor models.

2. Select a parametrized function class F = {F
�

(y)}.
3. Train the function parameters � with {xi, si,yi} using (1.9).

Online inference (in real time):

1. Collect instant measurements y from the system.
2. Compute the prediction F

�

⇤(y).

1.2.3 Case Study 1: Multi-Line Outage Identification

In this section, we demonstrate how machine learning based monitoring applies
to a situational awareness task: line outage identification. In power networks,
transmission line outages, if not rapidly identified and contained, can quickly
escalate to cascading failures. Real-time line outage identification is thus essential
to all network control decisions for mitigating failures. In particular, since the
first few line outages may have already escaped the operators’ attention, the
ability to identify in real time the network topology with an arbitrary number
of line outages becomes critical to prevent system collapse.

Monte Carlo samples drawn from
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where a) F is some class of functions from which a predictor F (·) is chosen,
and b) L(f, F ) is some loss function that characterizes the distance between f
and F . We note that (1.6) is in general an infinite dimensional optimization
problem. In practice, we typically restrict ourselves to some parameterized class
of functions, so that the optimization becomes over a set of parameters, and is
finite dimensional.
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(1.11), denoted by F ⇤, minimizes the expected loss among all possible predictor
functions. We call this unconstrained optimal predictor F ⇤(·) the target function.
For example, if L(f, F ) = (f � F )2, i.e., the squared error loss (assuming the
desired function f(·) takes numeric values), it can be shown that the target
function is the conditional expectation,

F ⇤(y) = E
x,s|y [f(x, s,y)|y] . (1.7)

In this case, the goal of inference is to compute this conditional expectation.
Recall that the joint distribution p(x, s,y) is in part determined by the nonlinear
power flow equations (1.6). This makes computing the conditional expectation
(1.12) di�cult even for f as simple as f = x as in state estimation. The physical
model-based approaches such as (1.8) are precisely exploiting the role of power
flow equations in p(x, s,y) to simplify the computation of (1.12). More generally,
computing (1.12) faces the challenges discussed in the previous section, which
significantly limit the e↵ectiveness of physical model-based approaches.
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squared error loss), and

• Even if F ⇤(y) is conceptually known (see, e.g., (1.12)), it is often computa-
tionally intractable to be evaluated.
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If such an F (y) is found, it provides fast and near-optimal prediction of the
desired function f(x, s,y) based on any observed y. In fact, this procedure can
precisely be formulated as in (1.11), where the class of functions F is set so that
any F 2 F allows fast evaluation of F (y).
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flow equations in p(x, s,y) to simplify the computation of (1.12). More generally,
computing (1.12) faces the challenges discussed in the previous section, which
significantly limit the e↵ectiveness of physical model-based approaches.

A Learning-to-Infer Apprach
There are two fundamental di�culties in performing the optimal prediction using
the target function F ⇤(y):

• Finding F ⇤(y) can be very di�cult (beyond the special case of L(·) being the
squared error loss), and

• Even if F ⇤(y) is conceptually known (see, e.g., (1.12)), it is often computa-
tionally intractable to be evaluated.

To address these two issues, we begin with an idea from variational inference
(Koller & Friedman 2009): we would like to find a predictor function F (y) so
that

• F (y) matches the target function F ⇤(y) as closely as possible, and

• F (y) takes a form that allows fast evaluation of its value.

If such an F (y) is found, it provides fast and near-optimal prediction of the
desired function f(x, s,y) based on any observed y. In fact, this procedure can
precisely be formulated as in (1.11), where the class of functions F is set so that
any F 2 F allows fast evaluation of F (y).
Solving the optimization problem (1.11), however, requires evaluating expec-

tations over all the variables x, s and y. This is unfortunately extremely di�cult
due to a) the non-linear power flow equations embedded in the joint distribution,
and b) the exponential complexity in summing out the discrete variables s.
To overcome this di�culty, the key step forward is to transform the varia-

tional inference problem into a learning problem (Zhao, Chen & Poor 2019), by
approximating the expectation with the empirical mean over a large number of
Monte Carlo samples, generated according to (ideally) p(x, s,y) (cf. (1.10)). We
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estimation, f(x, s,y) = x, and the goal is to find F (y) that predicts the ground
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of functions, so that the optimization becomes over a set of parameters, and is
finite dimensional.
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For example, if L(f, F ) = (f � F )2, i.e., the squared error loss (assuming the
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function is the conditional expectation,
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However, such physical model-based approaches for power system monitor-
ing face several notable limitations. First, the non-linear nature of the power
flow models (1.1) often leads to optimization problems that are non-convex and
computationally hard to solve (e.g., (1.3)). Moreover, inference of discrete vari-
ables (e.g., component statuses, N � k insecurity) is fundamentally hard due to
the combinatorial complexity (e.g. (1.4)). More recent model-based approaches
to solve these problems include convex relaxation, sparsity enforcement, and
graphical models (Kekatos & Giannakis 2012, Zhu & Giannakis 2012, Chen,
Zhao, Goldsmith & Poor 2014).

1.2.2 Machine Learning based Monitoring

As opposed to model-based approaches, what we will describe next is a machine
learning-based paradigm that both takes advantage of the power of deep learning
and exploits the information from the physical models.
We begin with a general statistical model. Consider the system states x, com-

ponent statuses s and sensor measurements y are random variables that follow
some joint probability distribution

p(x, s,y) = p(x, s)p(y|x, s). (1.5)

Notably, the conditional probability p(y|x, s) is fully determined by the obser-
vation model (1.2), which is again determined by the power flow equations (1.1)
and the noise distribution.
Generative Model (1.5) represents a generative model (Bishop 2006) with which
a) x, s are generated according to a prior distribution p(x, s), and b) the noise-
free measurements h(·) are also computed by solving the power flow equations
(1.1), based on which the actual noisy measurements y follow the conditional
probability distribution p(y|x, s).
The goal of inferring some desired function f(x, s,y) from observing y can

be formulated as providing a predictor function F (y) which, given inputs y,
outputs values that are “closest” to f(x, s,y). For example, in the case of state
estimation, f(x, s,y) = x, and the goal is to find F (y) that predicts the ground
truth x in the closest sense.
Rigorously, the inference problem can be formulated as follows,

min
F2F

E
x,s,y

[L (f(x, s,y), F (y))] (1.6)

,min
�

E
x,s,y

[L (f(x, s,y), F
�

(y))]

where a) F is some class of functions from which a predictor F (·) is chosen,
and b) L(f, F ) is some loss function that characterizes the distance between f
and F . We note that (1.6) is in general an infinite dimensional optimization
problem. In practice, we typically restrict ourselves to some parameterized class
of functions, so that the optimization becomes over a set of parameters, and is
finite dimensional.
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denote the Monte Carlo samples by {xi, si,yi; i = 1, . . . , I}. Accordingly, (1.6)
is approximated by the following,

min
F2F

1

I

IX

i=1

L
�
f(xi, si,yi), F (yi)

�
. (1.8)

In practice, we typically set F to be a parameterized set of functions, with the
parameters denoted by �. We thus have the following problem,

⇡ min
�

1

I

IX

i=1

L
�
f(xi, si,yi), F

�

(yi)
�
. (1.9)

With a data set {xi, si,yi} generated using Monte Carlo simulations, (1.9) can
then be solved as a deterministic optimization problem. The optimal solution of
(1.9) approaches that of the original problem (1.6) as I ! 1.

Notably, the problem (1.8) is an empirical risk minimization problem in ma-
chine learning, as it trains a discriminative predictor F

�

(y) with a data set
{xi, si,yi} generated from a generative model p(x, s,y). As a result of this of-
fline learning/training process (1.9), a near-optimal predictor F

�

⇤(y) is obtained.
Table 1.1 summarizes this “Learning-to-Infer” approach.

Table 1.1 The Learning-to-Infer Method

O✏ine computation:

1. Generate a data set {xi, si,yi} using Monte Carlo simulations
with the power flow and sensor models.

2. Select a parametrized function class F = {F
�

(y)}.
3. Train the function parameters � with {xi, si,yi} using (1.9).

Online inference (in real time):

1. Collect instant measurements y from the system.
2. Compute the prediction F

�

⇤(y).

1.2.3 Case Study 1: Multi-Line Outage Identification

In this section, we demonstrate how machine learning based monitoring applies
to a situational awareness task: line outage identification. In power networks,
transmission line outages, if not rapidly identified and contained, can quickly
escalate to cascading failures. Real-time line outage identification is thus essential
to all network control decisions for mitigating failures. In particular, since the
first few line outages may have already escaped the operators’ attention, the
ability to identify in real time the network topology with an arbitrary number
of line outages becomes critical to prevent system collapse.
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outputs values that are “closest” to f(x, s,y). For example, in the case of state
estimation, f(x, s,y) = x, and the goal is to find F (y) that predicts the ground
truth x in the closest sense.
Rigorously, the inference problem can be formulated as follows,
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where a) F is some class of functions from which a predictor F (·) is chosen,
and b) L(f, F ) is some loss function that characterizes the distance between f
and F . We note that (1.6) is in general an infinite dimensional optimization
problem. In practice, we typically restrict ourselves to some parameterized class
of functions, so that the optimization becomes over a set of parameters, and is
finite dimensional.
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finite dimensional.
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Key Advantages

• Labeled data can be generated in an arbitrarily large amount, often 
efficiently.

Many types of labels are built-in. 
• Very complex predictor models can be trained to ensure good 

approximation of             . 
Overfitting is much less of an issue as additional data can 
always be generated from the physical model.

• Offline computation can be maximumly exploited to offer the best 
real-time inference performance. 

• Information from complex physical models, represented by the 
simulated data, are seamlessly integrated with that from real-time 
sensor measurements. 

• Accelerate key procedures in power system operation, e.g., 
contingency analysis, security constrained OPF. 
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which a) x, s are generated according to a prior distribution p(x, s), and b)
the noise-free measurements h(·) are also computed by solving the power flow
equations (1.6), based on which the actual noisy measurements y follow the
conditional probability distribution p(y|x, s).
The goal of inferring some desired function f(x, s,y) from observing y can

be formulated as providing a predictor function F (y) which, given inputs y,
outputs values that are “closest” to f(x, s,y). For example, in the case of state
estimation, f(x, s,y) = x, and the goal is to find F (y) that predicts the ground
truth x in the closest sense.
Rigorously, the inference problem can be formulated as follows,

min
F2F

E
x,s,y

[L (f(x, s,y), F (y))] (1.11)

where a) F is some class of functions from which a predictor F (·) is chosen,
and b) L(f, F ) is some loss function that characterizes the distance between f

and F . We note that (1.11) is in general an infinite dimensional optimization
problem. In practice, we typically restrict ourselves to some parameterized class
of functions, so that the optimization becomes over a set of parameters, and is
finite dimensional.
Importantly, when F contains all possible functions, the optimal solution of

(1.11), denoted by F

⇤, minimizes the expected loss among all possible predictor
functions. We call this unconstrained optimal predictor F ⇤(·) the target function.
For example, if L(f, F ) = (f � F )2, i.e., the squared error loss (assuming the
desired function f(·) takes numeric values), it can be shown that the target
function is the conditional expectation,

F

⇤(y) = E
x,s|y [f(x, s,y)|y] . (1.12)

In this case, the goal of inference is to compute this conditional expectation.
Recall that the joint distribution p(x, s,y) is in part determined by the nonlinear
power flow equations (1.6). This makes computing the conditional expectation
(1.12) di�cult even for f as simple as f = x as in state estimation. The physical
model-based approaches such as (1.8) are precisely exploiting the role of power
flow equations in p(x, s,y) to simplify the computation of (1.12). More generally,
computing (1.12) faces the challenges discussed in the previous section, which
significantly limit the e↵ectiveness of physical model-based approaches.

A Learning-to-Infer Apprach
There are two fundamental di�culties in performing the optimal prediction using
the target function F

⇤(y):

• Finding F

⇤(y) can be very di�cult (beyond the special case of L(·) being the
squared error loss), and

• Even if F ⇤(y) is conceptually known (see, e.g., (1.12)), it is often computa-
tionally intractable to be evaluated.
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Case Study 1: Multi-Line Outage Identification  

• Motivation
– Missing/incorrect information of multi-component failures is a major 

cause of large-scale blackouts in power systems. 
– E.g., cascading failures can develop very quickly in wide-area power 

networks.
Case: The cascading failures in the 2011 Southwest blackout caused 7 
million people out of power in 11 minutes. 

– The depth of cascading failures can be much beyond “N-1”. 

– System operators need real-time and accurate information about 
complex failure scenarios to effectively contain failures.

– At any time instant, given all the available measurements y, how do we 
infer the current topology/failure scenario s? 

• One big hypothesis testing problem
The complexity grows exponentially with the number of unsure 
line statuses.
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Related work

• Real-time line outage identification (use instant measurements)
– Exhaustive search based: [Tate & Overbye 08], [Zhao et al. 14], 

[Garcia et al. 16]
– Exploiting sparsity: [Zhu & Giannakis 12]
– Graphical model based: [Chen et al. 14]
– Sequential detection: [Heydari & Tajer 17]

• Non-real-time topology identification (collect data over a certain 
period)
– [He & Zhang 11] [Bolognani et al. 13] [Li et al. 13] [Yuan et al. 

16] [Kekatos et al. 16] [Gera et al. 17] [Weng et al. 17] [Deka et 
al. 17]
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Challenges

• Complexity: The complexity grows exponentially with the 
number of unsure line statuses.

• Real-time requirement: very low complexity algorithm 
needed.

• Use only instant measurements.

• High accuracy.

19



Learning to Infer

• A Probabilistic formulation

Optimal inference of grid topology s depends on                     .
– Even listing them has an exponential complexity. 

• We focus on marginal inference, i.e., compute                .
– Still, summing out all                     is exponentially complex. 

– The MAP detector                                               has a very 
complicated decision boundary.

• Learning to Infer:
– Desired function
– Approximate, by offline training, the posterior                 with 

functions that enable real-time online inference. 

2. PROBLEM FORMULATION

We consider a power network with N buses, and a baseline
topology with L lines. We denote the incidence matrix of the
baseline topology by M 2 {�1, 0, 1}N⇥L. We use a binary
variable s

l

to denote the status of a line l, with s
l

= 1 for
a connected line l, and 0 otherwise. The actual topology of
the network can then be represented by s = [s1, . . . , sL]

T .
In this paper, we employ the DC power flow model for the
sake of simplicity [15]. However, we note that the developed
methodology can be directly extended to the AC power flow
model. We denote the power injections and voltage phase
angles at all the buses by P 2 RN and ✓ 2 RN , respectively.
Based on the DC power flow model, we have

P = MS�MT✓, (1)

where S = diag(s1, . . . , sL), � = diag(

1
x1
, . . . , 1

xL
), and x

l

is the reactance of line l.
We focus on identifying the network topology s based on

real time measurements of ✓ provided by phasor measure-
ment units (PMUs) located at a subset of the buses M, as
well as knowledge of P . We model the PMU measurements
as

y = ✓M + v, (2)

where ✓M is formed by entries of ✓ from buses in M, and
v ⇠ N(0,�2I) contains the measurement noise.

As the observations y are made under the true under-
lying topology s among many possibilities, identifying the
network topology s can be formulated as a hypothesis test-
ing problem: Given y and P , we would like to identify the
topology s that best “fits” the relations (1) and (2). Under
a Bayesian inference framework, a MAP detector would pick
argmaxs p(s|y,P ) as the identification decision, which min-
imizes the identification error probability. However, as the
number of hypotheses grows exponentially with the number
of unknown line statuses, performing the hypothesis testing
based on an exhaustive search becomes computationally in-
tractable. In general, there are up to 2

L topology hypotheses.
To solve the issue of exponential complexity, we approx-

imately decouple the hypothesis testing problem into L sep-
arate binary hypothesis testing problems: for each line l, the
MAP detector identifies argmax

sl2{0,1} p(sl|y,P ). As a re-
sult, instead of minimizing the identification error probability
of the vector s (i.e., “symbol” error probability), the binary
MAP detectors minimize the identification error probability
of each line status s

l

(i.e., “bit” error probability). The pos-
terior marginal p(s

l

|y,P ), however, is very difficult to com-
pute. (Note that summing out all s

k

, k 6= l requires expo-
nential computational complexity.) As a result, even for the
binary MAP detector of s

l

, it is not tractable to analytically
compute its decision boundary, which can be very compli-
cated in the domain of y and P .

To find the unknown decision boundary of each binary
MAP detector, we employ a learning based approach ex-
ploiting the idea of the recently developed “learning-to-infer”
methodology [11]. The MAP detector for line l can be viewed
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outputs either s

l
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l
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forward design architecture is to train a separate classifier for
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l
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l
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l

.
Next, we introduce a second architecture that allows clas-

sifiers for different lines to share features, which can lead to
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in its output layer, we train one neural network whose output
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ilar sizes of neural networks, adding nodes in the output layer
incurs only a very small increase in the training time. As
a result, there is an O(L) reduction in computation time for
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[3]. Network component failures such as transmission line
outages, if not rapidly identified and contained, can quickly
escalate to cascading failures. In particular, when line fail-
ures happen, the power network topology changes instantly,
newly stressed areas can unexpectedly emerge, and subsequent
failures may be triggered that lead to increasingly complex
network topology changes. While the power system is usually
protected against the so called “N � 1” failure scenarios (i.e.,
only one component fails), as failures accumulate, effective
automatic protection is no longer guaranteed. Thus, when
cascading failures start developing, real-time protective actions
critically depend on correct and timely knowledge of the
network status. Indeed, without accurate knowledge of the
line outages, protective control methods have been observed
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line outage identification is essential to all network control
decisions for mitigating failures. In particular, since the first
few line outages may have already been missed, the ability to
identify in real time the network topology with an arbitrary
number of line outages becomes critical to prevent system
collapse.

Real-time line outage identification is however a very chal-
lenging problem, especially when unknown line outages in the
network quickly accumulate as in scenarios that cause large-
scale blackouts [3]. The number of possible outage hypotheses
grows exponentially with the number of line outages, making
real-time multi-line outage identification fundamentally hard.
Other limitations in practice such as behaviors of human
operators under time pressure, missing and contradicting in-
formation, and privacy concerns over data sharing can make
this problem even harder. Assuming a small number of line
failures, exhaustive search methods have been developed in
[5], [6], [7] and [8] based on hypothesis testing, and in [9]
based on logistic regression. To overcome the prohibitive com-
putational complexity of exhaustive search methods, [10] has
developed sparsity exploiting outage identification methods
with overcomplete observations to identify sparse multi-line
outages. Without assuming sparsity of line outages, a graphical
model based approach has been developed for identifying arbi-
trary network topologies [11]. Sequential line outage detection
method has also been proposed [12].

On a related note, non-real-time power grid topology iden-
tification have also been extensively studied: the underlying
topology stays the same, while many data are collected over
a relatively long period of time before the topology can
be identified [13], [14], [15]. A variety of data have been
exploited for addressing this problem, e.g., data of power
injections [16], voltage correlation [17], and energy prices
[18]. For power distribution systems in particular, various
graph learning approaches have also been developed [19], [20].

In this paper, we focus on real-time identification of a
potential large number of simultaneous line outages based
on instantly collected measurements in the power system.
We start with a probabilistic model of the variables in a
power system (topology, power injections, voltages, power
flows, currents etc.) and in its monitoring system (sensor
measurements on all kinds of physical quantities). We then
formulate the multi-line outage identification problem in a
Bayesian inference framework, where we aim to compute the
posterior probabilities of the post-outage topologies given any
instant measurements.

To overcome the fundamental computational complexity
due to the exponentially large number of possible post-outage
topologies, we develop a variational inference framework, in
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to further aggravate the failure scenarios [4]. Thus, real-time
line outage identification is essential to all network control
decisions for mitigating failures. In particular, since the first
few line outages may have already been missed, the ability to
identify in real time the network topology with an arbitrary
number of line outages becomes critical to prevent system
collapse.

Real-time line outage identification is however a very chal-
lenging problem, especially when unknown line outages in the
network quickly accumulate as in scenarios that cause large-
scale blackouts [3]. The number of possible outage hypotheses
grows exponentially with the number of line outages, making
real-time multi-line outage identification fundamentally hard.
Other limitations in practice such as behaviors of human
operators under time pressure, missing and contradicting in-
formation, and privacy concerns over data sharing can make
this problem even harder. Assuming a small number of line
failures, exhaustive search methods have been developed in
[5], [6], [7] and [8] based on hypothesis testing, and in [9]
based on logistic regression. To overcome the prohibitive com-
putational complexity of exhaustive search methods, [10] has
developed sparsity exploiting outage identification methods
with overcomplete observations to identify sparse multi-line
outages. Without assuming sparsity of line outages, a graphical
model based approach has been developed for identifying arbi-
trary network topologies [11]. Sequential line outage detection
method has also been proposed [12].

On a related note, non-real-time power grid topology iden-
tification have also been extensively studied: the underlying
topology stays the same, while many data are collected over
a relatively long period of time before the topology can
be identified [13], [14], [15]. A variety of data have been
exploited for addressing this problem, e.g., data of power
injections [16], voltage correlation [17], and energy prices
[18]. For power distribution systems in particular, various
graph learning approaches have also been developed [19], [20].

In this paper, we focus on real-time identification of a
potential large number of simultaneous line outages based
on instantly collected measurements in the power system.
We start with a probabilistic model of the variables in a
power system (topology, power injections, voltages, power
flows, currents etc.) and in its monitoring system (sensor
measurements on all kinds of physical quantities). We then
formulate the multi-line outage identification problem in a
Bayesian inference framework, where we aim to compute the
posterior probabilities of the post-outage topologies given any
instant measurements.

To overcome the fundamental computational complexity
due to the exponentially large number of possible post-outage
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ures happen, the power network topology changes instantly,
newly stressed areas can unexpectedly emerge, and subsequent
failures may be triggered that lead to increasingly complex
network topology changes. While the power system is usually
protected against the so called “N � 1” failure scenarios (i.e.,
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line outages, protective control methods have been observed
to further aggravate the failure scenarios [4]. Thus, real-time
line outage identification is essential to all network control
decisions for mitigating failures. In particular, since the first
few line outages may have already been missed, the ability to
identify in real time the network topology with an arbitrary
number of line outages becomes critical to prevent system
collapse.

Real-time line outage identification is however a very chal-
lenging problem, especially when unknown line outages in the
network quickly accumulate as in scenarios that cause large-
scale blackouts [3]. The number of possible outage hypotheses
grows exponentially with the number of line outages, making
real-time multi-line outage identification fundamentally hard.
Other limitations in practice such as behaviors of human
operators under time pressure, missing and contradicting in-
formation, and privacy concerns over data sharing can make
this problem even harder. Assuming a small number of line
failures, exhaustive search methods have been developed in
[5], [6], [7] and [8] based on hypothesis testing, and in [9]
based on logistic regression. To overcome the prohibitive com-
putational complexity of exhaustive search methods, [10] has
developed sparsity exploiting outage identification methods
with overcomplete observations to identify sparse multi-line
outages. Without assuming sparsity of line outages, a graphical
model based approach has been developed for identifying arbi-
trary network topologies [11]. Sequential line outage detection
method has also been proposed [12].

On a related note, non-real-time power grid topology iden-
tification have also been extensively studied: the underlying
topology stays the same, while many data are collected over
a relatively long period of time before the topology can
be identified [13], [14], [15]. A variety of data have been
exploited for addressing this problem, e.g., data of power
injections [16], voltage correlation [17], and energy prices
[18]. For power distribution systems in particular, various
graph learning approaches have also been developed [19], [20].

In this paper, we focus on real-time identification of a
potential large number of simultaneous line outages based
on instantly collected measurements in the power system.
We start with a probabilistic model of the variables in a
power system (topology, power injections, voltages, power
flows, currents etc.) and in its monitoring system (sensor
measurements on all kinds of physical quantities). We then
formulate the multi-line outage identification problem in a
Bayesian inference framework, where we aim to compute the
posterior probabilities of the post-outage topologies given any
instant measurements.

To overcome the fundamental computational complexity
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to further aggravate the failure scenarios [4]. Thus, real-time
line outage identification is essential to all network control
decisions for mitigating failures. In particular, since the first
few line outages may have already been missed, the ability to
identify in real time the network topology with an arbitrary
number of line outages becomes critical to prevent system
collapse.

Real-time line outage identification is however a very chal-
lenging problem, especially when unknown line outages in the
network quickly accumulate as in scenarios that cause large-
scale blackouts [3]. The number of possible outage hypotheses
grows exponentially with the number of line outages, making
real-time multi-line outage identification fundamentally hard.
Other limitations in practice such as behaviors of human
operators under time pressure, missing and contradicting in-
formation, and privacy concerns over data sharing can make
this problem even harder. Assuming a small number of line
failures, exhaustive search methods have been developed in
[5], [6], [7] and [8] based on hypothesis testing, and in [9]
based on logistic regression. To overcome the prohibitive com-
putational complexity of exhaustive search methods, [10] has
developed sparsity exploiting outage identification methods
with overcomplete observations to identify sparse multi-line
outages. Without assuming sparsity of line outages, a graphical
model based approach has been developed for identifying arbi-
trary network topologies [11]. Sequential line outage detection
method has also been proposed [12].

On a related note, non-real-time power grid topology iden-
tification have also been extensively studied: the underlying
topology stays the same, while many data are collected over
a relatively long period of time before the topology can
be identified [13], [14], [15]. A variety of data have been
exploited for addressing this problem, e.g., data of power
injections [16], voltage correlation [17], and energy prices
[18]. For power distribution systems in particular, various
graph learning approaches have also been developed [19], [20].

In this paper, we focus on real-time identification of a
potential large number of simultaneous line outages based
on instantly collected measurements in the power system.
We start with a probabilistic model of the variables in a
power system (topology, power injections, voltages, power
flows, currents etc.) and in its monitoring system (sensor
measurements on all kinds of physical quantities). We then
formulate the multi-line outage identification problem in a
Bayesian inference framework, where we aim to compute the
posterior probabilities of the post-outage topologies given any
instant measurements.

To overcome the fundamental computational complexity
due to the exponentially large number of possible post-outage

8 Deep Learning in Power Systems

System Model
We consider a power system with N buses, and its baseline topology (i.e., the
network topology when there is no line outage) with M lines. The binary variable
s
m

denotes the status of a line m. s = [s1, . . . , sm]T thus represents the actual
topology of the network. We denote the real and reactive power injections at
all the buses by P ,Q 2 RN , and the voltage magnitudes and phase angles by
V ,✓ 2 RN . In particular, given the network topology s and a set of controlled
input values {P ,Qin,V in}, (where Q

in and V

in consist of some subsets of Q
and V , respectively,) the remaining values of {Q,V ,✓} can be determined by
solving (1.1).

Learning to Infer Line Outages
We are interested in identifying the post-outage network topology s in real time
based on instant measurements y collected in the power system. Ideally, we would
like to compute the posterior conditional probabilities p(s|y), 8s. However, as
there are up to 2M possibilities for s, even listing the probabilities p(s|y), 8s has
an exponential complexity.
Instead, we focus on computing the posterior marginal conditional probabili-

ties p(s
m

|y),m = 1, . . . ,M . Note that the posterior marginals are characterized
by just M numbers, P(s

m

= 1|y),m = 1, . . . ,M , as opposed to 2M � 1 num-
bers required for characterizing p(s|y). Although listing the posterior marginals
p(s

m

|y) are tractable, computing them, however, still remains intractable. In
particular, even with p(s|y) given, summing out all s

k

, k 6= m, to obtain p(s
m

|y)
still requires exponential computational complexity (Mezard & Montanari 2009).
We now employ the machine learning based framework in Section 1.2.2. The

desired function f(·) corresponds to the set of conditional marginals
f(·) = p(s

l

|y), 8l, and F
�

(y) corresponds to approximate conditional marginals,
denoted by q

�

(s
m

|y), 8m. The objective of (1.6) corresponds to minimizing some
distance between p(s

m

|y) and q
�

(s
m

|y), for which we choose the Kullback-
Leibler (KL) divergence: 8m,

D(pkq
�

)
m

,
X

sm

p(s
m

|y) log p(s
m

|y)
q
�

(s
m

|y) . (1.10)

The expected loss minimization (1.6) becomes (with some simple algebra,) 8m,

max
�

E
sm,y

[log q
�

(s
m

|y)] . (1.11)

With a generated data set {xi, si,yi}, the learning problem (1.9) becomes, 8m,

max
�

1

I

IX

i=1

log q
�

(si
m

|yi), (1.12)

which is equivalent to finding the maximum likelihood estimation of the predictor
function parameters �.
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Learning to infer

• Goal: Find a variational distribution q(s|y) to approximate p(s|y), s.t.
– The model of q(s|y) has sufficient expressive power to closely 

represent complicated p(s|y).
– Given y, q(sl|y) can be easily computed for real-time inference. 

• Optimize the variational distribution via empirical risk 
minimization:
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MC samples drawn from the generative model.
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Numerical experiments
• IEEE 300 bus

~10^21 candidate topologies
• Non-sparse outages

Average cardinality 11.6
• Highly variable operating conditions
• Noisy measurements of voltage 

phase angles at all the buses

• Neural networks with shared features are used as the predictor models.
• 1.8M data for training are sufficient. 
• 200K testing data contains 100% unseen topologies from the training data.
• Training time: 3 hours on a GPU. Testing time: under a millisecond per data 

sample. 
• Results: the accuracy is 0.997 --- on average 1.0 misidentified line status 

label 
– Great generalizability. 
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Figure 3: Progressions of a) training and validation losses, b) testing accuracies, and c) average numbers of misidentified line statuses in
IEEE 30, 118 and 300 bus systems.

0 0.5 1 1.5 2
Training Data Size #105

0.96

0.965

0.97

0.975

0.98

0.985

0.99

Te
st

in
g 

Id
en

tif
ic

at
io

n 
Ac

cu
ra

cy

300 neurons
200 neurons
100 neurons

(a)

0 1 2 3 4 5 6
Training Data Size #105

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

Te
st

in
g 

Id
en

tif
ic

at
io

n 
Ac

cu
ra

cy

1000 neurons
600 neurons
300 neurons

(b)

0 0.5 1 1.5 2
Training Data Size #106

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

Te
st

in
g 

Id
en

tif
ic

at
io

n 
Ac

cu
ra

cy

3000 neurons

2000 neurons

1000 neurons

(c)

Figure 4: Effect of model size and sample size, (a) IEEE 30 bus system, (b) IEEE 118 bus system, (c) IEEE 300 bus system.

in Figure 3(c). We observe that, at the beginning of the
training procedures, the average numbers of misidentified line
statuses are 7.8, 13.4 and 11.6 for the IEEE 30, 118 and
300 bus systems, which are exactly the average numbers of
disconnected lines in the respective generated data sets (cf.
Section V-A). Indeed, this coincides with the result from a
naive identification decision rule of always claiming all the
lines as connected (i.e., a trivial majority rule). As the training
procedures progress, the average numbers of misidentified line
statuses are drastically reduced to eventually 0.4, 1.7 and 1.0.
In other words, for the IEEE 300 bus system for example,
facing on average 11.6 simultaneous line outages, only 1

line status would be misidentified on average by the learned
classifier. We note that such a performance is achieved with
outage identification decisions made in real time, under a
millisecond. While the training process can potentially be time
consuming, it is however done completely offline.

It is worth noting that we have generated the training, valida-
tion and testing data sets with uniformly random voltage phase
angles, and hence considerably variable power injections. In
practice, there is often more informative prior knowledge
about the power injections based on historical data and load
forecasts. With such information, the model can be trained
with much less variable samples of power injections, and
the outage identification performance can be further improved
significantly.

2) Model Size, Sample Complexity, and Scalability: In the
proposed Learning-to-Infer method, obtaining labeled data is
not an issue since data can be generated in an arbitrarily
large amount using Monte Carlo simulations. This leads to
two questions that are of particular interest: to learn a good

classifier, a) what size of a neural network is needed? and
b) how much data needs to be generated? To answer these
questions, we vary the sizes of the hidden layer of the neural
networks as well as the training data size, and evaluate the
learned classifiers for the three benchmark systems. We plot
the testing results for the IEEE 30, 118 and 300 bus systems
in Figure 4(a), 4(b) and 4(c), respectively. It is observed that
the best performance is achieved with 200K/600K/1.8M

data and with 300/1000/3000 neurons for the 30/118/300 bus
systems, respectively. Further increasing the data size or the
neural network size would see much diminished returns.

Based on all these experiments, we now examine the
scalability of the proposed Learning-to-Infer method as the
problem size increases. We observe that training data sizes
of 200K, 600K and 1.8M and neural network models of
sizes 300, 1000 and 3000 ensure very high and comparable
performance with no overfitting for the IEEE 30, 118 and 300
bus systems, respectively. When these data sizes are reduced
by a half, some levels of overfitting then appeared for these
models in all the three systems. We plot the training data
sizes compared to the problem sizes for the three systems
in Figure 5. We observe that the required training data size
increases approximately linearly with the problem size. This
linear scaling behavior implies that the proposed Learning-to-
Infer method can be effectively implemented for large-scale
systems with reasonable computation resources.

3) Effect of Number and Locations of Sensors: We close
this section with a look into the effect of sensor placement
in real-time multi-line outage identification. It is clear that
the performance of line outage identification would closely
depend on where and what types of sensor measurements
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Numerical experiments (cont.)

• Scalability
The required training data size 
increases approximately 
linearly with the problem size.
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Figure 5: Scalability of the Learning-to-Infer method, from
the IEEE 30 bus system to the IEEE 300 bus system.

are collected. Given limited sensing resources, optimizing the
sensor placement is a hard problem for which many studies
have addressed (see, e.g., [7] among others). Here, we present
a case study on the IEEE 30 bus system, for which voltage
phase angles are collected only at 19 buses (as opposed to
all the buses as in the previous experiments). Interestingly,
the achieved average identification accuracy only drops to
0.978 (from 0.989 when all the buses are monitored.) This
translates to on average only 0.83 misidentified line statuses
among a total of 38 lines. A more comprehensive study of
sensor placement for real-time topology identification is left
for future work.

VI. CONCLUSION

We have developed a new Learning-to-Infer variational
inference method for real-time multi-line outage identification
in power grids. The computational complexity due to the ex-
ponentially large number of outage hypotheses is overcome by
efficient marginal inference with optimized variational models.
Optimization of the variational model is transformed to and
solved as a discriminative learning problem, based on Monte
Carlo samples efficiently generated with full-blown power
flow models. The developed Learning-to-Infer method has
the major advantages that a) the training process takes place
completely offline, and b) labeled data sets can be generated
in an arbitrarily large amount fast and at very little cost. As a
result, very complex variational models can employed without
worrying about overfitting, as more labeled training data can
always be generated had there been overfitting observed.
With the classifiers learned offline, their actual use is in real
time, and outage identification decisions are made under a
millisecond. We have evaluated the proposed method with the
IEEE 30, 118 and 300 bus systems. It has been demonstrated
that arbitrary multi-line outages can be identified in real time
with excellent performance using classifiers trained with a
reasonably small amount of generated data.
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Figure 3: Progressions of a) training and validation losses, b) testing accuracies, and c) average numbers of misidentified line statuses in
IEEE 30, 118 and 300 bus systems.
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Figure 4: Effect of model size and sample size, (a) IEEE 30 bus system, (b) IEEE 118 bus system, (c) IEEE 300 bus system.

in Figure 3(c). We observe that, at the beginning of the
training procedures, the average numbers of misidentified line
statuses are 7.8, 13.4 and 11.6 for the IEEE 30, 118 and
300 bus systems, which are exactly the average numbers of
disconnected lines in the respective generated data sets (cf.
Section V-A). Indeed, this coincides with the result from a
naive identification decision rule of always claiming all the
lines as connected (i.e., a trivial majority rule). As the training
procedures progress, the average numbers of misidentified line
statuses are drastically reduced to eventually 0.4, 1.7 and 1.0.
In other words, for the IEEE 300 bus system for example,
facing on average 11.6 simultaneous line outages, only 1

line status would be misidentified on average by the learned
classifier. We note that such a performance is achieved with
outage identification decisions made in real time, under a
millisecond. While the training process can potentially be time
consuming, it is however done completely offline.

It is worth noting that we have generated the training, valida-
tion and testing data sets with uniformly random voltage phase
angles, and hence considerably variable power injections. In
practice, there is often more informative prior knowledge
about the power injections based on historical data and load
forecasts. With such information, the model can be trained
with much less variable samples of power injections, and
the outage identification performance can be further improved
significantly.

2) Model Size, Sample Complexity, and Scalability: In the
proposed Learning-to-Infer method, obtaining labeled data is
not an issue since data can be generated in an arbitrarily
large amount using Monte Carlo simulations. This leads to
two questions that are of particular interest: to learn a good

classifier, a) what size of a neural network is needed? and
b) how much data needs to be generated? To answer these
questions, we vary the sizes of the hidden layer of the neural
networks as well as the training data size, and evaluate the
learned classifiers for the three benchmark systems. We plot
the testing results for the IEEE 30, 118 and 300 bus systems
in Figure 4(a), 4(b) and 4(c), respectively. It is observed that
the best performance is achieved with 200K/600K/1.8M

data and with 300/1000/3000 neurons for the 30/118/300 bus
systems, respectively. Further increasing the data size or the
neural network size would see much diminished returns.

Based on all these experiments, we now examine the
scalability of the proposed Learning-to-Infer method as the
problem size increases. We observe that training data sizes
of 200K, 600K and 1.8M and neural network models of
sizes 300, 1000 and 3000 ensure very high and comparable
performance with no overfitting for the IEEE 30, 118 and 300
bus systems, respectively. When these data sizes are reduced
by a half, some levels of overfitting then appeared for these
models in all the three systems. We plot the training data
sizes compared to the problem sizes for the three systems
in Figure 5. We observe that the required training data size
increases approximately linearly with the problem size. This
linear scaling behavior implies that the proposed Learning-to-
Infer method can be effectively implemented for large-scale
systems with reasonable computation resources.

3) Effect of Number and Locations of Sensors: We close
this section with a look into the effect of sensor placement
in real-time multi-line outage identification. It is clear that
the performance of line outage identification would closely
depend on where and what types of sensor measurements
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Numerical experiments (cont.)

• IEEE 118-bus system with AC power flow model 

9

Figure 6: The IEEE 30 bus system, and a set of locations
of PMUs.
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Figure 7: Progressions of the training and testing accuracies,
the IEEE 118-bus system, with the AC power flow model
employed.

For each data point which includes a post-outage topology
and a generation and load profile, we solve the AC power flow
equations (1). To have a consistent comparison with the earlier
experiments with the DC power flow model, we continue
to rely on measurements of nodal voltage phase angles, real
power generation, and real power loads to infer the multi-line
outages in real time. We will demonstrate that, with the AC
power flow model, very high performance similar to that with
the DC power flow model can be achieved. Undoubtedly, other
types of measurements (e.g., voltage magnitudes, reactive
power) may be used to further improve the performance, which
is left for future investigation.

The 1M data are divided into 800K, 100K, and 100K

for training, validation, and testing, respectively. Similarly
to the DC power flow experiments, we employ a two-layer
fully connected neural network with 1000 neurons in the
hidden layer for learning to infer multi-line outages. The same
training algorithm is applied. We plot the training and testing
accuracies for every epoch in Figure 7. We observe that a 0.990

testing accuracy is achieved, (recall that the same accuracy,
0.990, is achieved in the earlier experiments on the 118-bus
system with the DC power flow model). This translates to on
average 1.74 mis-identified line statuses.

Furthermore, we looked into the types of mis-identification
errors, and observed that a) the rate of missed detection (i.e.,
missing a line outage when it actually occurred among other
simultaneous line outages) is 8.4%, and b) the rate of false
alarm (i.e., identifying a line as in outage when it is in fact
connected) is a much lower 0.24%. As a result, we observe
that nearly 80% of the on average 1.74 mis-identified line
statuses are from missing to detect 8.4% of the on average 16.2
simultaneous line outages, resulting in 1.36(= 16.2 ⇥ 8.4%)

missed line outages.

E. On Computation Times for Data Generation and Training
As discussed above, a major advantage of the Learning-

to-Infer method is that offline computation is exploited for
achieving fast and accurate online inference. Specifically,
the offline computation consists of two components: a) data
generation based on the physical model, and b) predictor
training based on the generated data. We discuss in the
following several aspects of the offline computation times for
data generation and predictor training.

The time consumed for generating the 1M data with the AC
power flow on the IEEE 118 bus system (cf. Section V-D) is a
little over an hour using MATPOWER [33]. The training time
with 2000 epochs on these data is a little over two hours. Both
are run on a laptop with an Intel Core i7 3.1-GHz CPU and
8 GB of RAM. Various approaches can be applied to reduce
both times. On the one hand, data generation can be trivially
parallelized and significantly accelerated as such. It is worth
re-emphasizing that data generation via simulations, while still
may take a non-trivial amount of time for large systems, is
regardless many orders of magnitude faster than collecting and
manually labeling historical data from real-world systems. On
the other hand, the experiments conducted in this section have
achieved very high identification accuracies around or above
99%. In practice, if the performance requirement is not as
high (e.g., 97%), then a significantly smaller amount of data
(cf. Figures 4(a) 4(b) and 4(c)) and less number of training
epochs (cf. Figure 3(b)) would be sufficient. The sizes of
the neural networks can also be reduced which will lead to
faster training. Leveraging the above approaches, much less
computation times can be achieved for offline data generation
and training.

VI. CONCLUSION

We have developed a new Learning-to-Infer method for real-
time multi-line outage identification in power grids. The com-
putational complexity due to the exponentially large number of
outage hypotheses is overcome by efficient marginal inference
with optimized predictor models. Optimization of the predictor
model is transformed to and solved as a discriminative learning
problem, based on Monte Carlo samples efficiently generated
with full-blown power flow models. The developed Learning-
to-Infer method has the major advantages that a) the training
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Case Study 2: Voltage Stability Margin Estimation  

• Motivation
– Voltage collapse is one of the major causes of large-scale black-outs 

[Kundur et al. 04]. 

– Increasing penetration of renewables brings higher variabilities into 
power system operations. 

– Determining the system stability margin in real time is greatly 
valuable for system operators to maintain situational awareness of 
the system and a safe operating margin. 

– We study voltage stability from a static analysis perspective.
• Bifurcation [Ajjarapu & Lee 92].
• ACPF’s Jacobian becomes singular. 
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Problem  

• Goal: Given any stable operating condition, estimate its “distance”
to voltage instability in real time. 

• Stability region C: all the power profiles S that do not induce voltage 
instability. 

• Voltage stability margin of any S: the (Euclidean) distance from S to 
the instability region Cc:

• The desired function 

• Challenges of computing 
– No computationally efficient 

representation of Cc

– High dimensional problem
– Non-convexity of C and Cc

Feasible
region

Infeasible
region

Boundary

Operating
point Voltage

stability
margin

1.2 Power SystemMonitoring with Deep Learning: Real-Time Inference 11

Learning to Infer Stability Margin with Transfer Learning
To solve (1.13), one needs to sample a large number of directions (a.k.a. loading
directions), and search along each of them starting from S by running CPF.
This does not work for real-time voltage stability margin inference, especially in
medium to large scale power systems where S can have hundreds to thousands
of dimensions.
We now employ the machine learning based framework in Section 1.2.2. The

desired function f(·) is f(·) = dist (S, Cc) (cf. (1.13)), and F
�

(S) corresponds
to approximate voltage stability margins. A squared error loss is employed, i.e.,
L(·) = (dist (S, Cc)� F

�

(S))2.
However, one key challenge arises: as described above, computing the “label”,

i.e., dist (S, Cc), even for just one simulated operating point S would consume
a considerable time. As such, to construct a relatively large data set, even to be
done o✏ine, is not practical, and yet is crucial for e↵ective training especially
for high dimensional inference as needed in power systems of reasonable sizes.
This di�culty practically limits our ability to use direct supervised learning for
training a margin predictor, simply because it is too time consuming to generate
a su�ciently large labeled data set.
To overcome this challenge, we observe the following fact: for an operating

point, while computing its voltage stability margin by searching is very time
consuming (e.g., minutes), verifying whether it is stable or not, nonetheless, is
very fast (e.g., milliseconds). Thus, within similar time limits, one can generate a
data set of [operating point, binary stability label] with a size many orders of mag-
nitude larger than a data set of [operating point, voltage stability margin label].
As such, while it is infeasible to generate a margin-labeled data set su�ciently
large to capture the high dimensional boundary of the voltage stability region C,
it is feasible to generate a su�ciently large binary stability-labeled data set that
does so. The problem is, however, training on a data set with only the binary
stability labels does not o↵er us a predictor that outputs stability margins.
Transfer Learning The key step forward is to use transfer learning to jointly
exploit both the information embedded in a large binary stability-labeled data
set and that in a small margin-labeled data set, with the end goal of obtaining
an accurate voltage stability margin predictor (Li, Zhao, Lee & Kim 2019). In
particular, we a) train a neural network-based binary classifier from a large
binary stability-labeled data set, b) take the trained hidden layer of the NN as a
feature extractor, with the hope that it implicitly captures su�cient information
of the boundary of C, and c) add an additional layer of NN to fine tune based
on only a small margin-labeled data set. In a sense, we transfer the knowledge
learned in the binary classifier in order to make it tractable to learn a margin
predictor based on only a small data set with stability margin labels.

Numerical Experiments
An experiment of the Transfer Learning method on voltage stability margin
inference in the IEEE 118 bus system is given below.
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0 0.5 1 1.5 2
Training Data Size #106

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

Te
st

in
g 

Id
en

tif
ica

tio
n 

Ac
cu

ra
cy

3000 neurons

2000 neurons

1000 neurons

Figure 1.1 E↵ect of function model size and sample size, IEEE 300 bus system.

gion. A major limitation of the existing approaches is that they are primarily for
exploring the voltage stability limit along a specific loading direction, with the
continuation power flow (CPF) method (Ajjarapu & Christy 1992) as a classic
tool of this kind. However, finding the voltage stability margin of an operating
point requires searching over a very large number of directions to identify the
“worst-case” loading direction, along which the current operating point is closest
to voltage instability. Sidestepping the problem of finding the worst-case loading
direction, another approach is to approximate the voltage stability margin us-
ing easily computable metrics, notably the smallest singular value (SSV) of the
Jacobian matrix (Tiranuchit et al. 1988, Lof et al. 1992) computed from power
flow algorithms. Such metrics, however, are only approximate.

System Model
A power profile S, i.e., the real and reactive power injections P

k

and Q
k

of all the
buses k1, can either induce a voltage collapse or not. A voltage collapse means
that, given S, the power flow equations (1.1) do not admit a feasible voltage
solution (Glover, Sarma & Overbye 2011). In this case, we call this power profile
S unstable. A power system’s voltage stability region is defined to be the set of
all power profiles that do not induce voltage collapse, denoted by C. Cc is thus
the voltage instability region.
The voltage stability margin at an operating point S is the distance of S to

the voltage instability region Cc,

dist (S, Cc) , min
S

02Cc
kS � S

0k2. (1.13)

In other words, the voltage stability margin captures the minimum power injec-
tion perturbation that, if applied, would lead to a voltage collapse.

1 More generally, one can consider a subset of buses of interests, which can also include PV
buses in addition to PQ buses.
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The vector of all measurements at a time instant t is denoted by,

y(t) = h(x(t), s(t);↵) + v(t), (1.7)

where a) x(t) represents the states of the system, i.e., the nodal complex voltages,
b) s(t) represents the component statuses, i.e., the on-o↵ binary variables of
whether each system component (among, e.g., transmission lines, generators,
transformers) is in failure or not, and c) ↵ represents the system component
parameters, which typically stay constant for relatively long time scales. The
function h(·) represents the noiseless measurements, which is determined by the
power flow equations (1.6), and v(t) is the measurement noise. In this section,
we focus on semi-steady states of power systems, and hence drop the time index
t in the notations.
Based on the observed measurements, the tasks of power system monitoring

can be casted as computing a desired function f(s,x,y;↵). The goal of comput-
ing f(·) can be categorized into two types, a) situational awareness, where we
estimate the current values of certain variables in the system, and b) preventive
analysis, where we infer what changes of certain variables in the system can lead
to system-wide failures, and thus provide an estimate of the robustness of the
system against potential disruptions. Examples of situational awareness include

• Power system state estimation, where f(·) = x, i.e., the nodal voltages, and

• Component outage detection, where f(·) = s, i.e., the component statuses.

Examples of preventive analysis include

• Voltage stability analysis, where f(·) is the voltage stability margin, and

• Contingency analysis, where f(·) is whether the system is N � k secure.

As such, computing f(s,x,y;↵) based on y (cf.(1.7)) for situational awareness
is an inference problem. As the focus of this section is power system monitor-
ing in real time, we assume the knowledge of the long-term system component
parameters ↵, and hence drop ↵ in the notations later on.

Model-Based Approaches and Limitations
The inference problems from y to f(·) have traditionally been solved by model-
based approaches since power systems have well-defined physical models (cf. (1.6)
and (1.7)).
For situational awareness, state estimation can be formulated as solving a
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Related work

• Continuation power flow (CPF) method [Ajjarapu & Christy 92]
• Iterative method to find locally worst case margin [Dobson& Lu 

93]

• Power flow’s Jacobian’s smallest singular value [Tiranuchit & 
Thomas 88] [Lof et al. 92]
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If a reliable load forecast specifying the direction of load 
increase in Rm is available, then a load power margin index e 
assuming the direction of load increase can also be computed 
[2,5,30,23,20,1] and the combination of the load power margin 
index with the worst case load power margin index -A01 

gives a useful description of the relation in parameter space 
of the current load powers Xo to the critical load powers C. 
For example, in the situation of figure 2, although the load 
power margin index e = 1x1 - Xol  assuming the direction of 
load increase given by n o  may be acceptably large, IX. - XO I is 
dangerously small so that even a minor contingency could pre- 
cipitate a voltage collapse. Of course, if the direction of load 
increase is not available, then only IX, - Xo I can be computed. 

Figure 2. Insecure point A0 in load power parameter space 

Galiana and Jarjis [17] consider the real power load flow 
equations with constant voltage magnitudes, define a feasi- 
bility region in a real power injection parameter space and 
present the idea of computing a closest instability in this pa- 
rameter space. In our notation, the boundary of the feasi- 
ble region would be labelled C. Using a conjecture that C 
is convex, Galiana and Jarjis parameterize C with the nor- 
mal vector N to C and define a real power margin D which 
is the perpendicular distance from the operating real power 
injections A0 to the tangent hyperplane of C with normal 
N .  Minimizing D with conjugate gradient methods yields a 
worst case real power margin and this computation is illus- 
trated in a 6 bus system. Jarjis and Galiana [21] consider 
the load flow equations and define a feasibility region in a 
real and reactive power injection parameter space augmented 
with the voltage magnitudes of PV buses. A non-Euclidean 
worst case parameter space margin is defined and computed 
using Fletcher- Powell minimization. Const rained minimiz a- 
tion in the load power parameter space is also considered and 
the computations are illustrated in 5 bus systems. Jung et 
al. [23] suggest a gradient projection optimization method to 
compute a worst case load power margin and Sekine et  al. 
[26] attempt to compute a worst case load power margin by 
gradient descent on the determinant of the Jacobian. The 
use of IX, - Xo l  and other indices in determining the costs 
of secure power system operation is explained in Alvarado et 
al. [3]. This paper explains and applies new iterative and 
direct methods to compute a closest saddle node bifurcation 
and the index IX, - X o l  and is based on work in [8,9,10,12]. 

2. Sta t ic  and Dynamic  Power Sys tem Models 
Although we regard the power system as being modelled 

by differential equations of the form (l . l) ,  Dobson [ll] shows 
that useful computations can be done with static equations 
such as the load flow equations whose solutions are equilibria 
of the differential equations. This follows since saddle node 
bifurcations of the static equation solutions coincide with sad- 
dle node bifurcations of the differential equation equilibria. 

For example [Il l ,  let y be a vector of load bus voltage 
angles and magnitudes and let 66 be a vector of generator 

voltage angles. Then load flow equations may be written as 

(2.1) 
0 = f l (6G,  Y) 
0 = f 2 ( 6 G ,  Y, A) 

where fi describes real power balance at the generators and 
f2 describes real and reactive power balance at the loads. 

A differential equation model which extends (2.1) by in- 
cluding generator swing dynamics and load dynamics is 

~ G = W  

= fi(&, Y) - A w (2.2) 
c = h ( f 2 ( 6 G ,  Y, A),"') 

Here h defines any dynamic load model which depends on the 
real and reactive power balance at  each load and frequency w 
and which satisfies h ( 0 )  = 0 (see [7,22] for examples). Then 
solutions (6~, y) of (2.1) yield equilibria (6~, 0, y) of (2.2) and 
bifurcation of solutions of (2.1) at ( 6 ~ , ,  yI) implies bifurca- 
tion of equilibria of (2.2) at (6~,, 0 ,  y,) [ll]. The point is that 
we can assume a differential equation model of the form (2.2) 
even if the precise form of h is unknown and perform compu- 
tations of saddle bifurcations of (2.2) using the simpler static 
equations (2.1). This is useful since convincing models for 
load dynamics have not yet been obtained. We remark that 
a similar reduction has not been obtained for the Hopf bifur- 
cation; the Hopf bifurcation seems to depend more strongly 
on details of underlying dynamic equations. 

Much useful engineering information is contained in 
right and left eigenvectors of the Jacobian of equation (2.2) 
at the bifurcation. The right eigenvector corresponding to 
the zero eigenvalue specifies the pattern of voltage decline in 
the initial dynamic collapse [7,11] and also the asymptotic di- 
rection in which the stable operating point z approaches the 
closest unstable equilibrium point as the saddle node bifur- 
cation occurs [7,11,18]. The left eigenvector corresponding to 
the zero eigenvalue can be used to  compute the normal vector 
to C [I l l .  This is used below to compute the index (A,  - Xol  
and index sensitivities. This eigenvector information is not 
lost when we compute with the static model (2.1) instead of 
the differential equations (2.2) since [11] and [I31 show that 
this information may be easily obtained from eigenvectors of 
the static model. 

The computations below apply to any power system 
model of the form (1.1) or to any static power system model 
which is equivalent to some underlying differential equation 
model of the form (1.1) in the sense explained above. For 
this paper we choose the load flow equations parameterized 
by real and reactive load powers to demonstrate the compu- 
tations. Note that the parameters X are only restricted to 
load powers for ease of exposition; any power system controls 
or parameters may be included in the parameter vector X as 
required and the results of the paper can easily be generalized 
to this case. 

3. Prel iminaries  
The iterative method to compute a closest saddle node 

bifurcation has two main ingredients: the formula for the nor- 
mal vector to C and any of the standard methods for find- 
ing the load power margin f2 assuming a direction of load 
increase. We consider these in turn before describing the it- 
erative method in section 4. 

At a saddle node bifurcation specified by load powers 
XI E C the corresponding equilibrium t l  is degenerate and 
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Observations

• It is computationally easy to verify if any S is stable or not, i.e., 
obtain the 0/1 label of S, (AC power flow).

• It is computationally easy to compute the distance from S to Cc
along any given direction (CPF).  

• It is computationally costly to (approximately) compute the 
voltage stability margin of S,                                 , as in principle 
all directions need to be explored.

1.2 Power SystemMonitoring with Deep Learning: Real-Time Inference 11

Learning to Infer Stability Margin with Transfer Learning
To solve (1.13), one needs to sample a large number of directions (a.k.a. loading
directions), and search along each of them starting from S by running CPF.
This does not work for real-time voltage stability margin inference, especially in
medium to large scale power systems where S can have hundreds to thousands
of dimensions.
We now employ the machine learning based framework in Section 1.2.2. The

desired function f(·) is f(·) = dist (S, Cc) (cf. (1.13)), and F
�

(S) corresponds
to approximate voltage stability margins. A squared error loss is employed, i.e.,
L(·) = (dist (S, Cc)� F

�

(S))2.
However, one key challenge arises: as described above, computing the “label”,

i.e., dist (S, Cc), even for just one simulated operating point S would consume
a considerable time. As such, to construct a relatively large data set, even to be
done o✏ine, is not practical, and yet is crucial for e↵ective training especially
for high dimensional inference as needed in power systems of reasonable sizes.
This di�culty practically limits our ability to use direct supervised learning for
training a margin predictor, simply because it is too time consuming to generate
a su�ciently large labeled data set.
To overcome this challenge, we observe the following fact: for an operating

point, while computing its voltage stability margin by searching is very time
consuming (e.g., minutes), verifying whether it is stable or not, nonetheless, is
very fast (e.g., milliseconds). Thus, within similar time limits, one can generate a
data set of [operating point, binary stability label] with a size many orders of mag-
nitude larger than a data set of [operating point, voltage stability margin label].
As such, while it is infeasible to generate a margin-labeled data set su�ciently
large to capture the high dimensional boundary of the voltage stability region C,
it is feasible to generate a su�ciently large binary stability-labeled data set that
does so. The problem is, however, training on a data set with only the binary
stability labels does not o↵er us a predictor that outputs stability margins.
Transfer Learning The key step forward is to use transfer learning to jointly
exploit both the information embedded in a large binary stability-labeled data
set and that in a small margin-labeled data set, with the end goal of obtaining
an accurate voltage stability margin predictor (Li, Zhao, Lee & Kim 2019). In
particular, we a) train a neural network-based binary classifier from a large
binary stability-labeled data set, b) take the trained hidden layer of the NN as a
feature extractor, with the hope that it implicitly captures su�cient information
of the boundary of C, and c) add an additional layer of NN to fine tune based
on only a small margin-labeled data set. In a sense, we transfer the knowledge
learned in the binary classifier in order to make it tractable to learn a margin
predictor based on only a small data set with stability margin labels.

Numerical Experiments
An experiment of the Transfer Learning method on voltage stability margin
inference in the IEEE 118 bus system is given below.
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Learning to Infer

• General procedure
– Generate samples based on the power system model
– Train a predictor of the stability margin based on the 

generated samples
– Use the offline trained predictor for online inference of the 

margin

• Challenge: Lack of Labels
– Computing accurate approximation of stability margins is very 

computationally heavy --- Even for offline computation, generating 
such labeled data for training is very time consuming. 
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Learning to Infer

• Observation
– Although computing a stability margin is hard, verifying if an 

operating condition is stable or not is fast. 
• Solution: Transfer Learning
– Generate a sufficient large dataset of data/operating conditions 

with 0/1 stability classification labels only. 
– Learn “as much as possible” from this 0/1 labeled data set.
– Generate a relatively small dataset of data/operating conditions 

with stability margin labels. 
– Transfer what we learn from the large 0/1 labeled data set to 

further learning from the much smaller margin labeled data set. 
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Overall training structure

• Offline: Sample a very large number of S with its 0/1 labels. 

• Offline: Sample only a small number of S with                             
(approximately) computed. 

• Offline: Use the large 0/1 labeled data set of labeled S to learn a 
binary classifier            that characterize the boundary of C. 

• Offline: Use the small data set of S labeled with voltage stability 
margins, and employ the intermediate features learned by the 
classifier            to further learn a margin estimator using regression. 

• Online: Apply the learned margin estimator to any newly observed 
S to estimate its voltage stability margin in real time. 
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an accurate voltage stability margin predictor (Li, Zhao, Lee & Kim 2019). In
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feature extractor, with the hope that it implicitly captures su�cient information
of the boundary of C, and c) add an additional layer of NN to fine tune based
on only a small margin-labeled data set. In a sense, we transfer the knowledge
learned in the binary classifier in order to make it tractable to learn a margin
predictor based on only a small data set with stability margin labels.

Numerical Experiments
An experiment of the Transfer Learning method on voltage stability margin
inference in the IEEE 118 bus system is given below.
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point, while computing its voltage stability margin by searching is very time
consuming (e.g., minutes), verifying whether it is stable or not, nonetheless, is
very fast (e.g., milliseconds). Thus, within similar time limits, one can generate a
data set of [operating point, binary stability label] with a size many orders of mag-
nitude larger than a data set of [operating point, voltage stability margin label].
As such, while it is infeasible to generate a margin-labeled data set su�ciently
large to capture the high dimensional boundary of the voltage stability region C,
it is feasible to generate a su�ciently large binary stability-labeled data set that
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Transfer Learning The key step forward is to use transfer learning to jointly
exploit both the information embedded in a large binary stability-labeled data
set and that in a small margin-labeled data set, with the end goal of obtaining
an accurate voltage stability margin predictor (Li, Zhao, Lee & Kim 2019). In
particular, we a) train a neural network-based binary classifier from a large
binary stability-labeled data set, b) take the trained hidden layer of the NN as a
feature extractor, with the hope that it implicitly captures su�cient information
of the boundary of C, and c) add an additional layer of NN to fine tune based
on only a small margin-labeled data set. In a sense, we transfer the knowledge
learned in the binary classifier in order to make it tractable to learn a margin
predictor based on only a small data set with stability margin labels.
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Predictor Design

• Learning voltage stability boundary

• Predicting voltage stability margin
– Reuse the features from classification

…               …

S1

SL

Input
layer

Hidden
layer

Output
layer

…
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Data Set

• The IEEE 300-bus test case. 

• Generate directions: starting with one base case, multiply each P 
and Q with i.i.d. U[0,1]. 720K directions generated.  

• Generate 1.4M (720K feasible & 720K infeasible) points using CPF, 
close to the stability boundary. 

• Generate 11.4K points with voltage stability margin approximately 
computed. 
• Search along every coordinate followed by the iterative method in 

[Dobson & Lu 93]. 

• Data augmentation. 
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Data Augmentation

• We have a profile s with margin distance d and its 
boundary profile b*

• We can generate another profile s’ by pushing s towards 
the boundary. Pick a α from 0 to 1 and 
s’ = s + α (b* - s).

• Margin distance d will be accordingly adjusted by
d’ = (1 – α) d

• With this augmentation method, we have millions more 
training data



Numerical Experiments

• Learning voltage stability boundary
– 1M samples for training, 440K for 

testing
– Testing classification accuracy of 

99.11%

• Predicting voltage stability margin
– Transfer Learning

• 10K samples for training, 1.4K for 
testing

• Testing MSE: 0.001979214
• Testing R2: 0.9989559
• Testing computation time: 

2.46ms/profile

– Baseline: Jacobian’s SSV
• Testing MSE: 1.503076
• Testing R2: 0.204
• Testing computation time: 

89.65ms/prof

Fig. 1 Scatter plot from using transfer learning. 

Fig. 2 Scatter plot from using Jacobian’s SSVs. 
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Numerical Experiments (cont.)

• Zooming in for points very close 
to the boundary. 
– Transfer Learning

• Testing MSE: 0.000725.
• Testing computation time: 

2.45ms

– Baseline: Jacobian’s SSV
• Testing MSE: 0.001017

• Observation: SSV’s predictive 
accuracy improves as the 
operating condition moves 
toward the boundary; Transfer 
learning still outperforms SSV. 

Fig. 1 Scatter plot from using transfer learning. 

Fig. 2 Scatter plot from using Jacobian’s SSVs. 35



Applying to OPF and contingency analysis

• Solving OPF with stability margin guarantees. 
– Related work: [Tiranuchit & Thomas 88], “optimal posturing”.

• Very fast screening of contingencies with stability margin 
requirements.

1 Deep Learning in Power Systems

1.1 Introduction
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f(P,Q) � � (1.7)

Deep learning (DL) has seen tremendous recent successes in many areas of
artificial intelligence. It has since sparked great interests in its potential use
in power systems. However, success from using DL in power systems has not
been straightforward. Even with the continuing proliferation of data collected
in the power systems from, e.g., Phasor Measurement Units (PMUs) and smart
meters, how to e↵ectively use the data, especially with DL techniques, remains a
widely open problem. Firstly, the data collected for power systems are typically
poorly labeled. Even for data with labels, there is often a mismatch between the
labels needed for an intended task and the labels that are available. Secondly,
power systems operate under normal conditions most of the time. Therefore,
while it is natural for DL to be used for predicting interesting events in the grid,
there is a bottleneck because of the extreme label asymmetry in any measured
data. Thirdly, some forecasting tasks are fundamentally di�cult. For example,
no matter how complicated a DL algorithm is used, predicting wind generation
in future hours or days is still limited by the fundamental uncertainty of weather.
The lack and asymmetry of labels and the fundamental unpredictability render
direct application of deep learning to power systems problems often ine↵ective.
Recognizing these limitations of applying DL to power systems, this chap-

ter o↵ers two classes of problems in Energy Data Analytics and Power System
Monitoring with approaches that overcome the above limitations.
In energy data analytics, we focus on deriving values from time series of re-

newable power generation (e.g., wind and solar). Instead of trying to forecast a
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Other Applications

• AC State estimation
– [Zhang et al. 19], unrolling 

• Dynamic security assessment
– See the previous tutorial by Tindemans and Cremer.
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Fig. 2. Prox-linear net with K = 3 blocks.

Fig. 3. Plain-vanilla FNN which has the same per-layer number of hidden units as the prox-linear net.

Fig. 4. Deep prox-linear net based real-time PSSE.

The flow chart demonstrating the prox-linear net for real-time
PSSE is depicted in Fig. 4, where the real-time inference stage
is described in the left rounded rectangular box, while the off-
line training stage is on the left. Thanks to the wedding of the
physics in (1) with our DNN architecture design, the extensive
numerical tests in Section V will confirm an impressive boost in
performance of our prox-linear nets relative to competing FNN
and Gauss-Newton based PSSE approaches.

IV. DEEP RNNS FOR STATE FORECASTING

Per time slot t, the PSSE scheme we developed in
Section III estimates the state vector vt ∈ R2N upon receiving
measurements zt. Nevertheless, its performance is challenged
when there are missing entries in zt, which is indeed common
in a SCADA system due for example to meter and/or communi-
cation failures. To enhance our novel PSSE scheme and obtain
system awareness even ahead of time, we are prompted to pursue
power system state forecasting, which for a single step amounts
to predicting the next state vt+1 at time slot t+ 1 from the avail-
able time-series {vτ}tτ=0 [6]. Analytically, the estimation and
prediction steps are as follows

vt+1 = φ(vt,vt−1,vt−2, . . . ,vt−r+1) + ξt (9)

zt+1 = ht+1(vt+1) + ϵt+1 (10)

where {ξt, ϵt+1} account for modeling inaccuracies; the tun-
able parameter r ≥ 1 represents the number of lagged (present
included) states used to predict vt+1; and the unknown (non-
linear) function φ captures the state transition, while ht+1(·) is

the measurement function that summarizes equations in (1) at
time slot t+ 1. To perform state forecasting, function φ must
be estimated or approximated – a task that we will accomplish
using RNN modeling, as we present next.

RNNs are NN models designed to learn from correlated time
series data. Relative to FNNs, RNNs are not only scalable to
long-memory inputs (regressors) that entail sequences of large
r, but are also capable of processing input sequences of variable
length [9]. Given the input sequence {vτ}tτ=t−r+1, and an ini-
tial state st−r, an RNN finds the hidden state1 vector sequence
{sτ}tτ=t−r+1 by repeating

sτ = f(R0vτ +Rsssτ−1 + r0) (11)

where f(·) is a nonlinear activation function (e.g., a ReLU or
sigmoid unit), understood entry-wise when applied to a vector,
whereas the coefficient matrices R0, Rss, and the vector r0

contain time-invariant weights.
Deep RNNs are RNNs of multiple (≥3) processing layers,

which can learn compact representations of time series through
hierarchical nonlinear transformations. The state-of-the-art in
numerous sequence processing applications, including music
prediction and machine translation [9], has been significantly
improved with deep RNN models. By stacking up multiple re-
current hidden layers (cf. (11)) one on top of another, deep RNNs
can be constructed as follows [21]

slτ = f
(
Rl−1sl−1

τ +Rss,lslτ−1 + rl−1
)
, l ≥ 1 (12)

where l is the layer index, slτ denotes the hidden state of the l-th
layer at slot τ having s0τ := vτ , and {Rl,Rss,l, rl} collect all
unknown weights. Fig. 5 (left) depicts the computational graph
representing (12) for l = 2, with the bias vectors rl = 0, ∀l for
simplicity in depiction, and the black squares standing for single-
step delay units. Unfolding the graph by breaking the loops and
connecting the arrows to corresponding units of the next time
slot, leads to a deep RNN in Fig. 5 (right), whose rows represent
layers, and columns denote time slots.

The RNN output can come in various forms, including one
output per time step, or, one output after several steps. The latter

1Hidden state is an auxiliary set of vector variables not to be confused with
the power system state v consisting of the nodal voltages as in (1).
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Other Applications

• Learning-based OPF 
– [Ng et al. 18] [Pan et al. 19][Chen et al. 20]

• Learning-based N-k security check (ongoing)
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Summary

• A Learning-to-Infer Method is developed for addressing 
fundamentally hard problems in power system monitoring, by 
exploiting the information in the physical model via a data-driven 
approach. 

• Two case studies, multi-line outage identification and voltage 
stability margin estimation, demonstrate the power of this 
methodology. 

• Many more applications
– Each has its own specific challenges and requires novel 

learning algorithm design. 
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