Solar Panel Identification via Deep Semi-Supervised Learning and Deep One-Class Classification

Elizabeth Cook, Member, IEEE, Shuman Luo, Student Member, IEEE, Yang Weng, Member, IEEE

Abstract—As residential photovoltaic (PV) system installations continue to increase rapidly, utilities need to identify the locations of these new components to manage the unconventional two-way power flow and maintain sustainable management of distribution grids. But, historical records are unreliable and constant reassessment of active residential PV locations is resource-intensive. To resolve these issues, we propose to model the solar detection problem in a machine learning setup based on labeled data, e.g., supervised learning. However, the challenge for most utilities is limited labels or labels on only one type of users. Therefore, we design new semi-supervised learning and one-class classification methods based on autoencoders, which greatly improve the non-linear data representation of human behavior and solar behavior. The proposed methods have been tested and validated not only on synthetic data based on a publicly available data set but also on real-world data from utility partners. The numerical results show robust detection accuracy, laying down the foundation for managing distributed energy resources in distribution grids.

Index Terms—solar panels, locations, detection, autoencoder, semi-supervised learning, one-class classification

I. INTRODUCTION

With the increase in installations of residential photovoltaic (PV) systems, it is important for utilities to gain visibility of solar panels [1], [2]. Residential PV systems not only create sustainable electricity for their owners but also build represent a new type of assets for utilities. To better evaluate the benefits and potential revenues associated with these new assets, utilities need to identify the locations of these new components to manage the unconventional two-way power flow and maintain sustainable management of distribution grids. For example, detecting and monitoring all active PV installations in a utility’s territory allows the utility to perform accurate hosting capacity analysis (HCA). HCA allows utilities to determine the amount of additional distributed energy resources (DERs) that can be “hosted” on the distribution system at a given time and location, without threatening grid safety, reliability, or power quality [3].

Unfortunately, we cannot determine whether a customer has solar panels with certainty as new installations will go up and some may be retired as time passes by. Even worse, some solar panel installations took place without utility permission [4]. While a utility can manually update historical records on active solar locations, it is cost-intensive and difficult to ensure the solar location data are accurate all the time. Without utility visibility of residential PV electricity generation, the system operation is prone to over-voltage and back-feeding through substations. These events can damage system equipment such as transformers, voltage regulators, and customers’ appliances. Therefore, utilities are in urgent need of new methods for providing real-time renewable location data to better plan infrastructure and grid operation.

In the past, DER analyses required manual validation of locational information of PV [1], [5]–[7]. As manual checks are not scalable, automation of the localization process is an active area of research. For example, [8]–[10] propose to use an unmanned aerial vehicle (UAV) with different cameras, such as HD cameras, thermal cameras, and infrared cameras to localize different panels and their conditions for fault detection and maintenance. Although these methods are typically successful for detecting large PV arrays (i.e., solar farms), it is challenging to send UAVs across different utility service areas, which can be geographically large. Therefore, instead of the UAV approach, [11] and [12] propose to use satellite images to detect solar panels. However, satellite images include many areas without PV systems and there are similar objects that can be incorrectly identified as solar panels. Even worse, such a satellite-based approach cannot distinguish active and non-operational PV installations. The use of smart meter data for solar detection may overcome the obstacles posed by UAVs and satellite-based methods. For example, [13] aims to detect the solar panels behind the meter data. The paper proposes a change-point detection algorithm to screen out abnormal usage data. However, change-point detection can identify changes that are not due to solar behaviors.

One key drawback of change-point detection is due to its unsupervised nature and simplicity of using any change-point. While we demonstrate in this paper that supervised learning can achieve satisfactory performance, such learning requires adequate labels of the inputs and outputs [14]. This is insufficient because a utility may not be able to afford the cost and time for obtaining and maintaining a lot of the labels for solar and non-solar users [15], [16]. Therefore, we propose to use semi-supervised learning (SSL) by only requiring a small sample of the labeled data from both classes [17], [18]. When the utility only has labels on one class, e.g., non-solar users, we propose to use one-class classification (OCC) [19], [20].

During the implementation, the direct application of SSL and OCC have relatively low accuracy, as the power system has a high dimensionality in data. For example, each user represents one point in the classification problem, but the user data is the result of vectorizing a long time-series data that can last several days for a clear pattern [21]–[23]. Besides, as residential customers have diversified user behaviors, the data of each class lives on a highly non-linear surface [17].

For resolving the issue of dimensionality, there are mainly three types of methods available. The first type is linear...
mapping methods, the most typical method of this type is principal component analysis (PCA). The second type is nonlinear mapping methods, the mainstream of this type of method is based on manifold learning. The most basic method among them is multidimensional scaling (MDS), which tries to preserve the original relative distance between the data points in the lower dimensions. Locally linear embedding (LLE) as another main dimensional reduction method under manifold learning, uses local linearity to reflect global nonlinearity and preserves the data topology structure in the original space. The last type is advanced methods based on neural networks. The most well-known one is the autoencoder (AE).

Considering that PCA only looks for the principal components and may lose the separability information in overlooked projection directions. Also, MDS assumes an equal contribution of all dimensions towards the dimension reduction result and may overlook the fact that some dimensions may be more important than others. Additionally, MDS suffers from high computation cost $O(n^3)$ [24], where n is the number of samples. The LLE method has a low computation cost but is sensitive to the selected neighborhood. An autoencoder does not have these limitations as it uses the data itself to supervise the mapping to lower dimensions. Therefore, we propose to solve the issue of dimensionality and nonlinear representation together by designing new SLL and OCC methods based on autoencoders. Constructed by the two deep neural networks of an encoder and a decoder, an autoencoder is capable of providing a universal approximation of nonlinear and low dimensional space while de-noising [25]–[28].

Finally, we use the known public and utility solar data arrays to validate the proposed methods. We use both accuracy and F_1 score to measure the performance against baseline results. The baseline results were based on common SSL and OCC methods as well as including common supervised learning methods. Such an experiment shows enhanced solar usage detection when compared to the traditional methods. In summary, the contributions of the paper are:

1) The paper explains why solar detection is urgently needed and why the problem is challenging and cost-intensive in reality based on our data mining of realistic utility data.
2) The paper models the solar detection problem in supervised learning, semi-supervised learning (SSL), and one class-classification (OCC) setups. Future researchers can develop relevant tools based on our problem modeling.
3) The paper proposes new SSL and OCC methods based on autoencoders, greatly boosting the power of data representation and model learning.
4) The paper not only validates the methods based on the publicly available synthetic data set but also has great success on real utility data.

The rest of the paper is structured as follows. Section II shows the feasibility of solar detection via data mining. Section III formulates the solar panel detection problem with limited labels. Section IV and Section V show the enhanced SSL and OCC via autoencoder. Section VI provides numerical results, and Section VII concludes the paper.

II. DIFFERENCES BETWEEN SOLAR + NON-SOLAR USERS

The problem of determining whether there are solar panels that are generating power in a residence via utility data is not widely analyzed. The key concern is that solar users and non-solar users are difficult to differentiate. For example, it is difficult to determine whether solar exists behind a meter if the solar generation is small relative to household usage.

A. Proof of Feasibility with Realistic Data

To validate this difficulty and illustrate the feasibility of differentiation, we conduct data mining over realistic usage data from our partner utility with 600,000 meters from a major U.S. city. The one-hour interval usage data recorded between June 1st, 2019 to June 30th, 2019 by the billing meters was used for this exercise. We examined the label for the solar users by verifying that the net-metering data of the customers shows power injection and the database shows that the customer has passed the solar panel application. Similar procedures are adapted to examine the label for the customers without solar panels. From the data set with partial manually verified labels, we randomly sample 2,000 usage data with labels indicating functioning solar panels. We also sample another 2,000 usage data with labels indicating no solar panels. Combining them, we conduct supervised learning using classifiers such as logistic regression, support vector machine, k-nearest neighbor, and random forest. All the supervised learning classifiers report above 90% accuracy, which means that the data can be separable.

To motivate if the data are separable, we use the principal component analysis (PCA) tool to visualize the magnitude of eigenvalues of our data in Fig. 1. As the y-axis is a logarithmic scale, we can see that only the first few eigenvectors matter and most of the eigenvectors are noises. To illustrate further, we map the data into 2-D and 3-D space in Fig. 2. As we know who are the solar users and who are not in this example, we color the PCA results for visual inspection. The goal is to gain more knowledge about the data density and the possible shape of the boundary for separability. From the figure, we can see that the data can be separated in this case.

![Fig. 1: Results from a popular principal component analysis tool to visualize the magnitude of our data’s eigenvalues.](image)

However, it is important to point out that this example is only for the motivation purpose. In reality, there can be serious overlap, calling for methods that can handle highly nonlinear boundaries. We will discuss this later in the paper.

B. Proof of Feasibility with Synthetic Data

As the data is sourced from one specific utility, we also conduct a constructive test to see how robust this differen-
The motivation for controlling the noise is because real data shows high variability during the days and during different days with various weather conditions. For example, Fig. 3 comes from a utility for solar generation of residential customers. From the data, we can see that solar panels always generate power from sunrise to sunset regardless of cloud cover, but the cloud coverage creates intermittent patterns like noises, changing signal shapes. Therefore, we use different noise levels to mimic randomness in residential customers and the environment.

Specifically, we use square waves and sinusoidal waves to represent two signal patterns. The motivation comes from the appliances’ behavior in a home [29], [30] and also the curved shape of solar generation in the daytime. With the two signals, we add noises. The data with different noise levels will be directly fed into typical classifiers such as support vector machine (SVM) and logistic regression to determine if accuracy can be preserved with different noise levels. For example, Fig. 4 presents an example of the data set with noise levels increasing from top to bottom. The x-axis shows the time index and the y-axis shows the normalized data. Although it becomes more difficult for us to determine the class of the data, Table I shows that the classification results are still high when the noise level is much higher than the signal level.

III. PROBLEM DEFINITION

The last section shows the feasibility based on rough visualization and supervised learning of abundant but synthetic data. However, the reality at utilities is that the knowledge of highly accurate labels, solar users and non-solar users can be quite limited. In some utilities, there may be only one class of labels with limited resources to manually label more. Therefore, we define the following two problems based on the scarcity of labels in a data set.

A. Semi-Supervised Learning (SSL) Problem

- Problem: Identify the customers who have functioning solar panels out of a large group of customers using smart meter data and a small amount of labels.
 - Given:
 - Labeled electricity usage data: \((x_m, y_m) = \{(x_i, y_i)\}_{i=1}^m \), where \(x_i \) is the time series smart meter data for a customer, \(y_i \) is the label showing whether the customer has solar panels or not, and \(m \) is the number of the meter data with labels.
 - Unlabeled electricity usage data: \(x_n = \{x_j\}_{j=m+1}^{m+n} \), where \(x_j \) is the time series smart meter data for a customer and \(n \) is the number of meter data without labels, usually \(n \gg m \).
 - Goal:
 - Find the optimal mapping rule of \(f_{SSL} \) so that we can obtain an accurate prediction of whether a customer has solar panels or not by using \(\hat{y}_{SSL} = f_{SSL}^\star (\{(x_i, y_i)\}_{i=1}^n, \{x_j\}_{j=m+1}^{m+n}) \).

B. One-Class Classification (OCC) Problem

- Problem: Identify the customers who have functioning solar panels out of a large group of customers using smart meter data and one type of labels.
 - Given:
 - Electricity usage data from a known class: \(X_p = \{x_i\}_{i=1}^n \), where \(x_i \) is the time series smart meter data for a customer. All the meter data belonging...
to the same class are assigned with indicators \(y_p = \{ y_i \}_{i=1}^p = +1 \), where \(p \) is the number of meter data and \(I \) is a vector whose elements are all equal to 1.

- Electricity usage data from other unknown classes:
 \(X_q = \{ x_i \}_{i=p+1}^{p+q} \), where \(x_i \) is the time series smart meter data for a customer. All the meter data from other unknown classes are assigned with indicators \(y_q = \{ y_i \}_{i=p+1}^{p+q} = -1 \), where \(q \) is the number of meter data.

- Goal:
 - Find the optimal mapping rule of \(f_{occ} \) so that we can obtain an accurate prediction of whether a customer has solar panels or not by using \(\hat{y}_{occ} = f_{occ}(\{(x_i,y_i)\}_{i=1}^P,\{(x_i,y_i)\}_{i=P+1}^{P+q}) \).

IV. DEEP SEMI-SUPERVISED LEARNING

One of the major issues of directly using SSL methods from the computer science domain is due to the high dimensionality of power data and the need for nonlinear representation. Therefore, we propose to integrate the autoencoder (AE) into the proposed deep SSL method, where we show the expectation-maximization (EM) algorithm below so that we can properly illustrate the AE part afterward.

A. Conventional Semi-Supervised Learning Method

EM algorithm relies on mixture models and is a popular way to solve SSL problems and the methods have lots of successful applications in different fields, such as image processing and data classification tasks [31]–[33]. As defined in Section III-A, \((X_m,y_m) = \{(x_i,y_i)\}_{i=1}^m\) denote the electricity usage data and their correlated labels, \(X_n = \{x_j\}_{j=m+1}^m\) denote electricity usage data without labels. In our model, labels are assigned binary values (0 or 1), labels with a value of 0 represent the customers who do not have solar panels and labels with a value of 1 represent the customers who have solar panels. Based on this premise, we assume we know the labels \(\hat{y}_{SSL} = \{y_i\}_{i=m+1}^n \) and we can compute the likelihood of all the data with respect to the underlying parameters \(\Theta \), to be shown in Equation (1).

\[
P(X_m,y_m,X_n,\hat{y}_{SSL}|\Theta) = \prod_{i=1}^m P(x_i,y_i|\Theta) \prod_{j=m+1}^n P(x_j,y_j|\Theta) \quad (1)
\]

The EM algorithm iteratively fixes the value of \(\Theta \) and \(\hat{y}_{SSL} \) to find a suboptimal solution of the maximization of the log-likelihood function over all the data. Specifically, for the \(t \)th iteration and in the expectation (E) step, \(\Theta^t \) is fixed and the EM algorithm optimizes a lower bound given by the expected log-likelihood \(Q(\Theta|\Theta^t) \) in Equation (2).

\[
Q(\Theta|\Theta^t) = E_{SSL|X_m,y_m,X_n,\Theta} [\log P(X_m,y_m,X_n,\hat{y}_{SSL}|\Theta)] \quad (2)
\]

In the maximization (M) step, the algorithm maximizes \(Q(\Theta|\Theta^t) \) with respect to \(\Theta \) given in Equation (3). Although the parameters \(\Theta \) may be highly correlated, the above procedure faces high computational cost as \(\Theta \) has high dimensionalities [21].

\[
\Theta^{t+1} = \arg \max_\Theta Q(\Theta|\Theta^t) \quad (3)
\]

B. Autoencoder (AE) in a SSL Setup

The electricity usage data in the high dimensional space not only exhibit a high level of noise, but also have highly nonlinear user behaviors. In order to reduce the dimension of the data while preserving the nonlinear relationship of the features, we propose to use AE. An AE [25]–[28] constitutes an encoder that compresses the original data to a code and then a decoder which reconstructs the data from the code, as shown in Fig. 5. The encoder can be used to reduce the dimension of the data, help the similarity calculation, and extract the most representative information.

We take the labeled data \(X_m \) as an example to explain how the AE is used in our problem setup. An AE uses data themselves to supervise the learning. In our problem, we employ the AE shown in Fig. 6. The input data \(X_m \) is the time series smart meter data and will be nonlinearly mapped to a lower dimensional space. The transformed meter data \(Z_m \) is a nonlinear combination of the original meter data at each time index. The transformed meter data \(Z_m \) will be mapped back to the original space to reconstruct the input meter data. The AE attempts to minimize the error between the input data \(X_m \) and the reconstructed input \(\hat{X}_m \), defined in Equation (4), to find the optimal representation \(Z_m \) of the input data in the low dimensional space. The same procedure will be used to obtain the hidden representation \(Z_o \) of the smart meter data without labels \(X_n \).

\[
Z_m = f_e(W_e X_m + b_e),
\]
\[
L(X_m,\hat{X}_m) = ||X_m - X_m||^2 = ||X_m - f_d(W_d Z_m + b_d)||^2, \quad (4)
\]

where \(W_e \) is the weight matrix between the input data \(X_m \) and the latent representation \(Z_m \), \(W_d \) is the weights matrix between the hidden representation \(Z_m \) and output \(\hat{X}_m \), \(f_e \) and \(f_d \) are the activation functions, \(b_e \) is the bias vector of the encoder, and \(b_d \) is the bias vector of the decoder. \(Z_m \) with its associated labels \(y_m \) is fed into a Gaussian mixture model for

Fig. 5: Block diagram of an AE which constitutes an encoder that compresses the original data to a code and then a decoder which reconstructs the data from the code.

Fig. 6: An example of AE for power data.
EM. When EM iteratively finds the solution of maximizing the log-likelihood function, the labels of the unlabeled data are produced. The complete structure is shown in Fig. 7.

![Diagram of the proposed deep semi-supervised EM approach.](image)

Fig. 7: Block diagram of the proposed deep semi-supervised EM approach.

C. Steps of the Proposed Algorithm

Let the representation $Z_m = \{z_i\}_{i=1}^m$ coming from the AE be the hidden representations of the labeled data whose labels are $y_m = \{y_i\}_{i=1}^m$. Let the representation $Z_n = \{z_i\}_{i=m+1}^{m+n}$ coming from the AE be the hidden representations of the unlabeled data whose estimated labels are $\hat{y}_{SSL} = \{y_i\}_{j=m+1}^{m+n}$. We will assume that labels can only take binary values (0 or 1). Based on this setting, suppose we know the labels \hat{y}_{SSL}, we are able to compute the likelihood of the whole data set with respect to the underlying parameters Θ given in Equation (5).

$$P(Z_m, y_m, Z_n, \hat{y}_{SSL}|\Theta) = \prod_{i=1}^m P(y_i) P(z_i|y_i) \prod_{j=m+1}^{m+n} P(y_j|\hat{y}_{SSL}, \Theta)$$

For the r^th iteration and in the expectation (E) step, Θ^r is fixed and the EM algorithm optimizes a lower bound given by the expected log-likelihood given in Equation (6). In the maximization (M) step, the algorithm maximizes $Q(\Theta|\Theta^r)$ with respect to Θ. The descriptiveness of the data is maintained in the constraints. Solving the minimization problem given in Equation (7) by using Lagrange multipliers, we can derive that the center c of the sphere should be a linear combination of some important input data. These input data have a significant influence on the construction of the sphere by describing the boundary of the sphere and are called support vectors.

V. Deep One-Class Classification

When the labeled data are so limited at a utility that only one class of the labels can be obtained, e.g., only the labels of some non-solar users. In such a case, it is impossible to create a classification boundary between the two classes like SSL.

A. Conventional One-Class Classification (OCC) Method

Therefore, one-class classification aims to regularize the descriptive loss, popular in supervised learning and SSL, with an additional loss on compactness. This method aims to evaluate the compactness of data with known labels and with nearby data to form a group while looking for distinct boundaries that can separate the data into two or more groups. Support vector data description (SVDD) utilized in our paper is one of the OCC solvers. SVDD attempts to define the compactness of the targeted class by constructing a hypersphere with center c and radius $r > 0$, wrapped in a compactness matrix. The hypersphere gathers as many observations from one class as possible in the feature space with the help of the kernel function ϕ_k [34]. For example, if we have a group of smart meter data which customers using their solar panels have been verified by human effort, we can try to construct a hypersphere that gathers as many data from the group as possible. By minimizing the radius of the hypersphere, we obtain the optimal boundary to separate this group of people from others. The primal problem of SVDD is defined in Equation (7).

$$\min_{r,c,\xi_i} \frac{1}{2n} \sum_{i=1}^n \xi_i^2$$

s.t. $$\norm{\phi_k(x_i)-c}^2 \leq r^2 + \xi_i, \quad \xi_i \geq 0, \quad \forall i$$

where x_i is the smart meter data from a known class, the slack variable ξ_i is introduced to allow a soft margin, and the regularization parameter ν controls the relative importance of the volume of the sphere and the penalties ξ_i.

the solar and non-solar data, respectively, reconstructed using principal component analysis (PCA). And the right top and bottom figures are the data set reconstructed using an AE and plotted in a 3-D plane. The figure is to provide clarity on the ability of the AE to retain the information more accurately than the PCA. As shown the PCA is not able to reconstruct the data as well as the autoencoder (AE) therefore providing evidence of the high accuracy and advantage of using an AE over a PCA to reconstruct the high-dimensional data for purposes of distinguishing solar and non-solar data. The AE can map the original data to a denser area which helps to construct the compactness description of the targeted class. This enhances the design of the OCC. Hence, the AE will be used in the design for the newly proposed method.

Fig. 8: Illustration comparing PCA reconstruction versus an autoencoder for non-solar (blue) and solar (orange) data set.

The architecture is shown in Fig. 9, where the extracted learned hidden features \(Z_p \) for labeled data and \(Z_q \) for unlabeled data are fed into the SVDD. Combining the extracted learned hidden features with their labels, the SVDD is able to determine the labels of the unlabeled data. The objective of the problem is to solve Equation (7) after replacing \(x_i \) with \(z_i \).

Fig. 9: Block diagram of the proposed deep SVDD approach.

VI. NUMERICAL VALIDATION

With the proposed methods in the last two sections, we will validate the performance in this section. The algorithms used are the deep semi-supervised expectation-maximization (Deep-EM) algorithm and deep support vector data description (Deep-SVDD). We use both public data sets and utility data sets to conduct our experiments with traditional common semi-supervised learning and one-class classification algorithms. The principal component analysis is also used when necessary for consistency. As a baseline to our result, we also include the results of supervised learning in our experiments with accurately labeled data sets.

A. Data Preparation

The public UMass Smart® data set [36] used in this study contains everyday electricity load profiles, extracted from the dataset named “Apartment dataset”, from 114 single-family apartments from June 1\(^{st}\), 2015 to June 30\(^{th}\), 2015 with a 15-minute interval between each pair of readings. We take the average of the data to scale the original data to a one-hour interval. Therefore, the total number of time indices used in the study is 696, corresponding to 29 days. The solar generation data comes from another dataset named “Solar panel dataset” in the same public data repository, which documents the solar generation data for 50 rooftop solar panels with a one-minute interval between each pair of readings. We select 39 solar generation profiles as the other profiles contained bad data such as near-zero values. Then, we combine them with the aforementioned 114 load profiles to create the electricity usage data set corresponding to solar users. To mimic the unbalanced data set, we add a number of different noises to the 114 load profiles to create the profiles for non-solar customers for diversity, when compared to 39 solar customers. For example, as the results are similar, we show the case when we add four different noises to the 114 load profiles, leading to 456 non-solar profiles.

The utility data set used in this study corresponds to a set of everyday electricity usage readings from approximately 600,000 meters from a U.S. city from June 1\(^{st}\), 2019 to June 30\(^{th}\), 2019 with a one-hour interval between each reading. The total number of time indices used in the study is 696, corresponding to 29 days. Around 1,973 customers have installed solar panels. Their smart meter readings come from the net meters, which record the household electricity consumption and the PV generation as a whole. The rest of the approximately 598,000 customers we assume never reported their installations of the solar panels, and therefore, we label them as non-solar. We then randomly select 20,000 from this data set to conduct this study.

To eliminate the influence of different scales of the data, we use min-max normalization methods to scale the data between 0 and 1 throughout the paper.

B. Performance Metrics

To evaluate binary classification several statistical rates are available to measure performance (i.e., accuracy, \(F1 \), recall, or precision). For this work, we use the accuracy and \(F1 \) score as our performance measurements. Accuracy is used when the true positives (\(TP \)) and true negatives (\(TN \)) are important and the data set’s class distribution is similar. \(F1 \) score is used when the False Negatives (\(FN \)) and False Positives (\(FP \)) are critical and the data set is unbalanced. These metrics are defined as follows:

\[
\text{Accuracy} = \frac{TP + TN}{TP + FN + TN + FP},
\]

\[
\text{Recall} = \frac{TP}{TP + FN},
\]

\[
\text{Precision} = \frac{TP}{TP + FP},
\]

\[
F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}.
\]

\[\text{(8)}\]
We use the F_1 score since our data set will most likely have an imbalanced class. This will take the precision and recall rate into account which cares for both the majority class and the minority class [37]. We include the accuracy performance metric to observe considering that the synthetic data may not always be imbalanced and therefore should be available to observe any differences.

C. Performance Comparison of Autoencoder and Locally Linear Embedding

In the introduction, we claimed that the autoencoder (AE) has its advantages over other nonlinear decomposition methods such as multidimensional scaling (MDS) and locally linear embedding (LLE) methods. Considering the large computation time of MDS, and to confirm our claim, we provide the results of the performance comparison of the AE and LLE methods. We use the utility data set, which contains 1,973 customers with solar panels and 20,000 customers without solar panels, to conduct the analysis. The results are shown in Fig. 10. As can be seen from the figure, for semi-supervised learning, the LLE has comparable performance with AE in low dimensions, however, its performance suddenly crashes down after projecting to dimensions higher than 12. In terms of one class classification, the LLE has comparable performance with AE in some dimensions, however, it also experiences tremendous performance deduction in some dimensions. We interpret from the fact that the distribution of the data is not uniform and LLE preserves the distance from a point to its neighbors, the results will be inaccurate in the sparse area. Therefore, when projecting to some lower dimensions, it is hard to preserve the original geometric features, this results in overlapping points. As AE is more stable and robust than the LLE, we choose to use AE for the experiments.

D. Baseline of Supervised Learning for Deep SLL and OCC

As a reference for SLL and OCC, we conduct simulations for different supervised learning methods [38]–[41]. As the results are similar, we show the results of the support vector machine (SVM) and logistic regression (LR) in Fig. 11. The figure shows that when the provided information is little and the data set is unbalanced, the supervised learning method tends to classify all the data belonging to the majority class. This results in a fake high accuracy and the poor F_1 score reveals the true performance. In Fig. 11, the x-coordinate is on hyper-parameter tuning. Therefore, we will only choose the dimension with the highest F_1 score though we project data to different dimensions. Knowing this, we can conclude from the figure that middle to a relatively high projection dimension, which is between 8 to 48, helps to improve accuracy and F_1 score. The results further indicate that more supervision, more information, but less noise ensures better results. Finally, Fig. 11 also shows that the results of the public data set and the utility data set are similar, which is also the case for SSL and OCC. So, we will focus on the utility dataset for the rest of the visualization work.

E. Feature Numbers for Linear and Nonlinear Representation

To understand how many features are needed in nonlinear representation learning of autoencoder, we plot the results in terms of the two performance metrics in Fig. 12, where we also show results of linear representation of PCA for comparison. In the sub-figures, we try to ensure consistency in the setups for all the learning processes. For the deep semi-supervised learning (SSL) method, we choose to use the first 50 solar data and the first 50 non-solar data as the labeled data, all the other 1,923 solar data and 19,950 non-solar data as the unlabeled data. The proposed deep SSL method takes all the labeled data and the unlabeled data and infers the labels for the unlabeled data. For the deep one-class classification (OCC) method, we keep the same structure by using the first 50 non-solar data as the given class with the remaining data representing unknown classes. The proposed deep OCC method interprets the labels for the rest of the 21,923 data based on the 50 non-solar data.

For the deep SSL method, as can be seen from Fig. 12a, when we increase the dimension of the projected principal components, the F_1 score and the accuracy increase with little fluctuation until reaching the optimal, after which they decrease. The optimal value is reached when we choose 6 projected components. Also shown in Fig. 12b, when we increase the dimension of the hidden representations we extracted, the F_1 score and the accuracy reach the optimal with little fluctuation, after which they finally decrease. The optimal value is reached when a 9-dimensional hidden representation is used. Although the accuracy of using PCA and AE is always above 95%, the true performance of the classification for the minor class may not be overly optimistic. For example, suppose we have 100 data points, out of which 95 are from nonsolar users and 5 are from solar users. If the first algorithm reports that all the data points are from nonsolar users, the
accuracy is 95% and the F_1 score is 0. If the second algorithm successfully determines one data point from a solar user and predicts all the others as data from nonsolar users, the accuracy is 96% and the F_1 score is 33%. We see that the F_1 score successfully distinguishes the better performance of the second algorithm. The same conclusion applies to our results, the results of the autoencoder (AE) have a F_1 score increase of more than 10%, representing a significant improvement.

For the deep OCC method, as shown in Fig. 12c, the accuracy and the F_1 score first increase to the peak and then decrease. The optimal value is reached when an 8-dimensional hidden representation is used. The deep OCC has a reasonable performance reduction in both accuracy and F_1 score, it’s acceptable because less information is provided. All aforementioned results indicate that a relatively low dimension is sufficient for learning. Higher-dimensional components may contain information that is harmful to the results, i.e., noises and bad data, so the results guide us to experiment on a dimension between 5 to 12 as the representations of the original data. The results also indicate that as PCA is a linear transformation of the input space aiming to find the directions that have higher variances, the projected data have low or close to zero correlation with each other. However, the electricity usage data used in our simulation are highly nonlinear and the features which are different timestamps are correlated with each other.

Finally, we look at the performance of the regular OCC and the proposed deep OCC, which are shown by the navy dash line and the navy solid line in the figure. We can observe from the figure that the AE can stabilize the accuracy and improve

F. Performance Improvements for Deep SSL and Deep OCC

To better visualize the performance benefits of the proposed methods, we plot all the results together in Fig. 13. These results include supervised learning, SSL, OCC, with and without autoencoder components. The left graph illustrates the comparison of accuracy where the right graph is the F_1 score. The dashed green line shows the performance of the supervised learning method based on support vector machine with radial basis functional (RBF) kernel. The dashed orange and navy line are the results of the classic SSL and classic OCC methods when using the projected data based on principal component analysis (PCA), respectively. The solid orange and navy lines are the performance of the proposed deep SSL and deep OCC methods when using the hidden representations extracted from the autoencoder (AE), respectively.

For the three dashed lines, we can observe that the accuracy of supervised learning is always higher than the accuracy of the SSL and the accuracy of SSL is always higher than that of OCC, if we use the projected data after PCA. We also obtain a similar conclusion for the F_1 score by ignoring the projection to 2 principal components. The results confirm that more information guarantees better performance.

Next, we focus on the performance of the proposed deep SSL method, which is shown by the orange dash line and the orange solid line in the figure. The performance curves first increase and then decrease as we increase the dimensionality of the projected data, either from PCA or AE. We conclude that a relatively low dimension, from 5 to 12 is enough to summarize the characteristics of electricity usage. The figure also shows that the accuracy has a clear improvement and the F_1 score increases by more than 10% with the help of the AE, representing a significant improvement. The result also indicates that supervised learning tends to overfit the data when given limited information. The unlabeled data helps to improve the performance by providing more complete information on the distribution of the data.
the F1 score, which is also an enhancement. The performance curves first increase and then decrease as we increase the dimensionality of the projected data, either from PCA or AE. While the performance of using the projected principal components has a sharp decline when the dimensionality of the projected data increases, the performance of using the hidden representations from the AE remains stable. This indicates that the nonlinear transformation of the AE guarantees the OCC method to find a good hypersphere regardless of the dimensionality. The performance of the proposed OCC is slightly worse than the supervised learning in terms of accuracy, which is acceptable as the provided information is much less.

Overall, the proposed methods with the assistance of the AE provide greater accuracy and F1 scores than the supervised learning and merely using the principal components from PCA.

G. When to Choose SSL or OCC

Previously, we showed the outstanding performance of the autoencoder (AE) in assisting semi-supervised learning (SSL) and one-class classification (OCC). In this subsection, we discuss the limitation of SSL and when OCC is required. Specifically, we gradually reduce the number of labeled data and observe the minimum labeled data to hold the performance of the AE. Learned from the previous results, the best performance of AE is reached when we reduce the dimensions of data to 8 or 12. Therefore, we present the simulation results of using AE to reduce the dimension to 12 in Fig. 14. The x-axis shows the size of the labeled data, for example, “5+5” represents the use of 5 labeled solar data and 5 labeled nonsolar data as the training data to conduct SSL. If we consider accuracy and F1 score below 90% as unacceptable performance, we should choose no less than 40 labeled solar data and 40 labeled nonsolar data as the training data to conduct the SSL. Otherwise, OCC is required.

H. Computational Time

<table>
<thead>
<tr>
<th>Method</th>
<th>Supervised learning</th>
<th>SSL (PCA)</th>
<th>SSL (AE)</th>
<th>OCC (PCA)</th>
<th>OCC (AE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average computation time</td>
<td>0.3 s</td>
<td>354.0 s</td>
<td>215.6 s</td>
<td>716.6 s</td>
<td>878.3 s</td>
</tr>
</tbody>
</table>

Table II: The average computation time for all the methods.

Fig. 14: The performance of SSL when we progressively reduce the number of the labeled data.

Fig. 15: The performance tendency when varying the size of the data set.

1) Generalization ability to different sizes of the data sets: Specifically, we further test different sizes of the data set to determine method robustness, the results are shown in Fig. 15. As shown in the figure, for semi-supervised learning, the performance of PCA declines as we increase the size data set. Conversely, the AE maintains adequate performance. For one-class classification, when we vary the size of the data set, the AE experiences a slight performance decline, overall performance remains superior to PCA.

2) Generalization ability to different duration of data: As solar user detection is more for planning rather than for operation, the proposed methods are for offline analysis. While it is possible that a solar panel is installed in the middle of the period leading to wrong identification, the identification will be correct when the moving window covers more of the days after installation. Using fewer days may help reduce the wait, but will also reduce learning accuracy overall due to information loss for other data points. To evaluate the results with different data lengths, we test proposed methods on two weeks’ worth of data and on one week’s worth of data. The results are shown in Figure 16a and 16b.

As shown in the figures, the proposed method maintains satisfactory performance when using a shorter duration of two weeks’ worth of data. However, the proposed method becomes
ineffective when we reduce the duration of data to one week. The results imply that when the data volume is less, the accuracy or the F1 score also deteriorates. Therefore, we need a reasonable length of data for the autoencoder to capture the nonlinear features that distinguish customers with active solar panels from customers without solar panels.

3) Generalization ability to different months: We have shown the simulation results of sunny months, next, we will discuss the results of the proposed methods of non-sunny months. Fig. 17 shows the separability difference between sunny month (June) and non-sunny month (November). Specifically, we project solar customers and non-solar customers onto two dimensions using principal component analysis. For summer, we plot the results on the left of Fig. 17, and there is little overlapping between the usage data from customers with solar panels and the usage data from customers without solar panels. This makes detection easier. For winter, we plot the results on the right of Fig. 17, and the usage data from customers with solar panels are buried under the usage data from customers without solar panels in November. This makes the work more challenging for learning algorithms. With such observation, we conduct the same simulation in November. The results show that the proposed methods obtain similar accuracy with some deterioration, about 10%, in F1 score.

4) Generalization ability to different grids: In addition, we test the methods with data from another grid provided by a partner utility to see if the proposed methods adapt well to other grids. This utility is in the southwest of the US, while the utility for the original simulation is in the northeast of the US. The data from the southwest utility contains around 350 users’ billing meter and solar meter readings from October 2018 to October 2019. We select the billing meter data in June 2019, which is the same time range selected for the northeast utility, to conduct the simulation. For deep semi-supervised learning, the accuracy is 90.00% and the F1 score is 90.91%. For deep one-class classification, the accuracy is 80.77% and the F1 score is 80.00%. Although the accuracy and the F1 score decrease marginally, the results maintain acceptable performance. We will focus on improving the generalization ability in future work.

VII. CONCLUSION

In summary, solar detection is urgently needed as it is challenging and cost-intensive to maintain accurate utility databases with current methods. Electric Distribution Companies need to have visibility of these assets to avoid potential risks of two-way power flow, e.g., outages and equipment damages. In this paper, we proposed a deep semi-supervised learning and a deep one-class classification approach to detect residential PV systems under different scenarios. The proposed methods use the extracted features from the autoencoder and combine them with the original label information to predict the labels for the rest of the data. The proposed methods have been validated on a utility data set and a publicly available data set and have shown their effectiveness and robustness for solving the solar panel detection problem.

REFERENCES

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3125613, IEEE Transactions on Power Systems

