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Abstract— One simplifying assumption made in the existing
and well-performing multi-robot systems is that the robots are
single-tasking: each robot operates on a single task at any time.
While this assumption is innocent to make in situations with
sufficient resources such that robots can work independently, it
becomes a restriction when they must share capabilities. In this
paper, we consider multitasking robots with multi-robot tasks.
Given a set of tasks, each achievable by a coalition of robots,
our approach allows the coalitions to overlap by exploiting
task synergies based on the physical constraints required to
maintain these coalitions. The key contribution is a general and
flexible framework that extends the current multi-robot systems
to enable multitasking. The proposed approach is inspired by
the information invariant theory, which orients around the
equivalence of different information requirements. We map
physical constraints to information requirements in our work,
thereby allowing task synergies to be identified by reasoning
about the relationships between such requirements. We show
that our algorithm is sound and complete. Simulation results
show its effectiveness under resource-constrained situations and
in handling challenging scenarios in a realistic UAV simulator.

I. INTRODUCTION

To address a multi-robot task, one simplifying assump-
tion made in the literature is that the robots are single-
tasking. Wherever robots must coordinate closely to share
capabilities, such as when a robot has a capability required
in multiple tasks, the solution is often to achieve these
tasks sequentially. Such a practice hurts task efficiency
(i.e., increasing the makespan) and is feasible only when
no concurrent task execution is required. As a result, it
significantly limits the current multi-robot systems. In this
paper, we consider multi-robot tasks with multitasking robots
to enable a robot to operate simultaneously on multiple tasks
(also referred to as multi-task robots in [1]).

While multitasking is desirable when there are resource
contentions, the fundamental question of its feasibility must
be carefully considered. In particular, a robot’s ability to per-
form multitasking is prominently determined by the physical
requirements of the tasks that are being taken up simulta-
neously.1 For example, for a robot to share its localization
capability in a cooperative navigation task, it must stay
within the proximity of the robot that requires its assistance;
for a UAV to share its camera sensor with a ground vehicle
in a cooperative monitoring task, it must maintain its camera
head direction towards the target. Hence, the main challenge
to enable multitasking robots lies in identifying synergies
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1While there may be other factors that affect the feasibility of multitask-
ing, such as a limitation on the communication bandwidth, we focus on
physical constraints as the main determinant.

Fig. 1: Scenario that illustrates a synergy between two tasks,
a centroid and a monitoring task, where one robot is shared
and multitasking. The left and right figures show the change
of robot configurations as the target changes its position.

between the underlying physical constraints across different
tasks. Fig. 1 illustrates a scenario with a synergy between
the physical constraints across two tasks: one of them is
a centroid task that requires three robots to maintain their
centroid over the base station. This task introduces a physical
constraint on the centroid of the three robots. The other is
a monitoring task that requires one of the robots to keep a
target within its field of view, which introduces a constraint
on the relative position between the monitoring robot and
target. There exists a synergy between these constraints since
two of the three robots assigned to the centroid task can
adjust their positions to maintain the centroid while allowing
the third (i.e., the monitoring robot) to track the target.

The proposed approach is inspired by the information
invariant theory [2] that orients around the equivalence of
different information requirements. In our work, we map
physical constraints to information requirements. In such a
way, determining the synergies between physical constraints
becomes that of reasoning about the compatibility between
different information requirements. More specifically, given
a set of physical constraints specified as information re-
quirements, our approach checks whether these requirements
introduce any conflicts according to a set of inference rules.
These general rules are designed to capture the equivalence
between different information requirements. A synergy is
identified between two tasks if their information require-
ments introduce no conflicts. For example, in Fig. 1, these
rules are used to determine that the centroid requirement does
not conflict with the requirement of relative position.

To the best of our knowledge, our work represents the
first general framework for achieving multitasking robots in
multi-robot tasks. It removes a restrictive assumption made
in multi-robot systems by enabling overlapping coalitions.
A formal approach is presented based on the notion of in-
formation equivalence first introduced in the information in-



variant theory [2]. Simulation results show that our approach
achieves better efficiency statistically under instantaneous
task assignments in situations where resources are limited,
and that it extends the capabilities of multi-robot systems in
challenging scenarios using a realistic multi-UAV simulator.

II. RELATED WORK

Much effort in multi-robot systems has been dedicated
to the task allocation problem [1]. When the robots are
single-tasking and tasks are single-robot tasks, the problem is
also known as the assignment problem, which has efficient
solutions [3], [4]. Considering multi-robot tasks, however,
significantly increases the problem complexity [1]. There has
been a notable amount of focus on approximate solutions [5],
[6], [7], [8], [9], [10], and practical issues with applications
in distributed robot systems [11], [12], [13], [14], [15],
[16], [17], [6], [18], [19], [20], [21]. As far as we know,
there exists little discussion on generalizing the problem to
multitasking robots with few exceptions discussed below. It
is an interesting future direction to study how to efficiently
perform task allocation with multitasking robots.

It may be tempting to consider multitasking by applying
prior work on task allocation that allows overlapping coali-
tion structures [22], [23]. However, these prior studies are
concerned mainly with the utility optimization problem while
assuming that the influence of multitasking is captured by the
so-called coordination costs provided a priori. In reality, such
costs are difficult to estimate for multitasking robots and are
generally not fixed values. This is because the feasibility of
multitasking, which has a significant impact on the coordina-
tion cost, depends on complex reasoning about the physical
constraints required for the tasks (that are simultaneously
taken up by a multitasking robot). Our study hence goes
beyond the prior work by explicitly addressing the query
regarding its feasibility. The influence of physical constraints
has been identified as a practical issue in distributed robot
systems [6] although the focus there is on sensor placements
and robots are still single-tasking. The problem is addressed
by manually specifying a feasibility function.

The information invariant theory is introduced to reason
about the equivalence of sensori-computational systems [2].
It has since been used to develop multi-robot systems that
have demonstrated an impressive level of flexibility [19],
[24]. Information invariant is well connected to the notion
of information space [25]. Both are concerned with the
relationship between different information requirements. The
difference being that the latter is more focused on the
minimalism aspect [26]. To the best of our knowledge, we are
also the first to apply information equivalence to reason about
synergies between multi-robot tasks to achieve multitasking.

III. APPROACH

To model information requirements, we use information
instances as in [19]. A physical constraint is specified as a
constraint on an information instance.

Definition III.1 (Information Instance). An information in-
stance, denoted as F pEq, captures the semantics of infor-

mation where F is the type of the information and E is an
ordered set of referents.

Information instances are used to label the actual informa-
tion. In this work, we use capital F to denote information
instance and type, and f to denote the value of the informa-
tion. For example, FRpr1, r2q refers to “the relative position
between r1 and r2”, where the suffix R denotes relative
position; fRpr1, r2q corresponds to the numerical values of
this information. For brevity, we sometimes use F without
the referents to denote an information instance. Next, we
more formally define physical constraint as follows:

Definition III.2 (Physical Constraint). A physical constraint
is a constraint on the value f of an instance F .

Notice that the exact value f for a constraint on F
may depend on the task, environment settings, and robot
configurations dynamically, and hence may not be specified a
priori. This means that a physical constraint should be viewed
as a placeholder or variable with a label F whose value
assumes different values at different times. For example, in
a tracking task, a constraint on the relative position to the
target may be influenced by the environment settings due to
the need for avoiding occlusions. These considerations are
assumed to be handled by the execution modules [27], which
is out of the scope of this work. To infer about information
invariants, we define information inference:

Definition III.3 (Inference Rules). Given a set of infor-
mation instances, S, and an information instance F , an
inference rule specifies a relationship where any value set
for S, i.e., tfi : Fi P Su, uniquely determines the value of
F (i.e., f ), or written as S ñ F .

For example, tFRpr1, r2q, FGpr2qu (i.e., the relative posi-
tion between r1 and r2 and the global position of r2) can
be used to infer FGpr1q (i.e., the global position of r1). See
Tab. I for a few more examples of such rules.

A. Problem Formulation

The problem setting of multitasking robots (MT) with
multi-robot tasks (MR) with instantaneous assignments2 is:

Definition III.4 (MT-MR Setting). A MT-MR setting is given
by a set tSiu, where Si is the set of physical constraints to
be satisfied by the coalition for task ti.

The problem of enabling MT-MR becomes that of deter-
mining whether there always exists a physical configuration
of the robots that satisfies all the constraints simultaneously:

Definition III.5 (Compatibility). A set of constraints S is
compatible if there always exists a physical configuration for
the referents in S such that all the constraints are satisfied.

Instead of checking for compatibility, we check a set of
constraints for incompatibility, which is easier. Intuitively, a
set of physical constraints is incompatible if two constraints

2Our work differs from the task scheduling problem (i.e., with time ex-
tended assignments) in that we assume all tasks are executed simultaneously.



TABLE I: Examples of inference rules used in this work

Rule Description

tFGpXq, FRpY,Xqu ñ FGpY q global position of X & relative position of Y to X ñ global position of X

tFRpY,Xqu ñ FRpX,Y q relative position of Y to X ñ relative position of X to Y

tFRpX,Zq, FRpY, Zqu ñ FRpX,Y q relative position of X to Z & relative position of Y to Z ñ relative position of X to Y

associated with the same information instance could be
constrained by different values, thus leading to a conflict:

Claim III.1. A set of physical constraints S is incompatible
if any two constraints for the same information instance, as
a result of S, could be constrained by different values.

While the intuition is clear here, the implication of Claim
III.1 is that we must be able to determine all the constraints
that are inferable from S. This ability, in turn, requires the
complete set of inference rules for a given domain and an
inference process that is sound and complete. We make the
implicit assumption here that the complete set of inference
rules is given. When it does not hold, our inference process
would still be sound in identifying incompatibility but no
longer complete. Next, we incrementally develop such an
inference process. First, we introduce a new concept:

Definition III.6 (Inference Closure). Denoting the inference
closure of a set of information instances S by CpSq, any
F P CpSq if:

1) F P S or
2) CpSq ñ F

Given the inference rules in Tab. I, for example, we
can conclude that CptFGpr1q, FGpr2quq “ tFGpr1q,
FGpr2q, FRpr1, r2q, FR pr2, r1qu. We refer to any informa-
tion instance that is in CpSq as inferable from S, or that
S infers it. Based on this definition, S trivially infers any
instance already in S. Next, we formally define the notion
of information inference based on inference closure:

Definition III.7 (Information Inference). Given two sets of
instances S and S1, an information inference is a relationship
such that @F P S1, F P CpSq, written as S Ñ S1.

We use Ñ to distinguish from ñ used in inference rules.
Note that Ñ subsumes ñ. and is transitive by definition.
When S1 Ø S2, we refer to them as being equivalent sets.
When S1 contains a single information instance F above,
we simply write S Ñ F . Intuitively, information inferences
enable us to infer about hidden constraints given the existing
ones. We show it more formally next:

Lemma III.2. Given an information inference in the form
of S Ñ F , if a set of constraints is defined over S, it also
introduces a constraint on F .

This follows almost immediately from the definition.
Given a set of values for S, the value of F is determined from
Def. III.7, which implies that F is also constrained according
to Def. III.2. Similarly, if S1 Ñ S2, a set of constraints on
S1 also introduces a new set of constraints on S2.

Definition III.8 (Minimally Sufficient Inference). S Ñ F
is a minimally sufficient inference if removing any instance
from S would no longer infer F .

Any inference rule is always assumed to be a minimally
sufficient inference, since otherwise the rule can be simplified
by removing the instances not required. We useÑ˚ to denote
a minimally sufficient inference. In this work, we focus on
linear information systems where any inference rule specifies
a linear relationship among the information instances:

Lemma III.3. If all inference rules specify linear relation-
ships among the instances, any information inference of the
form S Ñ F also specifies a linear relationship.

Proof: Given that S Ñ F , there must exist a set of
inference rules that are sequentially applied to infer F , in
the forms of S1 ñ F1, S2 ñ F2, . . . , Sk ñ FkpF “ Fkq,
where Si Ď S

Ť

jăitFju and each Si ñ Fi specifies a linear
equation between Si and Fi. Since all the inference rules are
assumed to be linear, we may replace Fi appearing after the
ith rule with Fi’s expression in the ith rule, which removes
Fi from those equations. After performing this operation
sequentially from i “ 1 to k ´ 1, we end up with a linear
expression of F using only instances in S.

The rules in Tab. I define a linear information system when
the positions are all specified in the global coordinate system.

Lemma III.4 (Permutability). Assuming a linear informa-
tion system, any minimally sufficient inference of the form
S Ñ˚ F is permutable. In other words, it satisfies that
S Y tF uzFx Ñ

˚ Fx for all Fx P S.

Proof: Given that S Ñ˚ F specifies a linear relation-
ship (Lemma III.3), the linear expression of F using S as
constructed in Lemma III.3 must use all the instances in S.
Given a linear relationship, we can swap the positions of
any Fx and F in the expression, and the result is still a valid
linear equation for expressing Fx. Since Fx expressed by this
equation is uniquely determined by SYtF uzFx collectively,
by Def. III.8, we have S Y tF uzFx Ñ

˚ Fx.

Lemma III.5. Assuming a linear information system and two
sets of constraints S1 and S2: if S1 Ñ

˚ F and S2 Ñ
˚ F

and S1 and S2 are compatible, we must have S1 “ S2.

Proof: We prove it by contradiction. Suppose that S1

and S2 are compatible and S1 “ S2. Given that S1 Ñ
˚ F ,

we know that S1 introduces a constraint on F given Lemma
III.2. Hence, to ensure that S2 is compatible, S2 must
compute the same value f for F .

If S1 and S2 are the same, the conclusion trivially holds.



Fig. 2: Illustration of the multi-level graphical structure
constructed (from the bottom up) to determine whether a
set of constraints is compatible. The nodes are labeled by
information instances. It shows two cases where a duplicate
node is found: one for F5 and one for F0. The F0 at level
3 is not added and it does not lead to incompatibility. The
F5 at level 2 however leads to incompatibility. In the actual
implementation, our algorithm would stop at level 2 after the
incompatibility is detected.

Otherwise, if S1 Ą S2, it results in a contradiction given
that both S1 Ñ

˚ F and S2 Ñ
˚ F are minimally sufficient.

Otherwise, S2 must contain at least one instance F2, 1 that
is not present in S1. In such a case, we can set the value for
F2, 1 in S2 independently of S1. Since updating the value
of F2, 1 will change the value of F given Lemma III.4, it
leads to a contradiction that S1 and S2 must compute the
same value for F .

Theorem III.6. Assuming a linear information system and
given a MT-MR setting tSiu with non-overlapping Si’s, the
following is a necessary and sufficient condition for tSiu to
be incompatible:

DS1, S2 Ď
ď

i

Si : S1 X S2 Û F, S1 Ñ F, S2 Ñ F (1)

Proof: For sufficiency, we prove it by contradiction.
In particular, we assume that there exist S1 and S2 that
satisfy the above condition and they are compatible. Given
that S1 Ñ F and S2 Ñ F , we know that there exist
subsets S˚1 and S˚2 of S1 and S2, respectively, such that
S˚1 Ñ

˚ F and S˚2 Ñ
˚ F . From Lemma III.5, we know that

for them to be compatible (as a result of S1 and S2 being
compatible), it must satisfy that S˚1 “ S˚2 . This conflicts
with the requirement that S1 X S2 Û F .

For necessity, we must prove that the above condition must
hold for all situations where tSiu is incompatible. Assume
a situation where the condition does not hold and tSiu is
incompatible. In such a case, there must exist two different
sets Sa Ď

Ť

i Si and Sb Ď
Ť

i Si that both infer some
F given Claim III.1, and that Sa X Sb Ñ F , given the
assumption that the condition does not hold above. Denote
S˚a and S˚b as the subsets of Sa and Sb, respectively, that
satisfy S˚a Ñ˚ F and S˚b Ñ˚ F . For Sa and Sb to be
incompatible, without loss of generality, there must exist
S!
a Ă Sa such that S!

a ‰ S˚a and S!
a Ñ

˚ F . In such a
case, we can choose S1 and S2 in the condition above as S!

a

and S˚a and it would satisfy, resulting in a contradiction.

Note that when the Si’s overlap, tSiu will be trivially
incompatible by Claim III.1.

Example: Let us look at a simple example of how Theorem
III.6 works in a cooperative navigation domain:
‚ One robot r1 must provide localization assistance to

two robots r2 and r3 to different goal locations as two
tasks. Two coalitions are formed. The constraints (

Ť

i Si

in Theorem III.6) here are on the global positions of r2
and r3 (i.e., FGpr2q, FGpr3q), and the relative positions
from r1 to r2 and r3 (i.e., FRpr1, r2q, FGpr1, r3q).

‚ Two robots r1 and r2 must provide localization assis-
tance to two robots r3 and r4 to their goal locations
as two tasks, respectively. Two coalitions are formed.
The constraints here are on the global positions of
r3 and r4 (i.e., FGpr3q, FGpr4q), as well as the rela-
tive positions from r1 to r2 and from r3 to r4 (i.e.,
FRpr1, r3q, FGpr2, r4q), respectively.

For the first case, we can see that both
tFGpr2q, FRpr1, r2qu (first task) and tFGpr3q, FRpr1, r3qu
(second task) can be used to infer FGpr1q, and their
intersection is H. Hence, they are not compatible according
to Theorem III.6. For the second case, tFGpr1q, FRpr1, r3qu
(first task) and tFGpr2q, FRpr2, r4qu (second task) do not
infer the same F . In fact, these two tasks are trivially
compatible since there is no multitasking involved. These
observations also align with our intuition.

B. Solution Method

Brute-forcing is intractable since it requires checking all
subset-pairs of

Ť

i Si, which is exponential. Instead, we
propose a procedure based on a directed and multi-level
graphical structure constructed from the bottom up:
‚ Level 0: Make a node for each F P

Ť

i Si as leaves for
the structure.

‚ Level i + 1 pi ě 0q: For all inference rules that can be
applied to the nodes at levels 0 to i, create a parent node
for each instance F that can be inferred directly based
on an inference rule, if F did not appear previously
in the graph. Otherwise, we compute the intersection
of its footprint (all descendant-leaf nodes, see Fig. 2)
and that of the previous node, to see if it infers F . If
so, continue with building the graph without adding the
duplicate node; otherwise, return incompatible.

‚ Stopping criteria: when no new nodes can be added,
return compatible.

Fig. 2 shows an example of the graphical structure con-
structed to illustrate the compatibility detection process.

C. Solution Analysis

To analyze the complexity of the algorithm, we consider
the following variables:
‚ number of inference rules, R
‚ number of robots, G
‚ number of information types, F
‚ maximum number of referents in instances, E



‚ maximum number of information instances on the left
hand side of an inference rule, N

The maximum number of information instances is
bounded by OpFGEq. At any level i, the number of
candidate rules to check is bounded by OpRGEN q. The
total computation for constructing the graph is bounded
by OpFGERGEN q. Hence, the computational complexity
is only exponential in two constants (determined by the
domain), or polynomial with respect to the number of robots.

Theorem III.7. The solution method specified above is both
sound and complete for detecting incompatibility in a MT-
MR setting with linear information systems.

This is a direct result of Theorem III.6 since the solution
method essentially checks the condition described there.
Note, however, when the system returns compatible, it does
not guarantee that a physical configuration for satisfying the
constraints at any point of time during the execution is always
feasible due to, e.g., dynamic and environmental influences.
However, assuming such influences are temporary and some
fault-tolerance is built in the execution modules, a multi-
robot system can often recover from those situations [27].

IV. RESULTS

We introduced four types of UAV tasks that were consid-
ered in our experimental results. In this section, “vehicle”
and “robot” are used interchangeably.
‚ Monitoring task: a target must be monitored within a

close proximity by an air vehicle. The constraints for
the monitoring task include the relative position (FR)
between the vehicle and target and the global position
(FG) of the target (since we have no control over it).

‚ Centroid task: a group of vehicles must maintain their
centroid with respect to a specific location or target. The
constraint is the centroid information defined over either
2 or 3 robots (denoted by FC2

or FC3
). The centroid

information can be inferred from the global position
information of the vehicles involved in the centroid task.

‚ Formation task: a group of vehicles must maintain
their positions relative to each other. The formation has
a designated leader, which may change. The constraints
for this task are the relative positions (FR) between the
agents in the formation with respect to the leader.

‚ Communication maintenance task: a vehicle must
maintain its position in between two other vehicles to
maintain communication links. The constraint here is
the communication maintenance information (denoted
by FM ) that takes 3 referents, which can be derived
from the relative positions between vehicles 1 and 3,
and between 2 and 3, assuming that 3 is the maintainer.

A. Synthetic evaluation

In this experiment, we tested with the first three types of
tasks only. The goal is to see how beneficial our approach
is under resource constrained situations. We ran several
experiments to determine the efficacy of our synergistic ap-
proach compared to a baseline. In the baseline, vehicles were

assumed to be single-tasking, and hence would not accept
new tasks once they were assigned to a task. The baseline is
clearly inefficient since two vehicles that are assigned to a
centroid task could still take on a monitoring task (similar to
Fig. 1). In our experiments, we randomly generated a set of
tasks for a given set of agents, with tasks alternating between
centroid, formation, and monitoring, until every task was
attempted and assigned if possible based on each method.

In Fig. 3, we set out to evaluate how our approach
performs as the number of vehicles or tasks varies. We show
the number of vehicles required to attempt all tasks in a low-
demand (resource abundant) environment and a high-demand
(resource constrained) environment, and a comparison of
how a task environment with increasingly complex tasks
affects the performance of each approach in Fig. 3. For
the low-demand environment, our experiment generated a
number of random centroid and formation tasks equal to 1

5 of
the number of vehicles, and a number of random monitoring
tasks equal to 1

2 of the number of vehicles, with random
vehicles associated with each random task. For the high-
demand environment, our experiment generated a number of
random centroid and formation tasks equal to the number of
vehicles, and a number of random monitoring tasks equal
to three times the number of vehicles, with random vehicles
associated with each random task. For the third experiment,
we used 25 vehicles and varied what percentage of tasks
required more than one vehicle to be performed. Each data
point was given 50 or more iterations and the results were
averaged. Our synergy method performed significantly better
than the baseline, with roughly 50% more tasks assigned
in most cases. In nearly every case, the synergy method
assigned as many tasks as it had vehicles available. The base-
line method assigned roughly 60% as many tasks as it had
vehicles available. In every task environment examined, our
approach resulted in more tasks assigned than the baseline
approach. Also, the standard deviation of the synergy method
is lower because the synergy method always assigned about
the same number of tasks as vehicles.

B. Simulation Scenario

1) Simulation Environment and Settings: The OpenA-
MASE simulation environment was developed by the Air
Force Research Lab [28] as a testing ground for their aerial
vehicle control software, UxAS [29]. AMASE is a realistic
simulator that models 5-DOF (coordinated turning) flight
dynamics with self-configured performance. AMASE also
handles piloting vehicles to waypoints. Together, these two
pieces of software form the simulation environment. AMASE
gives access to a GUI and simulates the vehicles over time,
and UxAS handles the passing of all relevant messages to and
from all modules of the software. Any module can subscribe
to any type of message, and will then receive any message
of that type sent by any other module. Our software uses
the AirVehicleState, containing a “heartbeat” of information
about each vehicle for each simulation tick, and the AirVe-
hicleConfiguration, containing capability information about
each vehicle, to decide where vehicles should move to.



Fig. 3: (left) The number of robots required by each method under a low-task environment (roughly as many vehicles needed
in tasks as there are robots) to attempt every task; (middle) the number of tasks assigned by each method given a fixed
number of robots and an extremely task-dense environment; (right) a comparison between the two approaches with a fixed
number of tasks and robots, but a dynamic ratio of single-robot tasks to multi-robot tasks. Note that for the left plot, lower
values are more optimal, and for the middle and right plots, higher values are more optimal.

Fig. 4: (left) Computational time analysis of the synergy method (polynomial) and baseline; (middle and right) screenshots
of the simulation scenario. The middle screenshot is the starting state of the scenario, and the right is the end state.

2) Simulation Result: In this simulation, we tested our
system on a realistic scenario involving a multi-vehicle
convoy task with intruder detection. The aim here is to
test how our system extends the capability of the state-
of-the-art in complex task scenarios. We have simulated 8
controlled vehicles, 2 intruder vehicles, and 1 static vehicle
that approximates a control station. Fig. 4 shows snapshots
of the start and end states of the simulation. The complete
execution of this scenario is submitted as a video attachment.

A convoy is centered around vehicle 1 and protected by
three vehicles (2, 3, 4), which are assigned to a centroid task
with vehicle 1 as the dynamic centroid. For centroid tasks,
we first have any vehicles that are also executing another
task calculate their target positions. Any remaining vehicles
- at least 1 vehicle per centroid must be “free” in this way
to satisfy task consistency - will then adjust their target
positions to maintain the centroid once all vehicles in the
centroid group reach their target positions. Vehicles 1, 9, 10,
and 11 are in a formation task. Vehicle 1 is following a set
path to its destination, effectively assigning it to a “convoy”
task. For formation tasks, we allow all vehicles in the group
to loiter in position until one of them is assigned to another
task, in which case that vehicle becomes the leader of the
group and the rest will maintain their positions relative to
the leader. In this case, the vehicles 9, 10, and 11 maintain
their positions relative to vehicle 1.

In the meantime, vehicle 7 must maintain communication
between the convoy and a ground control station (simulated
by a stationary vehicle 8). Additionally, two intruders are

detected and two of the vehicles (2 and 3) that are already
assigned the centroid task take advantage of the synergy
between centroid and monitoring tasks by executing these
two tasks at the same time. This assignment is consistent
because vehicle 4 is free to move to maintain the centroid,
even though 2 and 3 are constrained by their respective
monitoring tasks.

V. CONCLUSIONS

A fundamental limitation of the existing multi-robot sys-
tems is that robots are assumed to be single-tasking. In
this paper, we set out to address this limitation by enabling
multitasking robots in multi-robot tasks. Inspired by the in-
formation invariant theory, we modeled physical constraints
as information instances. This allowed us to model the
interaction between the physical constraints to determine
when they could be synergistically satisfied by reasoning
about the relationship between information requirements. We
showed that our algorithm was sound and complete for linear
information systems, under the assumption that all informa-
tion inference rules were provided. Simulation results were
provided to show the effectiveness of our approach under
resource-constrained situations and in handling challenging
scenarios in a realistic multi-UAV simulator.
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