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Abstract— Fluent teaming is characterized by tacit interac-
tion without explicit communication. Such interaction requires
team situation awareness (TSA) to facilitate. However, existing
approaches often rely on explicit communication (such as visual
projection) to support TSA, resulting in a paradox. In this
paper, we consider implicit projection (IP) to improve TSA
for tacit human-robot interaction. IP minimizes interruption
and can thus reduce the cognitive demand to maintain TSA
in teaming. We introduce a novel process for achieving IP
via virtual shadows (referred to as IPS). We compare our
method with two baselines that use explicit projection to
maintain TSA. Results via human factors studies demonstrate
that IPS supports better TSA and significantly improves unso-
licited human responsiveness to robots, a key feature of fluent
teaming. Participants acknowledged robots implementing IPS
more favorable as a teammate. Simultaneously, our results also
demonstrate that IPS is comparable to, and sometimes better
than, the best-performing baselines on information accuracy.

I. INTRODUCTION

Over the past decade, there have been accelerated growths
and advancements in robotic research, making it no longer
far-fetched to envision robots as part of our lives. One of
the most appealing applications involves teaming domains
where humans and robots complement each other to achieve
complex tasks [1]. Teaming often requires coordination that
may be facilitated by either explicit or implicit communi-
cation. While explicit communication (such as using natural
languages) is highly effective at conveying information, it
requires substantial attention from the receiver, leading to
interruptions and thus less fluent teaming. Consequently,
effective teaming is often characterized by tacit interaction
with little or no explicit communication [2]. To facilitate tacit
interaction, it is critical for the team members to maintain
team situation awareness (TSA) so that each member can
separately maintain and predict the team status for fluent
teaming [3]. Paradoxically, the existing interface for human-
robot interaction (HRI) often relies on explicit commu-
nication to maintain TSA [4], [5], [6], which introduces
interruptions to teaming in the first place!

The challenge of maintaining TSA with implicit (non-
explicit) communication has been left mostly unattended.
In our work, we take a generic stance and refer to explicit
communication, regardless of its modality, as communication
with an established channel [7], which implies that the
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intentions of the sender to convey information and of the
receiver to expect information should both be present. In
implicit communication, in contrast, the receiver plays a
passive role such that less attention would be drawn.

Consider a scenario in a semi-automated car assembly
shop where a human worker, Mark, works along with a
partner robot. Each agent has its own tasks in hand but
must also collaborate occasionally to make progress. In one
scenario, Mark sends the robot to fetch a hot soldering rod.
Mark needs to attend to the rod soon after the robot arrives
so must keep track of when, where, and how the robot
returns to timely and safely handle the rod. For productivity,
Mark would context switch to other tasks (e.g., reading the
assembly manual) before the robot returns instead of idly
waiting for the rod. However, focusing on other tasks can
potentially cause him to lose track of the moving robot,
resulting in the loss of TSA (i.e., from which direction the
robot is approaching and the distance between the robot
and Mark in real-time) and safety risks (i.e., thermal burns).
Using explicit communication to address the situation may
be the first thought. However, having the robot display its
position via explicit visual communication, such as using
a virtual map on a computer or portable device, would be
distracting as it requires Mark to frequently check the map,
while having the robot announce its arrival via prompts
or sounds would be insufficient for the continuous TSA
maintenance requirement. In such cases, we would benefit
from an approach that uses implicit communication to enable
Mark to maintain continuous TSA and timely responsiveness
to the robot without diverting much attention.

However, coming up with an implicit communication
interface that can support and positively impact the main-
tenance of TSA to address such a gap is challenging.
Since information needs to be continuously conveyed to the
receiver (albeit not necessarily perceived as communication),
the interface must be minimally intrusive to the receiver. In
this work, we introduce implicit projection (IP) via virtual
shadows (IPS). First, IPS is an implicit visual communication
method since shadows are not normally perceived by their
viewers as a form of communication: they are simply part
of the natural environment. This also implies that they
are minimally intrusive. In addition, shadows can provide
rich real-time information about objects, which makes them
ideal for implicit communication. Last but not least, given
our familiarity with shadows, they can be instantaneously
interpreted [9]. In the scenario above, we can apply IPS by
projecting a virtual shadow of the robot into the view of
Mark to help him monitor the robot in real-time and maintain



(a) Illustration of IPS on a surface connected to a wall (b) Illustration of negative shadow

Fig. 1: (a) A virtual shadow of a 3D model of a tank generated by IPS on a flat surface connected to a wall and (b) an
illustration of negative shadow [8]. One limitation of negative shadow is that it only works on flat surfaces. This is because
the “shadow” is actually a dark colored 2D model of the object that is placed on a plane to give the illusion of a shadow:
the surroundings of the 2D model is illuminated. Shadows created using negative shadow cannot adapt to complex surfaces.

continuous TSA, even when the robot moves out of sight.
To realize IPS, we use augmented reality (AR) to generate

virtual shadows. However, there are significant scientific and
engineering challenges to use virtual shadows:

• Realistic Shadow Projection: Shadows are often created
using approximate methods such as negative shadow
due to their simplicity [8] (see a visual comparison of
our method and negative shadow in Fig. 1). However,
unrealistic shadows can lead to misinterpretation and
hence misinform TSA.

• Naturalistic Shadow Projection: To project virtual shad-
ows into a human receiver’s view, the virtual light
source must be dynamically reconfigured. This can have
a negative effect on the perception of the naturalness of
the shadow and its dynamics, leading to misinterpreta-
tion, unwarranted distraction, discomfort, and distrust.

Our contribution in this work is four-fold. First, we
identify an important gap of using implicit communication
in visual communication. In particular, we introduce im-
plicit projection (IP), propose a way to implement IP using
virtual shadows (IPS), and apply IPS to an HRI scenario
for maintaining TSA to achieve tacit interaction. This is
in contrast to the traditional visual communication methods
that predominantly rely on explicit communication [10],
resulting in less effective teaming. Second, we develop a
novel engineering process for generating realistic shadows
with Microsoft Hololens, which includes environment mod-
eling and virtual shadow rendering1. It generates shadows by
superimposing a cutout model onto the real-world from a 3D
scan of the environment. The result is high-fidelity shadows
generated according to the environment layout as with real
shadows. See Fig. 1 for an illustration of virtual shadows
generated by such a process. Third, we propose a method for
achieving naturalistic shadow dynamics under changing light
source configurations by integrating a mapping mechanism
with a control method. The virtual shadows resulting from
such a method are approximately true to the real object’s
dynamics while retaining smoothness. More intuitively, the
shadow mapping mechanism makes sure that the robot’s state

1This part was presented as a Late-Breaking Report at HRI 2021 [11].

(such as its velocity and rotational speed) is effectively cap-
tured by the virtual shadow and the control method ensures
smoothness to minimize the negative effects on perception
during interaction. Fourth, we integrate IPS with a physical
robotic system and evaluate it by comparing with baselines
that use explicit projection. Results validate our hypotheses
and demonstrate the effectiveness of IPS in facilitating tacit
interaction in proximal HRI scenarios.

II. RELATED WORK

In linguistics, explicit communication [12] is defined as
information conveyed via spoken or written words. Where
multiple modalities are concerned, explicit communication
can be extended to refer to information transferred through
an established channel [7]. Such a characterization implies
that both the sender and receiver must be aware of the
communication being made as information transfers through
the channel: the intent of communication is mutual. We
follow this extended definition in our work to distinguish
between explicit and implicit communication, regardless of
its modalities. Note that such a definition is also consistent
with that commonly adopted in HRI research [13], [14] with
a special focus on the receiver. For example, legible and
explicable motions [15], [16], [17] are considered implicit
ways of communication (via communicative behaviors) since
the receiver may not realize the communicative intent of
the sender. In this regard, IPS addresses the challenge of
realizing implicit visual communication using virtual shad-
ows, which is a first of its kind. With a properly designed
interface, implicit communication draws less attention from
the receiver who engages in a passive role during commu-
nication, making it less distracting [18] and more desirable
for maintaining TSA in teaming.

As an emerging human-computer interaction (HCI) in-
terface, Augmented Reality (AR) empowers us to visually
perceive and interact with objects that are not present in the
physical world [19]. Due to the intuitive appeal of such visual
augmentations, AR has been used successfully and gaining
popularity in various domains [20], such as military [21],
marketing [22], education [23], manufacturing [24], medi-
cal [25], entertainment [26], and robotics [27]. Most prior



work (e.g., [28], [10], [29]) uses AR as an explicit visual
communication method. Our work on implicit projection
thus bridges an important gap in visual communication.
Prior work identified that environment complexity, such as
occlusions from physical objects, affects the fidelity of the
virtual depiction of AR objects [30]. IPS presents a process
for realistic and naturalistic virtual shadows of high-fidelity
by generating them directly on the true environment layout.

AR has been used in numerous applications. Our interest
aligns with those that relate to content creation [31], such
as making VR objects more realistic and interactable. For
example, Wang et al. [32] make use of lighting and shading
of real scenes to modify AR objects to make them more
lifelike. Such AR applications in robotics are also gaining
popularity. For example, AR objects have been used as part
of the interface to facilitate human-robot interaction [33]. AR
has also been used to project virtual shapes onto a physical
object to highlight the desired places to insert parts for
assembly tasks [10]. Makris et al. [29] develop a method to
project the trajectory of the effector and other information of
a robot onto wearable devices before the robot starts moving.
In [30], [34], the authors introduce an AR application that
assists users having little to no knowledge in robotic systems
with programming robot motions and recovering from fail-
ures. To the best of our knowledge, no prior work studied
the application of AR for maintaining continuous TSA in
challenging proximal HRI scenarios where the robot may
frequently move out of sight. Since our work is focused on
visual communication, other modalities, such as sounds and
haptics [35], [36], are out of the scope.

III. APPROACH

To concretize the technical discussion, we consider a
proximal HRI scenario as illustrated in Fig. 2 where a robot
works behind a human teammate and must occasionally
interact with the human, similar to the motivating scenario.
For timely responsiveness, it is critical for the human to
continuously monitor the robot to maintain real-time TSA
to facilitate the interaction (i.e., responding to the robot’s ar-
rival). To simplify the technical development, we assume that
the human would not need to change his viewing direction
during the task. Also, we assume that the robot would always
operate behind the human (i.e., outside the human’s field of
view). Such a situation may occur when the human must
context switch to reading from a computer screen while not
responding to the robot. The relaxation of these assumptions
is discussed in Section VI. To help the human maintain real-
time TSA in such scenarios, IPS projects a virtual shadow
of the robot that is always observable to the human.

A. Shadow Mapping

One of the challenges to rendering the virtual shadow
always observable is that the Hololens has a small field
of view (FOV) of 34◦ with a maximum distance of 5m
from the human to the holograms (i.e., AR objects). To
achieve this, we use Shadow Mapping to project the robot’s
position from outside the human’s FOV in the real-world to

Fig. 2: Illustration of the problem setting where the top left
shows the human’s view through HoloLens.

its desired shadow position in the virtual world within the
FOV of Hololens. Furthermore, to ensure that the shadow
is informative about the robot’s status, we would like the
dynamics of the shadow to effectively capture the dynam-
ics of the robot. Intuitively, when the robot moves faster
(slower), the shadow should also move faster (slower); for
sufficiently small enough position updates, such as when the
robot moves left, right, up, or down, the shadow should also
move likewise. To satisfy these requirements while ensuring
the shadow is always visible, we choose to implement a
linear mapping between the robot’s position and the shadow’s
position in their respective polar coordinate systems. First,
we consider the real-world outside the human’s FOV to be a
semi-circular area (i.e., θw = 180◦) with a pre-defined radius
lw (i.e., the maximum distance from the human to the robot
where the robot’s status is of concern to the human), and
the virtual world as a sector with apex angle θv = 34◦ and
lv = 5m. The mapping is specified as follows:

rv = lv − rw
lv
lw

, βv = βw
θv
θw

, (1)

where rw and βw above refer to the polar coordinates
of a point in the real-world, and rv and βv refer to the
polar coordinates of the corresponding point in the virtual
world. Note that rv is a decreasing function of rw since
the proportion of visible shadow should grow as the robot
moves closer to the human. Such a mapping is illustrated
in Fig. 3 where the human is at the intersection of the two
worlds illustrated as a green dot. We also introduce the global
coordinate system as a Cartesian system (i.e., φx and φy).

B. Shadow Projection

The 3D development platform (Unity) for Hololens uses
a depth buffer system to keep track of all surfaces close to
the light source. If any surface comes in direct line with
the light source, the surface will be illuminated (similar to
ray tracing). The unilluminated surface therefore creates the
shadow effect [37]. The benefit of using such a process is so
that the shadow generated will be realistic as it naturally
caters to the virtual surface onto which the shadow is
projected (see Fig. 6). This means that we will only need
to focus on projecting the shadow to the desired shadow
position (Pd) without having to worry about the geometry
of the virtual environment model, as long as the model is an



Fig. 3: Projection from the robot’s position (rw, βw) in the
real-world to its shadow position (i.e., the top of the robot’s
shadow) in the virtual world (rv, βv).

accurate representation of the real-world. Next, we discuss
how to project the robot’s position, denoted as Pr, to its
desired shadow position as expressed in Eq. (1), denoted as
Pd, by setting the tilt and pan of a directional light source.
For a given Pd and height (h) of the robot, the tilt α of the
light source to generate a shadow to reach Pd is given below
and illustrated in Fig. 4, where α = tan−1

(
h
d

)
:

Fig. 4: Relationship between the tilt α of the light source,
robot height, h, and shadow-robot distance (d).

Adjusting the tilt of the light source would increase or
decrease the shadow length as needed. d is the Euclidean
distance between Pr = (rw, βw) and Pd = (rv, βv):

d = euclidean((rw, βw), (rv, βv)) (2)

We compute the pan (γ) of the light source based on Fig. 3.

C. Shadow Smoothing

Even though we can derive the exact tilt and pan of the
light source to project the top of the robot to the desired
shadow position as discussed above, the magnitudes of the
updates to these angles for when the robot moves in different
parts of the real-world can differ substantially. For example,
for the same amount of shadow movement, the smaller the
shadow-robot distance (i.e., d) is, the more the light source
must update its tilt (α). Significant directional changes of
the light source can cause confusion and discomfort, which
could negatively impact the perception of the shadow and the
maintenance of TSA. We reduce such effects by smoothing
the dynamics of the virtual shadow.

We choose to apply a PID control method that is often
used in robotics to generate smoother state transition pro-
cesses [38]. It is a combination of Proportional (P ), Integral
(I), and Derivative (D) control actions. P is proportional
to the error between a set point and the observed process
variable. I considers the past errors and integrates them over
time to correct the accumulated error. D acts on temporal
error difference. The control function of PID is given by:

u(k) = Kpe(k) +Ki

k∑
τ=0

e(τ) +Kd(e(k)− e(k − 1)), (3)

where Kp,Ki and Kd are the coefficient 2×2 matrices of P ,
I and D, respectfully. For shadow smoothing, with changes
to the light source angles (i.e., u) as our control inputs and
given the robot’s position in the real-world (i.e., Pr), we
must drive the shadow towards the desired output Pd. Such
a model can be modeled with the plant as follows:

x(k + 1) = f(x(k), u(k),∆Pr(k)), (4)

where x is the virtual shadow position, and u = [∆α,∆γ]T

encodes changes to the tilt and pan angles of the light source
that we are actively controlling. ∆Pr is the change in the
robot’s position in the real-world, which is treated as an
exogenous input. In this paper, we consider f as a first-
order discrete-time dynamic model:

x(k+1) = x(k)+

[
−a 0
0 b

]
u(k)+

[
−h 0
0 g

]
∆Pr(k), (5)

where a, b, h, and g are positive constants. These values are
chosen to capture ∆Pr(k) and u(k)’s expected relationship
with the change of the shadow position from step k to k+1.
We assume that ∆Pr(k) is expressed in the polar coordinate
system of the real-world.

Now, we can derive a simple PID controller using Eq. (4)
with the setpoint at step k being Pd(k). This is the position
we would like the shadow to be rendered. x(k) represents the
shadow position actually rendered at step k. We assume that
both x(k) and Pd(k) are expressed in the polar coordinate
system of the virtual world. The difference between Pd(k)
and x(k) then leads to the error e(k) = Pd(k)− x(k).

D. Shadow Rendering

To generate realistic shadows in IPS, shadow rendering
is composed of environment modeling, shadow generation,
and shadow superimposition. Our environment modeling
technique uses the semi-autonomous nature of SLAM-like
modeling (provided by HoloLens). To be able to find an-
choring surfaces in the real world to place virtual objects
(Holograms), the HoloLens constantly maps its environment.
This also ensures that when there is a change in the environ-
ment (e.g., when an object is moved in the environment), it
will be updated to the new arrangement.

In order to make use of the 3D map created by the
HoloLens, we use vertex-lighting technique to create a
custom shadow-receiving shader. Although pixel lighting
provides more details by calculating the illumination for each
pixel, it is computationally expensive. In contrast, by using



Fig. 5: 3D scan by Hololens for environment modeling.

vertex lighting, we calculate illumination at each vertex of
a model and then interpolate the resulting values over the
faces of the models, resulting in a more efficient solution.
We apply this shader to the exported HoloLens-generated
map (see an example in Fig. 5) and enable its shadow
receiving properties. This creates our transparent shadow-
receiving model of the environment (see an example in Fig.
6 for the environment model in Fig. 5). Finally, this model
is superimposed onto the real-world to render the shadow.

Fig. 6: A transparent shadow-receiving model of the envi-
ronment in Fig. 5 for shadow rendering.

IV. EXPERIMENTAL DESIGN

We aim to validate the benefits of implicit communication
with respect to explicit communication at maintaining TSA
and facilitating tacit HRI. Hence, our experimental design
focuses on comparing with other visual projection methods
instead of identifying the most effective communication
modality under our experimental scenario. The scenario
considered is shown in Fig. 2. It involves a human requesting
a robot for a delivery service or picking up a delivery from
the robot. The interaction is tacit here in the sense that the
robot would not announce its arrival. The responsiveness of
the human to the robot is determined by the time between
the robot’s arrival and the human acknowledging its arrival.
The other tasks of the human while not responding to the
robot involve document reading. Such context switching can
result in the loss of TSA and reduced responsiveness to the
robot. Since we are also interested in evaluating the accuracy
of the TSA maintained, we divided each participant session
into two parts. The first part involved the delivery tasks as
discussed above and the second part involved more detailed
questions about the TSA, such as estimation of the robot’s
position and prediction of its next destination. We refer to
tasks in the second part as estimation tasks. We used Kinova
Movo in this study.

We compare IPS against two baselines that use explicit
visual communication with AR. We carefully selected the
baselines based on common practices used for displaying
dynamic objects [39], [40], [41]. All baselines and IPS dis-
play a sufficient amount information about the robot for the
tasks considered. The information is projected continuously
to the human teammate. IPS and the baselines are described
in more details below:

1) Map displays a top-down and real-time view of the
robot on the map (Fig. 7 (left)). The pink sphere
indicates the human and the robot is shown in black,
with the arms in the front.

2) Arrow uses an arrow that always points to the robot in
real-time (Fig. 7 (right)). The arrow pans in a plane.

3) IPS uses a virtual shadow of the robot to communicate
real-time information (Fig. 7 (middle)). A video that
illustrates how IPS works is included.

Both Map and Arrow appear frequently in real-world ap-
plications. Due to our familiarity with these baselines, they
are chosen to best represent explicit projection methods. Our
experimental design is used to verify these hypotheses:

• H1. IPS improves responsiveness to the robot compared
to the baselines while remaining comparable to the
baselines in terms of cognitive workload.

• H2. IPS maintains accurate TSA that is comparable to
the baselines.

• H3. Robot with IPS is viewed more favorably as a work
partner than the baselines.

We deployed all three methods onto Hololens and placed
the robot outside the participant’s field of view (FOV).
Each participant was informed about the delivery tasks and
the robotic partner. The participant and the robot were
supposed to complete the delivery tasks together in the least
amount of time so that the participant knew that timely
responses to the robot after its arrival were important. A
response was recorded when the participant acknowledged
the robot’s arrival (for delivery service or to deliver). The
time elapsed since the robot’s arrival was used to quantify
the responsiveness to the robot (i.e., the less the better).
Note that responsiveness heavily depends on the quality of
TSA maintenance. At the same time, the participant was
given some document to read and was advised to not turn to
observe the robot during the study while wearing Hololens.
After the delivery tasks, the participant was then presented
with several estimation tasks to evaluate the accuracy of
TSA. To prepare for the tasks, each participant was given
a printed map of the space in a discretized form for position
identification (see Fig. 8). The map has numbers on it
indicating different parts of the space. During the estimation
tasks, questions such as the robot’s current position and
predicted destination were asked at certain time points as the
robot moved around in the space in preprogrammed paths.
The participant was tasked to choose the number on the
map to match the estimation or prediction. The questions
were divided into static perception (estimating the robot’s
current position), post-movement perception (estimating the



Fig. 7: Participant’s view in IPS and the two baselines: Map (left), IPS (middle), Arrow (right).

robot’s position after movement), and prediction (predicting
the destination of the robot). We computed accuracy as the
Manhattan distance between the participant’s estimation and
the ground truth. The smaller the distance was, the more
accurate the estimation was.

Fig. 8: Discretized environment for our study.

24 CS students in their senior year participated in a within-
subjects study. They were made up of 14 female and 10 male
students. Each participant participated in three sessions, one
for each method. We recorded a video for each part of a
session (with 2 parts in each session). The first video for
the delivery tasks was used to measure the waiting time
between the robot’s arrival and the participant’s response.
The second video was recorded for the estimation tasks. This
resulted in 6 videos per participant and a total of 144 videos
recorded. However, due to objects and robot blocking the
camera, or participants turning to observe the robot during
the study, we discarded the data from 7 participants, which
left us with the remaining 17 participants for result analyses.
After all the three sessions, each participant was given a
final survey that included an AttrakDiff survey and the
participant’s preferences towards the robot as a work partner
and towards the different projection methods with respect
to their naturalness and user friendliness. In the AttrakDiff
survey, the participants were asked to rate the methods based
on different qualitative metrics on a scale of 1 to 7.

V. RESULTS AND ANALYSES

An alpha level of 0.005 is used for all statistical tests.
1) Responsiveness to Robot: Fig. 9 presents the results

for the waiting time of the robot between when it arrived
at the delivery location and when the participant responded.
We observe that participants were much faster to react to
the robot when IPS was used. Paired Student’s t-tests gave
t(16)=2.12, p=.003 between IPS (M=10.3, SD=9.18) and

Fig. 9: Waiting times for robot waiting for delivery.

Fig. 10: Waiting times for robot waiting for pickup.

Map (M=13.5, SD=7.9), and t(16)=2.12, p=.002 between
IPS (M=10.3, SD=9.18) and Arrow (M=15.7, SD=8.8). Fig.
10 presents the results for the waiting time of the robot
between when it arrived at the pickup location on the
participant’s request for a delivery and when the participant
responded. Similar results were observed. T-tests resulted in
t(16) = 2.13, p = .003 between IPS (M=5.50, SD=2.11)
and Map (M=8.80, SD=3.62), and t(16)=1.75, p < .001
between IPS (M=5.50, SD=2.11) and Arrow (M=13.04,
SD=4.66). These results verified that the responsiveness to
robot with IPS was significantly better than the baselines,
which supported part of H1 regarding responsiveness.

2) TSA Accuracy: Fig. 11 presents the results with respect
to how accurately each method maintained TSA in the
estimation tasks. Generally, IPS did better than Arrow and
was on a par with Map. Map did well, which was likely
due to the fact that participants were generally familiar with
maps in one form or another in real life. Arrow performed
the worst as expected since the depth information must be
inferred from how fast the arrow moved, which made it
difficult for the participants to accurately estimate the robot’s
position and changes in position. It can be seen from Fig. 11
that IPS performed comparably to Map in perception tasks,
with Map having a slight edge in post-movement perception.
T-tests revealed no significant differences between IPS and
Map (H2). It is however interesting to note that IPS proved
to provide more context information for TSA in prediction



and did much better there than the baselines in prediction as
shown in Fig. 11. We attributed such performance to better
TSA since prediction required the participants to maintain
the context of movements (i.e., which direction the robot
was heading for), instead of solely the position. Student’s
paired t-tests on prediction resulted in t(16)=2.19, p < .001
between IPS (M =0.24, SD =0.42) and Arrow (M =0.57, SD
=1.08)), and t(16)=2.12, p < .001 between IPS and Map (M
=0.32, SD =0.55).

Fig. 11: Accuracy (via a distance metric) in estimation tasks.

Fig. 12: AttrakDiff survey results.

3) Attractiveness: AttrakDiff evaluated the attractiveness
of the robot with different methods. The result is presented in
Fig. 12. Results indicate that the robot with IPS was viewed
as more attractive than the robot with the baselines (H3).
In particular, participants were much more motivated to
work with the robot when using IPS than the baselines (i.e.,
Captivating and Novel). We interpreted it as the participants
felt IPS provided a more immersive teaming experience than
the baselines (see 4) below), thus encouraging them to be
more responsive to the robot. Albeit being more novel, as
a method of implicit communication, IPS drew no more
attention than the baselines, which was reflected by the
result showing that the participants considered IPS and Map
comparable in manageability (part of H1). Given our frequent
exposure to various forms of maps in real life, this result is
encouraging. Overall, it is observed that IPS obtained the
best ratings among almost all features. We averaged the
values and ran a Student’s paired t-test. The results were
t(16)=2.12, p < .001 between IPS (M=2.59, SD=0.84) and
Map (M=3.76, SD=0.60), and t(16)=2.13, p < .001 between
IPS (M=2.59, SD=0.84) and Arrow (M=4.31, SD=0.79).

4) Partnership and Naturalness: We explicitly asked the
participants to indicate which of the three methods gave them
a feeling of partnership. 75% of the participants indicated
that IPS gave them the feeling that the robot was a work

(a) Intimacy (b) Naturalness

Fig. 13: Results of the participants’ (a) feeling of the robot as
a work partner and (b) feeling of naturalness of interaction.

partner. 18.8% felt towards Map and only 6.2% towards
Arrow. Fig. 13(a) shows the results. This result verifies that
the robot with IPS was viewed more favorably as a work
partner (H3). Finally, we asked the participants to indicate
which methods they felt the most natural. 50% answered
Map while the remaining 50% felt towards IPS. This was
somewhat surprising since maps had been an integrated part
of our lives while IPS was a novel human-robot interface to
the participants. The choice of virtual shadows clearly helped
IPS achieve a comparable performance here.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we introduced implicit projection via vir-
tual shadows (IPS) for tacit HRI. We showed that IPS
improved TSA and responsiveness to robots in a proximal
HRI scenario. We addressed the challenges in realizing IPS
in four steps: shadow mapping, shadow projection, shadow
smoothing, and shadow rendering. IPS represents the class of
implicit visual communication methods, which contrast with
prior visual communication methods that are predominantly
explicit. Results also showed IPS incurring comparable cog-
nitive and attention demands with the best explicit projection
baselines studied. To the best of our knowledge, IPS is the
first work that considers implicit visual communication and
bridges an important gap in visual communication. IPS will
have a variety of applications involving proximal HRI scenar-
ios where tacit teaming is desired. An interesting extension
of IPS is to project the future state of the robot, which can
be used to proactively facilitate teaming activities [42].

In future work, we plan to gradually relax the assumptions
we made. The first of these assumptions is that the human
teammate would not change his viewing direction during
the task. Although our approach is expected to work with
slight changes in the viewing direction, for sudden and abrupt
changes, the shadow could be thrown out of the field of view.
Such a problem can be addressed by allowing the shadows
to temporarily stay out of the view to avoid flickering and
gradually reenter the view. We will explore different control
methods to enable smooth transitions. Another assumption
that the robot always stays behind can be relaxed in a similar
way by enabling smooth transitions for the robot to move
from behind the human to the front. Another limitation
of IPS is that it requires the environment to be scanned
and mapped. This could pose a problem with a frequently
changing environment. We will address this in future work.
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