Lecture 14

Mathematical Induction
Announcements

• Mid-term: Friday, March 3 (study guide will be provided)
 – time for mid-term, 1 hour/70min
• Quiz 2: Monday, Feb 27 (study guide will be provided)
 – time, 45 min
Mathematical Induction Principle

- Given a statement $P(n)$ that depends on a natural number n, and whose validity we want to prove for all possible values of n, we proceed in the following two steps:
 - Base case: prove that $P(1)$ holds
 - Inductive step: Prove that "if $P(n)$ is true, then $P(n+1)$ is true" for all natural numbers n
 - $P(n)$ is called the induction hypothesis
 - These two conditions prove $P(m)$ for all m (why?)

- Variation: n may start from a number different from 1, e.g., 8
Mathematical Induction (a.k.a. Weak Induction)

• How do we prove that $1+2+\ldots+n = \frac{n(n+1)}{2}$?

 - Base case:

 \[
P(1) = \frac{1 \times 2}{2} = 1
 \]

 - Inductive step:

 \[
P(n) \Rightarrow P(n+1)
 \]
 \[
P(n+1) = P(n) + (n+1) = \frac{n(n+1)}{2} + (n+1)
 \]
 \[
 = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+1)(n+2)}{2}
 \]
Example: Mathematical Induction

- Claim: Any set of n horses have the same color.
- Proof by mathematical induction?
 - Let P(n) denote “any set of n horses have the same color”
 - Take any set containing n+1 horses \{h↓1, ..., h↓n, h↓n+1\}
 - Consider the first n horses \{h↓1, ..., h↓n\}. By I.H. they all have the same color.
 - Consider the last n horses \{h↓2, ..., h↓n+1\}. Again, by I.H., they all have the same color.
 - Since h↓2, ..., h↓n are common in both sets, we conclude that h↓1, h↓2, ..., h↓n, h↓n+1 have the same color.

$$P(1)$$
Inductive step

$$P(n) \Rightarrow P(n+1)$$

h↓1, h↓2, ..., h↓n = c↓1

h↓1, h↓2, ..., h↓n, h↓n+1 = c↓2