Lecture 15

Predicate Logic
Announcements

• Stats:
 = Homework (each 4%) + Quiz (each 10%) + Test(40%) + Project (20%)
 - >95 – 3
 - >90 – 8
 - >80 – 22
 - >70 – 33
 - >60 – 39
 - < 60 – 4
 ➢ Average 77.6

• Project proposal due: Mon, 03/20, 2PM
 - About 4 people in a team
 - Sample projects will be discussed later
 - At most two teams can work on the same topic – will create a Google Doc
Project Ideas

< Sudoku like Puzzle >
• Hidato
• Nurikabe
• Dominos
• Nonogram

< Grid Puzzle >
• Minesfield
• Battleship
• Undercover underground
• Networks Puzzle

< Towards Practical Application >
• Exam Seating Chart Generator
• Schedule Creator
Project Ideas

< Non-grid Puzzle >
• Redefining Rubik’s
• Three in a row

< Game >
• King in Check
• Game of Tents

< Logic Clues >
• Football Problem

< Route / Path >
• Lattice Paths - Sweigart & Walz
• Mouse Maze - Weafer & Ditsworth
• Toxic Clean-up - Vlieger & Gonclaves
What we have covered so far

• Propositional logic
 – Syntax, recursive definition
 – Proof theory: Natural deduction
 – Model theory: semantics, satisfaction, tautology, entailment, equivalence
• Proof methods
 – Induction
The Need For a Richer Language

Propositional Logic:

- Study of declarative sentences, statements about the world which can be given a truth value
- Dealt very well with sentence components like: *not, and, or, if … then …*
- **Limitations:** cannot deal with modifiers like *there exists, all, among, only.*

Example: “*Every student is younger than some instructor.*”
The Need For a Richer Language

Propositional Logic:

- Study of declarative sentences, statements about the world which can be given a truth value
- Dealt very well with sentence components like: not, and, or, if ... then ...
- Limitations: cannot deal with modifiers like there exists, all, among, only.

Example: “Every student is younger than some instructor.”

- We could identify the entire phrase with the propositional symbol \(p \).
- However, the phrase has a finer logical structure. It is a statement about the following properties:
 - being a student
 - being an instructor
 - being younger than somebody else
Predicates, Variables, and Quantifiers

Properties are expressed by predicates. \(S, I, Y \) are *predicates*.

\[
S(\text{andy}): \text{ Andy is a student.} \\
I(\text{paul}): \text{ Paul is an instructor.} \\
Y(\text{andy}, \text{paul}): \text{ Andy is younger than Paul.}
\]

“Every student is younger than some instructor.”
Predicates, Variables, and Quantifiers

Properties are expressed by predicates. S, I, Y are **predicates**.

$S(\text{andy})$: Andy is a **student**.
$I(\text{paul})$: Paul is an **instructor**.
$Y(\text{andy}, \text{paul})$: Andy is **younger than** Paul.

Variables are placeholders for concrete values.

$S(x)$: x is a student.
$I(x)$: x is an instructor.
$Y(x, y)$: x is younger than y.

“**Every student is younger than some instructor.**”
Dealing with Quantifiers

Variables are placeholders for *any*, or *some*, unspecified concrete value.

\(\exists x \Phi \) We try to find some instance of \(x \) (some concrete value) such that \(\Phi \) holds for that particular instance of \(y \). If this succeeds, then \(\exists x \Phi \) evaluates to \(T \); otherwise (i.e. there is no concrete value of \(x \) that realizes \(\Phi \)) the formula evaluates to \(F \).

\(\forall x \Phi \) We try to show that for all possible instances of \(x \), \(\Phi \) evaluates to \(T \). If this is successful, \(\forall x \Phi \) evaluates to \(T \); otherwise (i.e. if there exists some instance of \(x \) that does not realize \(\Phi \)), the formula evaluates to \(F \).
Predicates, Variables, and Quantifiers

Properties are expressed by predicates. \(S, I, Y \) are predicates.

- \(S(\text{andy}) \): Andy is a student.
- \(I(\text{paul}) \): Paul is an instructor.
- \(Y(\text{andy}, \text{paul}) \): Andy is younger than Paul.

Variables are placeholders for concrete values.

- \(S(x) \): \(x \) is a student.
- \(I(x) \): \(x \) is an instructor.
- \(Y(x,y) \): \(x \) is younger than \(y \).

Quantifiers make possible encoding the phrase:

“Every student is younger than some instructor.”

Two quantifiers: \(\forall \) — forall, and \(\exists \) — exists.
Predicates, Variables, and Quantifiers

Not all birds can fly.

\[\forall x (B(x) \rightarrow F(x)) \]
\[\neg \forall x (B(x) \rightarrow F(x)) \]
\[\exists x (B(x) \land \neg F(x)) \]

\[B(x) : \ x \text{ is a bird} \]
\[F(x) : \ x \text{ can fly.} \]