First-Order Logic

Yu “Tony” Zhang, Ph.D.
Assistant Professor
Arizona State University
Propositional logic

Derive an inescapable conclusion using all of these:

a. All babies are illogical
b. Nobody is despised who can manage a crocodile
c. Illogical persons are despised

- B: it is a baby
- L: it is logical
- M: it can manage a crocodile
- D: it is despised

\[a) \ B \rightarrow \neg L \]
\[b) \ M \rightarrow \neg D \]
\[c) \ \neg L \rightarrow D \]
Example: “Every student is younger than some instructor.”

- We could identify the entire phrase with the propositional symbol p
- However, the phrase has a finer structure. It is a statement about the following properties:
 - Being a student
 - Being an instructor
 - Being younger than somebody else
The Need For a Richer Language

Propositional Logic

- Study of declarative sentences, statements about the world which can be given a truth value
- Dealt very well with sentence components like: not, and, or, if, ..., then
- Limitations: Cannot deal with modifiers like there exists, all, among, only.
Example: "Every student is younger than some instructor."

- Relationships are expressed by predicates:
 - \(S(\text{andy})\): Andy is a student
 - \(I(\text{paul})\): Paul is an instructor
 - \(Y(\text{andy}, \text{paul})\): Andy is younger than Paul
Example: “Every student is younger than some instructor.”

- **Variables** are placeholders for concrete values
 - $S(x)$: x is a student
 - $I(x)$: x is an instructor

- **Quantifiers** to express “every”, “some”, etc.:
 - Two quantifiers: \forall -- forall, and \exists -- exists

Encoding of the above sentence:

$$\forall x (S(x) \rightarrow (\exists y (I(y) \land Y(x,y))))$$
Dealing with Quantifiers

Formulas under quantifiers:

- $\exists x \Phi$ We try to find some instance of x (some concrete value) such that Φ holds for that particular instance of x. If this succeeds, then $\exists x \Phi$ evaluates to t; otherwise (i.e. there is no concrete value of x that realizes Φ) the formula evaluates to f.

- $\forall x \Phi$ We try to show that for all possible instances of x, Φ evaluates to t. If this is successful, $\forall x \Phi$ evaluates to t; otherwise (i.e. if there exists some instance of x that does not realize Φ) the formula evaluates to f.
Not all birds can fly
- \(B(x) \) : \(x \) is a bird
- \(F(x) \): \(x \) can fly

Encoding of the above sentence:
- \(\neg(\forall x (B(x) \rightarrow F(x))) \)
- \(\exists x (B(x) \land \neg F(x)) \)
Example: “Every son of my father is my brother.”

- Predicates S, F, B:
 - $S(x, y)$: x is the son of y.
 - $F(x, y)$: x is the father of y.
 - $B(x, y)$: x is the brother of y.
 - m: constant, denoting “myself”.

- Translation:
 - $\forall x \forall y (F(x, m) \land S(y, x) \rightarrow B(y, m))$
Example: “Every son of my father is my brother.”

- Predicates S, F, B:
 - $S(x, y) : x$ is the son of y.
 - $f(x) :$ father of x -- f is a function
 - $B(x, y): x$ is the brother of y.
 - m: constant, denoting “myself”.

- Translation:
 - $\forall x (S(x, f(m)) \rightarrow B(x, m))$
Example: “Andy and Paul have the same maternal grandmother.”

- Predicates, M,:
 - $M(x, y)$: x is mother of y
 - a: Andy
 - p: Paul

- Translation
 - $\forall x \forall y \forall u \forall v (M(x, y) \land M(y, a) \land M(u, v) \land M(v, p) \rightarrow x = u)$

- Translation with a function: $m(x)$
 - $m(m(a)) = m(m(p))$
Predicate Logic as a Formal Language

Two sorts of “things” in a predicate formula:
- Objects such as a (Andy) and p (Paul). Function symbols also refer to objects. These are modeled by terms.
- Expressions that can be given truth values. These are modeled by formulas.

A predicate vocabulary consists of 3 sets:
- Predicate symbols \mathcal{P}
- Function symbols \mathcal{F}
- Constants \mathcal{C}
Definitions: **Terms** are defined as follows:

- Any variable is a term;
- Any constant in \mathcal{C} is a term;
- If $t_1, ..., t_n$ are terms and $f \in \mathcal{F}$ has arity n, then $f(t_1, ..., t_n)$ is a term;
- Nothing else is a term.
Backus Normal Form (BNF) Definition:

- $t ::= x | c | f(t, ..., t)$ where x represents variables, c represents constants in \mathcal{C}, and f represents function

Remarks:

• The first building blocks are constants and variables
• More complex terms are built from function symbols
Let \mathcal{F} be $\{d, f, g\}$, where d is a constant, f a function symbol with two arguments and g a function symbol with three arguments.

Which ones are terms over \mathcal{F}?

1) $g(d, d)$
2) $g(x, f(y, z), d)$
3) $g(x, h(y, z), d)$
4) $g(g(f(d, x), g(f(d, x), f(y, d)), f(d, d)), f(g(d, d, x), d), z)$
Formulas

Definition: We define the set of formulas over \((\mathcal{F}, \mathcal{P})\) inductively, using already defined set of terms over \(\mathcal{F}\).

- If \(P\) is a predicate with \(n \geq 1\) arguments, and \(t_1, \ldots, t_n\) are terms over \(\mathcal{F}\), then \(P(t_1, \ldots, t_n)\) is a formula.
- If \(\Phi\) is a formula, then so is \(\neg \Phi\)
- If \(\Phi\) and \(\Psi\) are a formulas, then so are \(\Phi \land \Psi, \Phi \lor \Psi, \Phi \rightarrow \Psi\)
- If \(\Phi\) is a formula and \(x\) is a variable, then \(\forall x \Phi\) and \(\exists x \Phi\) are formulas.
- Nothing else is a formula.
Formulas

BNF Definition:

\[\Phi ::= P(t_1, \ldots, t_n) | (\neg \Phi) | (\Phi \land \Phi) | (\Phi \lor \Phi) | (\Phi \rightarrow \Phi) | (\forall x \Phi) | (\exists x \Phi) \]

- where \(P \) is a predicate of arity \(n \), \(t_i \) are terms,
 \(i \in \{1, \ldots, n\} \), \(x \) is a variable.
- Remarks:
 - Convention: We retain the usual binding priorities of the connectives \(\neg, \land, \lor, \rightarrow \)
 - We add that \(\forall x \) and \(\exists x \) bind like \(\neg \)
Formulas

Let \(m \) be a constant, \(f \) a function symbol with one argument and \(S \) and \(B \) two predicate symbols, each with two arguments:

Which ones are formulas:

\[
\begin{align*}
S(m, x) \\
B(m, f(m)) \\
f(m) \\
B(B(m, x), y) \\
(B(x, y) \rightarrow (\exists z \, S(z, y))) \\
(S(x, y) \rightarrow S(y, f(f(x))))
\end{align*}
\]
Scope of Variables

Parse tree:

$$\forall x ((P(x) \rightarrow Q(x)) \land S(x, y))$$
- Bound and free variables

How about

$$\forall x \text{ in } \forall x (P(x)) \rightarrow \exists x Q(x))$$

Q: Is it possible to have the same variable being both bound and free?
Bound and Free Variables

\[\rightarrow \]

\[\forall x \]

\[\land \]

\[P \]
\[x \] \quad \text{bound}

\[Q \]
\[x \] \quad \text{bound}

\[\neg \]

\[P \]
\[x \] \quad \text{free}

\[Q \]
\[y \] \quad \text{free}

\[\lor \]
Summary

- Introduction to first-order logic
 - Predicates, variables and quantifiers
 - Functions
 - Terms
 - Formulas

- Parse of first-order logic formulas
 - Scope of variables