Nonregular Languages

• 2017/09/07

• Chapter 1.4 in Sipser

➤ Announcement:

- Slides for this lecture are here:
 http://www.public.asu.edu/~yzhan442/teaching/CSE355/Lectures/NREG.pdf

- HW3 will be announced by Friday, due next Friday (September 15)

- Mid-term #1 is scheduled to be on September 19 (Chapter 1)
 - In class; 75 min; a one-page guide will be provided soon
 - Difficulty level will be similar to exercises & problems in HWs and textbook
 - A one-page (maximum size A4) hand-written cheat sheet is allowed
 - Contact me by Friday, September 15 if you have any special requirements

ASU
Ira A. Fulton
Schools of Engineering
Last time

- Regular expressions (REs)
 - Regular operations and FA
 - RE examples
 - Equivalence of FA and REs

➢ Previous goals:
 - Learn that FA and regular expressions are equivalent!
 - Learn how to convert REs into FA and vice versa!
 - Learn to use proof by induction
Outline for today

- Nonregular languages
 - Limitations of regular languages
 - Pumping lemma
 - Proving for nonregularity
 - Using pumping lemma
 - Using closure properties of RLs

➢ Goals:
 - Learn the limitations of regular languages
 - Learn how to prove a language is not regular
 - Learn to use proof by contradiction
Limitations of regular languages

We have seen regular languages being used for

- Lexical analysis
- Controller design
- ...

What it can’t do (compute)?

- Consider the language \(\{0^n1^n | n \geq 0\} \)? How to design a FA for it?
Limitations of regular languages

We have seen regular languages being used for

- Lexical analysis
- Controller design
- ...

What it can’t do (compute)?

- Consider the language \(\{0^n1^n| n \geq 0\} \)? How to design a FA for it?

Step 1: For a given \(n \)

\[q_0 \xrightarrow{0} q_1 \quad \ldots \quad q_{-2n} \xrightarrow{1} q_{-2n+} \]

Step 2: Union them all
Limitations of regular languages

We have seen regular languages being used for

- Lexical analysis
- Controller design
 - ...

What it can’t do (compute)?

- Consider the language \(\{0^n1^n | n \geq 0\} \)? How to design a FA for it?

Step 1: For a given \(n \)

- \(q_0 \) \(\xrightarrow{0} \) \(q_1 \)
- \(q_2n \) \(\xrightarrow{1} \) \(q_{2n+} \)

Step 2: Union them all

does’t work for FA!
Limitations of regular languages

We have seen regular languages being used for

- Lexical analysis
- Controller design
- ...

What it can’t do (compute)?

- Consider the language \(\{0^n1^n | n \geq 0\} \)? How to design a FA for it?
- How about \(\{0^n\} \) – connection to nonregularity of the language of valid C programs

Step 1: For a given \(n \)

Step 2: Union them all

\[\begin{array}{cccc}
q_0 & 0 & q_1 & \\
& & \cdots & \\
& & & q_{-2n+1}
\end{array} \]

does’t work for FA!
Limitations of regular languages

Definition 1.16
A language is called a *regular language* if some finite automaton recognizes it.

Definition 1.5
A *finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the *states*,
2. \(\Sigma\) is a finite set called the *alphabet*,
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the *transition function*,
4. \(q_0 \in Q\) is the *start state*, and
5. \(F \subseteq Q\) is the *set of accept states*.
Limitations of regular languages

How do we decide whether a language is regular?

How do we decide if a language is not regular?

Definition 1.16
A language is called a *regular language* if some finite automaton recognizes it.
Limitations of regular languages

How do we decide whether a language is regular?

How do we decide if a language is not regular?

Proof by contradiction:

- $A \rightarrow B \quad \text{then} \quad \neg B \rightarrow \neg A$
- if A is a regular language, then we have B satisfied
- for any language A', assume it is regular, then B must holds
- show that A' satisfies $\neg B$

B must be a necessary property/condition of any regular language
Outline for today

• Nonregular languages
 o Limitations of regular languages
 o **Pumping lemma**
 o Proving for nonregularity
 • Using pumping lemma
 • Using closure properties of RLs

➢ Goals:
 o Learn the limitations of regular languages
 o **Learn how to prove a language is not regular**
 o Learn to use proof by contradiction
Pumping lemma

Definition 1.5

A *finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the *states*,
2. \(\Sigma\) is a finite set called the *alphabet*,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the *transition function*,
4. \(q_0 \in Q\) is the *start state*, and
5. \(F \subseteq Q\) is the *set of accept states*.\(^1\)

Consider an accept string:

\[(baba) \quad (baba)(baba) \quad (baba)(baba)(baba)\]
\[baaba(aa) \quad baaba(aa)(aa) \quad baaba(aa)(aa)(aa)\]

The corresponding state sequence:

\[q_1q_2q_3q_1\]
\[q_1q_2q_2q_3q_1q_3q_1\]
Pumping lemma

Definition 1.5

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the **transition function**, \(^1\)
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**. \(^2\)

Consider an accept string:

\[(baba) \quad (baba)(baba) \quad (baba)(baba)(baba)\]

\[baaba(aa) \quad baaba(aa)(aa) \quad baaba(aa)(aa)(aa)\]

The corresponding state sequence:

\(q_1 q_2 q_3 q_1\)

\(q_1 q_2 q_2 q_3 q_1 q_3 q_1\)

Certain substrings can be pumped!
Pumping lemma

Definition 1.5

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the **transition function**,\(^1\)
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.\(^2\)

\[S = S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow S_5 \rightarrow S_6 \rightarrow \ldots \rightarrow S_n \]

\(q_1 \rightarrow q_3 \rightarrow q_{20} \rightarrow q_9 \rightarrow q_{17} \rightarrow q_9 \rightarrow q_6 \rightarrow q_{35} \rightarrow q_{13}\)
Pumping lemma

THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.
Proof

Theorem 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

1. Consider an DFA $M = (Q, \Sigma, \delta, q_0, F)$ and let $p = |Q|$
2. For any $w = w_1w_2...w_n \in L(M)$ such that $|w| = n \geq p$
3. Let the state sequence be $r_1r_2...r_nr_{n+1}$
4. By the pigeon hole principle $\exists i, j \in [1, p + 1] \ r_i = r_j (i \neq j)$
5. Let $x = w_1...w_{i-1}$, $y = w_i...w_{j-1}$, $z = w_j...w_n$

[Diagram of a DFA with states q_1, q_9, q_{13}, and transitions r_1, r_i/r_j, r_{n+1}]
Proof

Theorem 1.70

Pumping lemma If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying the following conditions:

1. for each \(i \geq 0 \), \(xy^iz \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

NOTE: \(p \) can be arbitrarily chosen in PL

Does PL satisfy for any finite (and thus regular) language?

1. Consider an DFA \(M = (Q, \Sigma, \delta, q_0, F) \) and let \(p = |Q| \)
2. For any \(w = w_1w_2...w_n \in L(M) \) such that \(|w| = n \geq p \)
3. Let the state sequence be \(r_1r_2...r_nr_{n+1} \)
4. By the pigeon hole principle \(\exists i, j \in [1, p + 1] \) \(r_i = r_j (i \neq j) \)
5. Let \(x = w_1...w_{i-1}, y = w_i...w_{j-1}, z = w_j...w_n \)
Proof

Theorem 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Note: p can be arbitrarily chosen in PL. Does PL satisfy for any finite (and thus regular) language? **Yes!**

1. Consider an DFA $M = (Q, \Sigma, \delta, q_0, F)$ and let $p = |Q|$
2. For any $w = w_1w_2...w_n \in L(M)$ such that $|w| = n \geq p$
3. Let the state sequence be $r_1r_2...r_nr_{n+1}$
4. By the pigeon hole principle $\exists i, j \in [1, p + 1] \ r_i = r_j (i \neq j)$
5. Let $x = w_1...w_{i-1}$, $y = w_i...w_{j-1}$, $z = w_j...w_n$
Pumping lemma

Theorem 1.70

Pumping lemma If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = x y z \), satisfying the following conditions:

1. for each \(i \geq 0 \), \(x y^i z \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

How do we decide if a language is not regular?

Proof by contradiction:

- \(A \rightarrow B \rightarrow \neg B \rightarrow \neg A \)
- if \(A \) is a regular language, then we have \(B = PL \) satisfied
- for any language \(A' \), assume it is regular, then \(B = PL \) must holds
- show that \(A' \) satisfies \(\neg PL \)

Pumping lemma (PL) is a necessary property for any regular language

B must be a necessary property/condition of any regular language
Outline for today

• Nonregular languages
 o Limitations of regular languages
 o Pumping lemma
 o Proving for nonregularity
 • Using pumping lemma
 • Using closure properties of RLs

➢ Goals:
 o Learn the limitations of regular languages
 o Learn how to prove a language is not regular
 o Learn to use proof by contradiction
Example

Book example 1.73: Show that $A = \{0^n1^n | n \geq 0\}$ is nonregular

1. Assume that A is regular, then A must satisfy the pumping lemma
2. Since p is not set in the lemma, we cannot arbitrarily set p; consider it as a variable
3. Choose $w = 0^p1^p$ with p as a variable: the most innovative step; may not work for your first choice!
4. $w = xyz$
 Bad news: we must consider all possible way to decompose w
 Good news: often we only need to consider a few cases
5. Decompositions:
Example

Book example 1.73: Show that \(A = \{0^n1^n | n \geq 0\} \)
is nonregular

1. Assume that \(A \) is regular, then \(A \) must satisfy the pumping lemma
2. Since \(p \) is not set in the lemma, we cannot arbitrarily set \(p \); consider it as a variable
3. Choose \(w = 0^p1^p \) with \(p \) as a variable: the most innovative step; may not work for your first choice!
4. \(w = xyz \)
 Bad news: we must consider all possible way to decompose \(w \)
 Good news: often we only need to consider a few cases
5. Decompositions:
 • Case 1: if \(y \) contains only 0
 • Case 2: if \(y \) contains only 1
 • Case 3: if \(y \) contains both 0 and 1
Using closure properties

How do we decide whether a language is regular?

How do we decide if a language is not regular?

Proof by contradiction:

- \(A \rightarrow B \implies \neg B \rightarrow \neg A \)
- if \(A \) is a regular language, then we have \(B \) satisfied
- for any language \(A' \), assume it is regular, then \(B \) must hold
- show that \(A' \) satisfies \(\neg B \)

B must be a necessary property/condition of any regular language

Definition 1.23

Let \(A \) and \(B \) be languages. We define the regular operations **union**, **concatenation**, and **star** as follows:

- **Union**: \(A \cup B = \{ x \mid x \in A \text{ or } x \in B \} \).
- **Concatenation**: \(A \circ B = \{ xy \mid x \in A \text{ and } y \in B \} \).
- **Star**: \(A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \} \).

These are also properties of regular languages!
Example

Book example 1.74: Show that \(A = \{ w \mid w \text{ contains an equal number of 0s and 1s} \} \) is nonregular

1. Assume that \(A \) is regular, **choose another regular language \(B \): key step**
2. \(L = A \{ \cup, \cap, \circ, \backslash \} \) \(B \) must also be regular. **Why don’t we use \(*\)?**
3. Derive a contradiction by showing that \(L \) is not regular

- Let us choose \(B = \{ 0^*1^* \} \)
- What is \(L \)?
Example

Book example 1.74: Show that $A = \{w \mid w$ contains an equal number of 0s and 1s$\}$ is nonregular

1. Assume that A is regular, choose another regular language B: key step
2. $L = A \{\cup, \cap, \circ, \backslash\}$ B must also be regular. Why don’t we use $*$?
3. Derive a contradiction by showing that L is not regular

- Let us choose $B = \{0^*1^*\}$
- What is L? $\{0^n1^n\}$!
- Easy to use a similar process to prove that valid C programs are not regular
Outline for today

• Nonregular languages
 o Limitations of regular languages
 o Pumping lemma
 o Proving for nonregularity
 • Using pumping lemma
 • Using closure properties of RLs

➢ Goals:
 o Learned the limitations of regular languages
 o Learned how to prove a language is not regular
 o Learned to use proof by contradiction

• Reading assignment for the next class:
 o Sipser Sec. 2.1 – Quiz link will be sent out; due date is before the beginning of the next class