Table for CAN(5,k,19) for k up to 10000

Last Updated Fri Mar 27 17:29:14 MST 2015

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,19) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
202476099orthogonal array
214815018extended OA (Colbourn)
246436335orthogonal array fuse fuse fuse fuse
277428259perfect hash family3,27,19,c
287428294perfect hash family3,28,20
4114342169Add 1 factors
4414856499perfect hash family6,44,19,c
4814856588perfect hash family6,48,20
5517332579perfect hash family7,55,19,c
6117332686perfect hash family7,61,20
6819808659perfect hash family8,68,19,c
7619808784perfect hash family8,76,20
8722284739perfect hash family9,87,19,c
9822284882perfect hash family9,98,20
10824760819perfect hash family10,108,19,c
36224760980Power N-CT19^2+1
36329452194Add 1 factors
36434020288Add 2 factors
36536366066Add 3 factors
38138711844Add 19 factors
38243403058Add 19 factors
38347971152Add 19 factors
38450316930Add 19 factors
40052662708Add 19 factors
76381207416Add 1 factors
128481631477Power N-CT41^2Arc(9)T2
134887966666Power N-CT41^2Arc(9)
138192534760Power N-CT41^2Arc(8)
141597102854Power N-CT41^2Arc(7)
1450101670948Power N-CT41^2Arc(6)
1486106239042Power N-CT41^2Arc(5)
1523110807136Power N-CT41^2Arc(4)
1561115375230Power N-CT41^2Arc(3)
1600119943324Power N-CT41^2T1T1
8000123282306Power CT23^3T3T3T3
8400125621225Power CT23^3T3T3T2
9200127242542Power CT23^3T3T3
9660129581461Power CT23^3T3T2
10000131202778Power CT23^3T3