Table for CAN(6,k,22) for k up to 10000

Last Updated Fri Sep 20 11:45:18 MST 2013

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;6,k,22) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - Change v: - + or go to Global Menu.
24148035887orthogonal array fuse
26244140619orthogonal array fuse fuse fuse
28387420479orthogonal array fuse fuse fuse fuse fuse
31592143485perfect hash family4,31,23,c fuse
32688248276perfect hash family4,35,25S3
46714434071double OA (Colbourn-Zhou) fuse
48720858247double OA (Colbourn-Zhou) fuse
491040941349Add 23 factors
501102986371Martirosyan-Tran van Trung
521166266649Martirosyan-Tran van Trung
541480358681perfect hash family10,54,23,c fuse
551480358860perfect hash family10,55,24
631628394547perfect hash family11,63,23,c fuse
641628394746perfect hash family11,64,24
671776430413perfect hash family12,67,23,c fuse
681776430632perfect hash family12,68,24
691903843237Add 23 factors
711910267413Add 23 factors
722072502404perfect hash family14,72,24
1152220538011perfect hash family15,115,23,c fuse
1612333918193Power CT23^2T16
5292368573877perfect hash family16,529,23,c fuse
5302368574176Power CT23^2+1
5312997898102Add 1 factors
5323245198386Add 2 factors
5333565308792Add 3 factors
5533617935692Power CT25^2Arc(3)
5763714040424Power CT25^2T1T1
6003810145156Power CT25^2T1
6253906249619perfect hash family16,625,25,c fuse fuse fuse
6263906249888Power CT25^2+1
6274769477484Add 1 factors
6285087031336Add 2 factors
6295444936730Add 3 factors
6305616304910Add 5 factors
6485650960895Add 23 factors
6515768888068Power CT27^2Arc(3)
6765912167928Power CT27^2T1T1
7026055447788Power CT27^2T1
7306198727648Power CT27^2+1
10087061067952Martirosyan-Tran van Trung
10587063792298Martirosyan-Tran van Trung
10607112753357Martirosyan-Tran van Trung
10627978136645Martirosyan-Tran van Trung
10648441015369Martirosyan-Tran van Trung
10668917476739Martirosyan-Tran van Trung
11049056596717Martirosyan-Tran van Trung
11069081079117Martirosyan-Tran van Trung
11289519193084Power N-CT47^2T23
11479596025288Power N-CT47^2Arc(3)T21
11719602449464Power N-CT47^2Arc(2)T21
11969608873640Power N-CT47^2T21T1
12229615297816Power N-CT47^2T21
12359739305148Power N-CT47^2Arc(3)T19
12619745729324Power N-CT47^2Arc(2)T19
12889752153500Power N-CT47^2T19T1
13169758577676Power N-CT47^2T19
13339879786394Power N-CT43^2T12
13399937603978Power N-CT47^2Arc(4)T16
13679944028154Power N-CT47^2Arc(3)T16
13969950452330Power N-CT47^2Arc(2)T16
14269956876506Power N-CT47^2T16T1
14579963300682Power N-CT47^2T16
185210002076980Power N-CT43^2+3
186110040622036Power N-CT47^2Arc(8)
190110047046212Power N-CT47^2Arc(7)
194210053470388Power N-CT47^2Arc(6)
198410059894564Power N-CT47^2Arc(5)
202710066318740Power N-CT47^2Arc(4)
207110072742916Power N-CT47^2Arc(3)
211610079167092Power N-CT47^2T1T1
216210085591268Power N-CT47^2T1
221010092015444Power N-CT47^2+1
221111417634816Add 1 factors
221211934616512Add 2 factors
221312458314192Add 3 factors
221412659945204Add 4 factors
221512766888765Add 5 factors
223312801544750Add 23 factors
223513561684044Add 25 factors
223614887303416Add 25 factors
223715369474510Add 23 factors
223815476418071Add 23 factors
225615511074056Add 23 factors
225715694812262Power CT49^2Arc(3)
230416014895364Power CT49^2T1T1
235216334978466Power CT49^2T1
240116655061568Power CT49^2
403216989469227Power CT31^3T24T7T7
1000017024125210Power CT31^3T13T7T7