Table for CAN(6,k,23) for k up to 10000

Last Updated Fri Sep 20 11:45:18 MST 2013

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;6,k,23) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - Change v: - + or go to Global Menu.
24148035889orthogonal array
26244140621orthogonal array fuse fuse
28387420481orthogonal array fuse fuse fuse fuse
31592143487perfect hash family4,31,23,c
32688248284perfect hash family4,35,25S3
46714434073double OA (Colbourn-Zhou)
48720858249double OA (Colbourn-Zhou)
491071585217Add 23 factors
501181640621double OA (Colbourn-Zhou) fuse fuse
521183995124Martirosyan-Tran van Trung
541480358683perfect hash family10,54,23,c
551480358880perfect hash family10,55,24
631628394549perfect hash family11,63,23,c
641628394768perfect hash family11,64,24
671776430415perfect hash family12,67,23,c
681776430656perfect hash family12,68,24
691924466544perfect hash family13,69,24
701966334239Add 23 factors
711972223067Add 23 factors
722072502432perfect hash family14,72,24
1152220538013perfect hash family15,115,23,c
5292368573879perfect hash family16,529,23,c
5302368574208Power CT23^2+1
5313057834758Add 1 factors
5323341022212Add 2 factors
5533617935724Power CT25^2Arc(3)
5763714040456Power CT25^2T1T1
6003810145188Power CT25^2T1
6253906249621perfect hash family16,625,25,c fuse fuse
6263906249920Power CT25^2+1
6274870494146Add 1 factors
6285234123456Add 2 factors
6295534989032Add 3 factors
6305676588578Add 4 factors
6485708143451Add 23 factors
6515768888100Power CT27^2Arc(3)
6765912167960Power CT27^2T1T1
7026055447820Power CT27^2T1
7306198727680Power CT27^2+1
10587196366258Martirosyan-Tran van Trung
10607316819887Martirosyan-Tran van Trung
10628276955393Martirosyan-Tran van Trung
10648825140107Martirosyan-Tran van Trung
10669237496663Martirosyan-Tran van Trung
11049293733855Martirosyan-Tran van Trung
11069450211365Martirosyan-Tran van Trung
11289519193112Power N-CT47^2T23
11479596025316Power N-CT47^2Arc(3)T21
11719602449492Power N-CT47^2Arc(2)T21
11969608873668Power N-CT47^2T21T1
12229615297844Power N-CT47^2T21
12359739305176Power N-CT47^2Arc(3)T19
12619745729352Power N-CT47^2Arc(2)T19
12889752153528Power N-CT47^2T19T1
13169758577704Power N-CT47^2T19
13339879786422Power N-CT43^2T12
13399937604006Power N-CT47^2Arc(4)T16
13679944028182Power N-CT47^2Arc(3)T16
13969950452358Power N-CT47^2Arc(2)T16
14269956876534Power N-CT47^2T16T1
14579963300710Power N-CT47^2T16
185210002077008Power N-CT43^2+3
186110040622064Power N-CT47^2Arc(8)
190110047046240Power N-CT47^2Arc(7)
194210053470416Power N-CT47^2Arc(6)
198410059894592Power N-CT47^2Arc(5)
202710066318768Power N-CT47^2Arc(4)
207110072742944Power N-CT47^2Arc(3)
211610079167120Power N-CT47^2T1T1
216210085591296Power N-CT47^2T1
221010092015472Power N-CT47^2+1
221111593923154Add 1 factors
221212277550912Add 2 factors
221312690036546Add 3 factors
221412831636092Add 4 factors
223312973235638Add 23 factors
223513781923672Add 25 factors
223615283831354Add 25 factors
223715712856258Add 23 factors
225615854455804Add 23 factors
225716093182552Power CT49^2Arc(3)
230416443909520Power CT49^2T1T1
235216794636488Power CT49^2T1
1000017024125272Power CT31^3T13T7T7