Hierarchical Tree-Based Sequential Event Prediction with Application in the Aviation Accident Report

Abstract

Sequential event prediction is a well-studied area and has been widely used in proactive management, recommender systems and healthcare. One major assumption of the existing sequential event prediction methods is that similar event sequence patterns in the historical record will repeat themselves, enabling us to predict future events. However, in reality, the assumption becomes less convincing when we are trying to predict rare or unique sequences. Furthermore, the representation of the event may be complex with hierarchical structures. In this paper, we aim to solve this issue by taking advantage of the multi-level or hierarchical representation of these rare events. We proposed to build a sequential Encoder-Decoder framework to predict the event sequences. More specifically, in the encoding layer, we built a hierarchical embedding representation for the events. In the decoding layer, we first predict the high-level events and the low-level events are generated according to a hierarchical graphical structure. We propose to link the encoding decoding layers with the temporal models for future event prediction. In this article, we further discussed applying the proposed model into the failure event prediction according to the aviation accident reports and have shown improved accuracy and model interpretability.

Publication
Proceedings 37th IEEE International Conference on Data Engineering