Intermediate motor learning as decreasing
active (dynamical) degrees of freedom

Suvobrata Mitra1, Polemnia G. Amazeen2, and M. T. Turvey1

1 Center for the Ecological Study of Perception and Action, The University of Connecticut
2 Faculty of Human Movement Sciences, Vrije Universiteit, Amsterdam


A classical view is that motor learning has distinguishable early, intermediate, and late phases. A recent view is that motor learning is the acquisition of an abstract equation of motion that specifies the time evolution of a pattern of coordination. The pattern is expressed by a collective variable that enslaves or orders component subsystems that, in turn, act on and generate the collective variable. In these latter terms, early learning resolves the collective variable and its motion equation, intermediate learning stabilizes and standardizes the subsystems or active degrees of freedom (DFs) producing the collective variable's dynamics. The preceding ideas, and the phase-space reconstruction methods required to determine active DFs, are developed in tutorial fashion in the context of an experimental investigation of learning a bimanual rhythmic coordination. Results show that intermediate learning reduces the dimensionality of the learned coordination's dynamics and renders those dynamics more deterministic. The tutorial development relates the preceding concepts, results and methods of analyses to (a) the contrast between Poincarean and Newtonian dynamics, (b) contemporary interpretations of random processes, (c) definitions of DFs in respect to Bernstein's problem, (d) the potential contribution of chaos to the adaptability of a learned coordination, and (e) possible links between active (dynamical) DFs and the control variables r, c, and m identified by the lambda hypothesis.

Abstract from:

Mitra, S., Amazeen, P. G., & Turvey, M. T. (1998). Intermediate motor learning as decreasing active (dynamical) degrees of freedom. Human Movement Science, 17, 17-65.

  Preceding Abstract                                             Next Abstract  

Please contact me for additional information